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1. INTRODUCTION

Impulsive delay differential equations may express several real-world
simulation processes which depend on their prehistory and are subject to
short-time disturbances. Such processes occur in the theory of optimal
control, theoretical physics, population dynamics, biotechnologies, eco-
nomics, etc. In the last few years, the qualitative theory of solutions of
impulsive ordinary differential equations and the oscillation of delay
differential equations have been studied by many mathematicians, respec-

� �tively. We refer to the monographs 8, 11 . However, not much has been
developed in the direction of impulsive delay differential equations. Most
of the publications are devoted to oscillation of differential equations with

Ž � �.coefficients of definite sign see 1�7, 12, 13 . The purpose of this paper is

1 This research was partially supported by the NNSF of China.
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to study oscillatory properties and asymptotic behaviour of solutions of
impulsive delay differential equations and inequalities with oscillatory
coefficients. To the best of our knowledge, this paper is probably the first
publication on the above mentioned equations and inequalities. In the
particular case where equations with coefficients of definite sign, our
results improve and generalize some known results in the recent literature.

� 4Let N � 1, 2, . . . , . Consider the first order impulsive delay differential
inequalities

y� t � a t y t � p t y t � � � 0, t � t ,Ž . Ž . Ž . Ž . Ž . k
1Ž .�½ y t � y t � b y t , k 	 N ,Ž . Ž .Ž .k k k k

y� t � a t y t � p t y t � � 
 0, t � t ,Ž . Ž . Ž . Ž . Ž . k
2Ž .�½ y t � y t � b y t , k 	 N ,Ž . Ž .Ž .k k k k

and the corresponding impulsive delay differential equation

y� t � a t y t � p t y t � � � 0, t � tŽ . Ž . Ž . Ž . Ž . k
3Ž .�½ y t � y t � b y t , k 	 N ,Ž . Ž .Ž .k k k k

under the following conditions:

Ž .A 0 � t � t � t � ��� � t � ��� , are fixed points with lim t1 0 1 2 k k �� k
� �;

Ž . Ž� . .A a, p 	 t , � , R are locally summable functions and � is a2 0
positive constant;

Ž . Ž . Ž .A b 	 ��, �1 � �1, � are constants for k 	 N.3 k

Ž .Remark 1. It is obvious that all solutions of 3 are oscillatory if there
� 4 � 4exists a subsequence n of n such that b � �1 for k � 1, 2, . . . . Ink nk

the sequel we assume �1 � b � � for k 	 N.k

� �For any � 
 t , let PC denote the set of functions � : � � � , � � R0 �

� . Ž .which are real-valued absolutely continuous in t , t � � � � , � andk k�1
� �at t situated in � � � , � they may have discontinuity of the first kind.k

Ž�DEFINITION 1. For any � 
 t and � 	 PC , a function y 	 � �0 �

. . Ž . � .r, � , R is said to be a solution of 3 on � , � satisfying the initial value
condition

� �y t � � t , t 	 � � � , � 4Ž . Ž . Ž .

if the following conditions are satisfied:

Ž . Ž . � . � .i y t is absolutely continuous on each interval t , t � � , � ;k k�1
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Ž . � . Ž �. Ž �. Ž �. Ž .ii for any t 	 � , � , y t and y t exist and y t � y t ;k k k k k

Ž . Ž . Ž . Ž . � .iii y t satisfies 3 a.e. almost everywhere in � , � and at impul-
� .sive points t situated in � , � may have discontinuity of the first kind.k

Ž .DEFINITION 2. A solution of 3 is said to be nonoscillatory if it is either
eventually positive or eventually negative. Otherwise, it is called oscilla-
tory.

Ž . Ž .Remark 2. The definition of solution of 1 or 2 is analogous to
Definition 1.

