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Abstract-This paper deals with numerical stability of nonlinear infinite-delay systems of the form 
y’(t) = f(t,y(t), yfpt)) (p E (0, l), t > 0). Recently, linear stability properties of some numerical 
methods for infinite delay systems have been studied by several authors (cf. [l-g]). However, few 
results have been devoted to the nonlinear case. This paper considers global and asymptotic stability 
of one-leg o-methods for the above nonlinear systems. Some stability criteria are obtained. @ 2002 
Elsevier Science Ltd. All rights reserved. 

Keywords-Nonlinear stability, One-leg B-methods, Infinite delay-differential. 

1. INTRODUCTION 

Discretization methods for infinite delay systems 

y’(t) = f(h Y(t), ybt)), t > 0, 

Y(O) = 77, 
(1.1) 

where p E (0,l) and f : [0, +CXI) x Cd x Cd -+ Cd are given, have been investigated in the last 

decades by several authors (cf. [l-g]). Those authors have noted that there exist very different 

numerical challenges between the infinite delay systems (1.1) and the finite delay systems 

y’(t) = f(h Y(t), Y(t - T))> t > 0, 

y(t) = v?t), -r < t <_ 0. 
(1.2) 

First, the solution of (1.1) is generally smooth and retains the degree of smoothness off? but the 

solution of (1.2) is usually nonsmooth even when f is smooth. From this sense, (1.1) seems to be 

simpler to compute. However, (1.1) poses more computational complexities than (1.2) does. For 
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instance, when ones solve (1.1) and (1.2) at t = t*, the past solutions in the intervals [pt’, t*) and 

[t* - 7, t*) must be known, respectively. But, as t* -+ co, [pt*, t*) is unbounded while [t* - T, t*) 

remains bounded. This creates a serious storage problem when the computation for (1.1) is run 

on any computer. However, this difficulty does not arise for (1.2). The computational difficulty 

for (1.1) was found first by Feldstein and Grafton [2]. To overcome the above storage obstacle, 

Liu (81 and Bellen, Guglielmi and Torelli [9] introduced some techniques, which will be used in 

the present paper. The nonlinear stability analysis of various numerical methods for (1.2) has 

been studied (cf. [lo-15]), but all numerical stability analysis for (1.1) were devoted mainly to 

the linear case. Thus, this paper considers nonlinear stability of one-leg &methods for (1.1). 

Some stability results are obtained. 

2. ONE-LEG Q-METHODS WITH VARIABLE STEPSIZE 

The technique, introduced by Liu [8], yields the following one-leg &methods: 

yn+l = ~~+h,+~f((l-e)t,+et~+~, (l-e)~,+e~,+~, (i-~)y,_,+ey,_,+l)), n 2 0, (2.1) 

where 0 E [0, l], m is certain positive integer, yn (n 2 0) are approximations to y(tn), stepsize 

h n+l = &+I -tn. The grid points t, of methods (2.1) are selected as follows. First, divide [0, oc) 

into a set of infinite bounded intervals; that is, 

where De = [0, y] with a given positive number y and Q = (Tl_r,Tl] (1 2 1) with TL = p-‘y. 

Then, partition every primary interval Dl (1 2 1) into m equal subintervals. Thus, the grid points 

on [0, co)/00 are determined by 

where Lo] denotes the integer part. On DO, choose t_(m+l) = 0, t_i = @m-i (i = m, m-l,. . . (1) 

as grid points. The corresponding numerical solutions y-i (i = m + 1, m, . . . , 1) are assumed to 

exist. So the function q(t) := pt has these properties: 

[PI] cp(&) = t,-776, 7% 2 0, 

[P21 d&+1) = %, 12 2 1, 

[P31 cp(hn) = hn-m, n 2 1, 

where the stepsize sequence {h,} is determined by 

1 

P-Y, 72=-m, 

(1 - P)Y 
h,= -3 n=-na+l,-m+2 ,..., -l,O, 

m 

(1 - P)Y 
mp~(n-l)/mj+l’ n = 1,2,..*. 

(2.2) 

Properties [Pl]-[P3] imply that the choice of grid points has removed the computational storage 

problem for (1.1). 