We also consider the following delay differential equations and inequali-
ties

x� t � a t x t � P t x t � � � 0, a.e. t 
 t � � , 1*Ž . Ž . Ž . Ž . Ž . Ž .0

x� t � a t x t � P t x t � � 
 0, a.e. t 
 t � � , 2*Ž . Ž . Ž . Ž . Ž . Ž .0

and

x� t � a t x t � P t x t � � � 0, a.e. t 
 t � � , 3*Ž . Ž . Ž . Ž . Ž . Ž .0

Ž . Ž .�1 Ž . � 4where P t � Ł 1 � b p t , t 
 t � � , and a, p and b sat-t�� � t � t k 0 kk
Ž . Ž .isfy A � A . Here and in the sequel we assume that a product equals1 3

unit if the number of the factor is equal to zero.
Ž . Ž . � .By a solution x t of 3* on � , � we mean an absolutely continuous

� . Ž . � .function on � , � which satisfies 3* on � , � and satisfies condition
Ž . Ž . � � Ž . Ž .x t � � t , t 	 � � � , � . Similarly the solutions of 1* and 2* can be

Ž .defined respectively. A solution of 3* is said to be oscillatory if it has
arbitrarily large zeros. Otherwise the solution is called nonoscillatory.

Ž .Recently, for the first order impulsive delay differential equation 3 ,
� �under appropriate hypotheses, the oscillation criteria are established in 1 ,

� �but some 1, Theorem 3, Corollary 2, and Theorem 4 of the results are
incorrect. Now, let us introduce the following

� � Ž . Ž .Assertion 1, Theorem 3 . Let the following conditions H � H hold:1 3

Ž . Ž� . Ž ..H a, p 	 C 0, � , 0, � , � � 0 is a constant;1

Ž .H 0 � t � t � ��� � t � ��� , are fixed points with lim t � �2 1 2 k k �� k
and there exists a positive constant T such that t � t 
 T � � , k �k�1 k
1, 2, . . . ;

Ž . � 4H b is a sequence of real numbers and b � �1 for all k 	 N.3 k k

Suppose that

1
a t � p t � 0, t 	 0, � , k 	 N. 5Ž . Ž . . Ž .

1 � bk
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Then all solutions of

x� t � a t x t � p t x t � � � 0, t � t ,Ž . Ž . Ž . Ž . Ž . k
�½ x t � x t � b x t , k 	 NŽ . Ž .Ž .k k k k

Ž . Ž .with the initial condition x t � � t , �� � t � 0, where � 	
Ž� � .C �� , 0 , R , are oscillatory.
Consider the counterexample

x� t � � x t � 	 x t � � � 0, t � t ,Ž . Ž . Ž . k
6Ž .�½ x t � x t � b x t , k 	 N ,Ž . Ž .Ž .k k k k

� 4 � 4 Ž . Ž .where t and b satisfy H and H with b 
 0, k 	 N, and � , 	 , �k k 2 3 k
1�� Ž . Ž . Ž .are positive constants satisfying 	� e � . Clearly 6 satisfies H � H1 3e

Ž . Ž . �� t Ž .and 5 . The transformation x t � e y t , which is oscillation-invariant,
Ž .reduces 6 to

y� t � 	e�� y t � � � 0, t � t ,Ž . Ž . k
6�Ž .�½ y t � y t � b y t , k 	 N.Ž . Ž .Ž .k k k k

� � Ž .By Corollary 3 in 5 the first order impulsive delay equation 6� has a
Ž . Ž . Ž .nonoscillatory solution y t , that is, 6 has a nonoscillatory solution x t ,

which implies that the Assertion is incorrect.

� �Remark 3. Reference 1, Theorem 4 is also an incorrect result. Its
� �counterexample is given in 13, p. 462 .

2. MAIN RESULTS

In this section, first we establish a fundamental theorem that enables us
Ž . Ž Ž . Ž ..to reduce some properties of solutions of 1 or 2 and 3 respectively to

Ž . Ž Ž . Ž ..corresponding properties of 1* or 2* and 3* .

Ž . Ž .THEOREM 1. Assume that A � A hold. Then1 3

Ž . Ž . Ž .i Inequality 1 has no e�entually positi�e solution if and only if 1*
has no e�entually positi�e solutions.

Ž . Ž . Ž .ii Inequality 2 has no e�entually negati�e solution if and only if 2*
has no e�entually negati�e solutions.

Ž . Ž . Ž .iii All solutions of 3 are oscillatory if and only if all solutions of 3*
are oscillatory.

Ž . Ž . Ž .Proof. Clearly, it is sufficient to prove i , since ii and iii follow from
Ž .i .
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Ž . Ž .Let y t be an eventually positive solution of 1 . Then there exists a
Ž . Ž .T 
 0 such that y t � 0 and y t � � � 0 for t 
 T. From Remark 1,

Ž . Ž .�1 Ž . Ž .b � �1, k 	 N. Set x t � Ł 1 � b y t . Hence x t � 0 andk T � t � t kk
Ž .x t � � � 0 for t 
 T.

Ž . Ž �Since y t is absolutely continuous on each interval t , t , and ink k�1
Ž �. Ž . Ž .view of y t � 1 � b y t , it follows that for t 
 Tk k k

�1 �1� �x t � 1 � b y t � 1 � b y t � x t ,Ž . Ž .Ž . Ž .Ž . Ž .Ł Łk j k j k k
T�t �t T�t �tj k j k

and for all t 
 T ,k

�1 �1� �x t � 1 � b y t � 1 � b y t � x t ,Ž . Ž .Ž . Ž .Ž . Ž .Ł Łk j k j k k
T�t �t T�t �tj k�1 j k

Ž . � .which implies that x t is continuous on T , � and it is easy to prove that
Ž . � .x t is also absolutely continuous on T , � . Moreover, we obtain that for

� .almost everywhere t 	 � , �

x� t � a t x t � P t x t � �Ž . Ž . Ž . Ž . Ž .
�1 �1� 1 � b y� t � a t 1 � b y tŽ . Ž . Ž . Ž . Ž .Ł Łk k

T�t �t T�t �tk k

�1� P t 1 � b y t � �Ž . Ž . Ž .Ł k
T�t �t��k

�1� 1 � b y� t � a t y t � p t y t � � � 0Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ł k
T�t �tk

Ž . Ž .which implies that x t is a positive solution of 1* .
Ž . Ž .Conversely, let x t be an eventually positive solution of 1* and

Ž . Ž . Ž . Ž . Ž .x t � 0 and x t � � � 0 for t 
 T 
 t . Set y t � Ł 1 � b x t0 T � t � t kk
Ž . � . Ž .where b � �1. As x t is absolutely continuous on T , � , y t is abso-k

Ž �lutely continuous on each interval t , t , t 
 T and for almost every-k k�1 k
� .where t 	 � , � ,

y� t � a t y t � p t y t � �Ž . Ž . Ž . Ž . Ž .
� 1 � b x� t � a t 1 � b x tŽ . Ž . Ž . Ž . Ž .Ł Łk k

T�t �t T�t �tk k

� p t 1 � b x t � �Ž . Ž . Ž .Ł k
T�t �t��k

� 1 � b x� t � a t x t � P t x t � � � 0. 7Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ł k
T�t �tk
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On the other hand for every t 
 Tk

y t� � lim 1 � b x t � 1 � b x tŽ . Ž .Ž . Ž . Ž .Ł Łk j j k�t�t T�t �t T�t �tk j j k

and

y t � 1 � b x t .Ž . Ž .Ž .Łk j k
T�t �tj k

Thus for every t 
 T , k 	 N, we havek

y t� � 1 � b y tŽ . Ž .Ž .k k k

Ž . Ž . Ž .which together with 7 implies that y t is a positive solution of 1 . The
proof of Theorem 1 is complete.

Ž .Remark 4. It is obvious that the conclusion iii of Theorem 1 improves
� �and generalizes noticeably Theorem 1 in 5 .

The following results provide several explicit sufficient conditions for the
Ž .oscillation of all solutions of 3 . For delay differential equations without

Ž � �.impulses similar results have been established see 9, 10 . Furthermore,
by Theorem 1 we note that Theorems 2, 3 and Corollaries 1, 2 below of
this paper can be formulated in a more general form as follows.

If a set of conditions holds, then

Ž . Ž .i Inequality 1 has no positive solutions.
Ž . Ž .ii Inequality 2 has no negative solutions.
Ž . Ž .iii All solutions of 3 are oscillatory.