3. STABILITY OF THE METHODS 

In order to study the stability of these methods, consider this related infinite-delay system 

on Cd 
z’(t) = f(G 4tL dpt)), 

z(0) = c. 

t > 0, P E (0, I), 
(3.1) 
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In both (1.1) and (3.1), assume that the function f satisfies 

and 

Ilf(t, CL, Vl) - f(4 P, u2)ll I PllYl - v2ll, vp,4,v2 E Cd, t > 0, (3.3) 

where (0, l ) denotes an assigned inner product on C”, II l II . is t e m uce norm. In the following, h d d 

all systems (1.1) with (3.2) and (3.3) will be called class D,(a,p). For systems (1.1) and (3.1) 

of class DP(cy,p), it follows from the arguments given by Zennaro [lG] that 

Ildt) - 4t)ll 5 II77 - <Ill vt > 0 

and 

lim Ily(t) - z(t)11 = 0, 
t++cc 

whenever /3 5 -pa. 

The following lemma will play an important role in the subsequent analysis. 

LEMMA 3.1. Assume 9 2 l/2. Then, 

(a; - u;> I 2[hl + (1 - Q)aol(a1 - ao), Vao, al E R. (3.4) 

PROOF. By 0 2 l/2, it holds that 

(1 - 28)(ae - ai)2 < 0, Vaa,ar E R. 

Whereas the above inequality is equivalent to (3.4). Hence, this lemma is proved. 

THEOREM 3.1. Assume 8 E [l/2, l] and p 5 -per. Then, the numerical solutions yfn and zn, 

produced by the one-leg O-method (2.1) applying to systems (1.1) and (3.1) of the class D,(cx, p), 

respectively, satisfy the global stability inequality 

(3.5) 

PROOF. Write 

Then (2.1) implies that 

P(wJn = Lfl If(a(E)k a(%,, MY,-,) - f(o(E)tn, a(E)Znt a(E)Zn-m)], 7% r 0, (3.6) 

where E denotes the shift operator. Let {e,}d,=, be a set of orthonormal basis on Cd such that 

Write 
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It follows from Lemma 3.1 that 

(3.7) 

Whereas conditions (3.2), (3.3), and (3.6) imply that 

2% (~(-042, /J(Jq%) I %+1 ~ll~(G4112 + ~~~+lPll~~~~~~llll~~~~~,-,II 
I fbz+1@ + P)ll~(~)~nl12 + bL+IPI14q4-ml12. 

Inserting (3.8) into (3.7) yields 

(3.8) 

11%+1112 I lIwl12 + &+1(2Q +P)Il~mJnl12 + ~n+lPIl~m4z-ml12, 

Further, an induction yields 

n 2 0. 

IIWn+1112 I li%l12 + (2Q + P) i: ~i+111~(+412 + 02 ~7z+ll14GJ-ml12~ 
i=O 2=0 

Moreover, (2.2) leads to 

n > 0. (3.9) 

(3.10) 

Substituting (3.10) into (3.9) and using conditions p E (0,l) and p < -pa, yield that 

< ~~wo~~2 + PC1 - p)y _,ym~_~ lla(E)wl12> 7% 2 O, P 
which implies that 

II%+1 II 5 llwoll + _m~~~_1 ll4-Q~ill~ n?O 
-- 

(3.12) 

In addition, note that 

Il4~%4 = Ilewt+l + (1 - QJJII 5 max{ll++lll, IlwJ}. (3.13) 

Combining (3.12) with (3.13) yields (3.5). This concludes the proof. 

The following studies further the asymptotic stability of method (2.1). For simplicity, continue 

the notations introduced in the proof of Theorem 3.1. 
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THEOREM 3.2. Suppose 19 E (l/2, l] and ,O < -pa. Then the one-leg &method (2.1) is asymp- 

totically stable for the class D,(cu, p), i.e., lim,,, ]]yn - z,]] = 0. 

PROOF. It follows from the first inequality of (3.11) that 

Further, (3.14) and P < -pa imply that 

Whereas it follows from (2.2) that lim,,, l/h,+r = 0. Hence, 

lim ]]C(E)Ui]] = lim - 
1-00 2’03 & /in& vGl~(~)~, II = 0, 

which implies for all E > 0 that there is an 1 > 0 such that 

Il4+JiII < 6, % > 1. 