Ž . Ž .THEOREM 2. Assume that A � A hold and that there exists a se-1 3
�Ž .4 Ž .quence of inter�als 
 , � with lim 
 � � � �. Suppose thatn n n�� n n

�

p t 
 0 for all t 	 
 , � , where N 
 1Ž . Ž .� n n
n�N

� Ž .and for all t 	 � 
 � � , �n�N n n

s 1t �1lim inf 1 � b p s exp a � d� ds � . 8Ž . Ž . Ž . Ž .ŁH Hk ž / et�� t�� s��s���t �sk

Ž .Then all solutions of 3 are oscillatory.

Ž . Ž .Proof. Suppose that y t is a nonoscillatory solution of 3 . By Theo-
Ž . Ž .rem 1 there exists a nonoscillatory solution x t of 3* and suppose that

Ž . Ž .x t � 0 and x t � � � 0 for all t 
 T 
 t . Set0

z t � eH t
T aŽ s. d s x t , t 
 T .Ž . Ž .
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Ž .Thus 3* reduces

z� t � P t z t � � � 0, a.e. for t 
 T 9Ž . Ž . Ž . Ž .1

where

t �1 tH aŽ s. d s H aŽ s. d st� � t��P t � P t e � 1 � b p t e . 10Ž . Ž . Ž . Ž . Ž .Ł1 k
t���t �tk

1Ž . Ž .From 8 and 10 there exists � � and N 
 T such that1e

�1t
P s ds 
 � � , t 	 
 � � , � . 11Ž . Ž . Ž .�H 1 n net�� n�N1

Ž .Moreover, since lim � � 
 � �, we can choose N 
 N and ann�� n n 2 1
Ž .integer m such that � � � 
 
 � m � 2 � andn n

22 m
� e� . 12Ž . Ž .ž /�

Ž . Ž . � Ž .From 9 we find that z� t � 0 a.e. for t 	 � 
 � � , � and thatn�n* n n
Ž . Ž . � Ž .z t � z t � � for t 	 � 
 � � , � where 
 � � 
 T. Hencen�n* n n n*

�

z� t � P t z t � 0, a.e. for t 	 
 � � , � ,Ž . Ž . Ž . Ž .�1 n n
n�N3

� 4 Ž .where N � max N , n* . Thus from 11 we have3 2

�z tŽ .
ln � � � 0 for t 	 
 � � , �Ž .� n nz t � �Ž . n�N3

or
�

�e� z t � e z t � z t � � for t 	 
 � � , � .Ž . Ž . Ž . Ž .� n n
n�N3

Repeating the above procedure, it follows by induction that
�

m
e� z t � z t � � for t 	 
 � m � 1 � , � . 13Ž . Ž . Ž . Ž . Ž .Ž .� n n

n�N3

� Ž Ž . . Ž .Now fix t 	 � 
 � m � 1 � , � . Then because of 11 there existsn�N n n3
�Ž . Ž Ž . .a t* 	 t, t � � 
 � 
 � m � 1 � , � such thatn�N n n3

� �t* t��
P s ds 
 and P s d 
 . 14Ž . Ž . Ž .H H1 12 2t t*
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Ž . � � � �By integrating 9 on intervals t, t* and t*, t � � we find

t*
z t* � z t � P s z s � � ds � 0,Ž . Ž . Ž . Ž .H 1

t

�

for t 	 
 � m � 1 � , � 15Ž . Ž .Ž .� n n
n�N3

and

t��
z t � � � z t* � P s z s � � ds � 0Ž . Ž . Ž . Ž .H 1

t*

�

for t 	 
 � m � 1 � , � . 16Ž . Ž .Ž .� n n
n�N3

Ž . � Ž .But using the decreasing nature of z t on � 
 � � , � we haven�N n n3
Ž . Ž .from 15 and 16 that

� �
�z t � z t* � � � 0 and �z t* � z t � 0Ž . Ž . Ž . Ž .

2 2

or

� � 2

z t* � z t � z t* � � .Ž . Ž . Ž .
2 4

This implies that

z t* � � 4Ž .m
e� � �Ž . 2z t* �Ž .

Ž .which contradicts 12 and completes the proof of Theorem 2.