On the other hand, by 

O(E)wn = ew,+r + (1 - Q)w,, 

it follows that 
l-0 

f-h+1 = - -w, + +wn. 
0 

An induction argument applied to (3.16) yields 

1 -e n-1 
W nz -- ( ) e iJl +z (-~)“-i-11T(E)w7,, 1 > 0. 

id 

Since B E (l/2,1], then ](l - 0)/e] < 1. Thus, there exists an N with N > 1 such that, 

I _ 8 n-l 

l-l e 
< 6, n > N. 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

A combination of (3.15), (3.17), and (3.18) yields 

llWnll 5 [ii-ill + 1 _ l(l’_ e);q] ‘1 n > N. 

This implies that 

Hence, the proof is completed. 

4. CONCLUSION 

This paper deals with the discrete dynamics of the one-leg 0 methods for nonlinear infinite- 

delay-differential equations of the class D,(o, /?) and gives some new nonlinear stability criteria. 

In the future, we intend to work on effective implementation and error analysis of the presented 

aigorithms. Moreover, we are also interested in the following open problems (proposed by Pro- 

fessor Feldstein): 

(1) 
(2) 

(3) 

(4) 

what happens when there are multiple delay; 

what happens for systems where each component of the solution could have a different 

delay; 

what can be said when the delay pt is replaced by a variable delay function a(t); 

what can be said when the delay function is state dependent, as in (r(t, y(t)). 



526 C. ZHANG AND G. SUN 

REFERENCES 

1. hZ.A. Feldstein, Discretization methods for retarded ordinary differential equations, Ph.D. Dissertation, Uni- 

versity of California, pp. 8-10, (1964). 
2. h1.A. Feldstein and C.K. Grafton, Experimental mathematics: An application to retarded ordinary differential 

equations with infinite lag, In Proc. 1968 ACM National Conference, pp. 67-71, Brandon Systems Press, 

(1968). 
3. 41.D. Buhmann, A. Iserles and S.P. Norsett, Runge-Kutta methods for neutral differential equations, WSSIAA 

2, 8598, (1993). 
4. h1.D. Buhmann and A. Iserles, On the dynamics of a discretized neutral equation, IMA J. Namer. Aual. 12, 

339-363, (1992). 
5. h1.D. Buhmann and A. Iserles, Stability of the discretized pantograph differential equation, Math. Comput. 

60. 5755589, (1993). 
6. R1.D. Buhmann and A. Iserles, Numerical analysis of delay differential equations with variable delays, Ann. 

Namer. Math. 1, 133-152, (1994). 
7. Y. Liu, Stability analysis of &methods for neutral functional-differential equations, Numer. Math. 70, 473- 

485, (1995). 
8. Y. Liu, On the &methods for delay differential equations with infinite lag, J. Comput. Appl. Math. 71, 

177-190, (1996). 
9. A. Bellen, N. Gughelmi and L. Torelli, Asymptotic stability properties of &methods for the pantograph 

equation. Appl. Numer. Math. 24, 279-293, (1997). 
10. L. Torelli. Stability of numerical methods for delay differential equations, J. Comptk Appl. Math. 25, 15-26, 

(1989). 
11. A. Bellen and IvvI. Zennaro, Strong contractivity properties of numerical methods for ordinary and delay 

differential equations, Appl. Numer. Math. 9, 321-346, (1992). 
12. hl. Zennaro, Contractivity of Runge-Kutta methods with respect to forcing terms, Appl. Nztmer. A4ath. 10, 

z-345, (1993). 
13. C.J. Zhang and S.Z. Zhou, Nonlinear stability and D-convergence of Runge-Kutta methods for delay differ- 

ential equations, J. Compnt. Appl. Math. 85, 225-237, (1997). 
14. C.M. Huang, H.Y. Fu, S.F. Li and G.N. Chen, Stability analysis of Runge-Kutta methods for nonlinear delay 

differentiai equations, BIT 39, 27c-280, (1999). 
15. C.h,I. Huang, S.F. Li, H.Y. Fu and G.N. Chen, Stability and error analysis of one-leg methods for nonlinear 

delay differential equations, J. Comput. Appt. Math. 103, 263-279, (1999). 
16. hl. Zennaro, Asymptotic stability analysis of Runge-Kutta methods for nonlinear systems of delay differential 

equations, Numer. Math. 77, 549-563, (1997). 