Ž . Ž .THEOREM 3. Assume that A � A hold and there exists a sequence of1 3
�Ž .4inter�als 
 , � such that lim 
 � � and � � 
 � � for all n 
 Nn n n�� n n n
Ž . � Ž . � Ž .� 1. If p t 
 0 for all t 	 � 
 , � and for all t 	 � 
 � � , �n�N n n n�N n n

st �1lim sup 1 � b p s exp a � d� ds � 1, 17Ž . Ž . Ž . Ž .ŁH Hk ž /t�� s��s���t �st�� k

Ž .then all solutions of 3 are oscillatory.

Ž .Proof. From Theorem 1 we only prove that 3* has no nonoscillatory
Ž . Ž .solutions. Let x t be a nonoscillatory solution of 3* . Without loss of

Ž . Ž .generality we suppose that x t � 0 and x t � � � 0 for t 
 T. Set
Ž . Ž t Ž . . Ž . Ž .z t � exp �H a s ds x t � 0 for t 
 T. Thus we obtain 9 . HenceT
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Ž . � Ž . Ž .z� t � 0 a.e. in � 
 � � , � which implies z t is nonincreasing inn�N n n
� Ž . Ž .� 
 � � , � . Integrating 9 from t � � to t we have thatn�N n n

t
z t � z t � � � P s z s � � ds � 0,Ž . Ž . Ž . Ž .H 1

t��

�

for all t 	 
 � � , � .Ž .� n n
n�N

Ž .From the nonincreasing character of z t , we derive that

�
t

z t � z t � � P s ds � 1 � 0 for all t 	 
 � � , �Ž . Ž . Ž . Ž .�H 1 n nž /t�� n�N

Ž .which contradicts 17 . The proof of Theorem 3 is complete.

Ž .In particular, when p t 
 0, by Theorem 2 and Theorem 3, we obtain
the following results.

Ž . Ž . Ž .THEOREM 2�. Assume that A � A hold and p t 
 0 for t 
 t . If1 3 0

s 1t �1lim inf 1 � b p s exp a � d� ds � ,Ž . Ž . Ž .ŁH Hk ž / et�� t�� s��s���t �sk

Ž .then all solutions of 3 are oscillatory.

Remark 5. It is obvious that Theorem 2� improves and generalizes
� � � �Theorem 3.2 in 7 and Theorem 5 in 1 . Moreover, since

st �11 � b p s exp a � d� dsŽ . Ž . Ž .ŁH Hk ž /t�� s��s���t �sk

s�1
 inf � 1 � b p s exp a � d�Ž . Ž . Ž .Ł Hk½ 5ž /t���s�t s��s���t �sk

and

st �11 � b p s exp a � d� dsŽ . Ž . Ž .ŁH Hk ž /t�� s��s���t �sk

st�1
 inf 1 � b p s exp a � d� ds,Ž . Ž . Ž .Ł H Hk ž /t���s�t t�� s��s���t �sk

� �Theorem 2� improves and generalizes respectively Corollary 7 in 3 and
� �Theorem 2 in 13 .
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Ž . Ž . Ž .THEOREM 3�. Assume that A � A hold and p t 
 0 for t 
 t . If1 3 0

st �1lim sup 1 � b p s exp a � d� ds � 1Ž . Ž . Ž .ŁH Hk ž /t�� s��s���t �st�� k

Ž .then all solutions of 3 are oscillatory.

Remark 6. Theorem 3� improves and generalizes Corollary 2 and
� �Corollary 3 in 13 .

We introduce the following conditions.

Ž � .A 0 � t � t � t � ��� � t � ��� , are fixed points with lim t1 0 1 2 k k �� k
Ž .� � and there exists an integer m such that m t � t 
 � for allk�1 k

k 	 N.
Ž � .A There exists a constant M � 0 such that 0 � b � M for all3 k

k 	 N.

The following two results are respectively immediate corollaries of
Theorem 2� and Theorem 3�.

Ž � . Ž . Ž � . Ž .COROLLARY 1. Assume that A , A , A hold and p t 
 0 for1 2 3
t 
 t . If0

m
s 1 � MŽ .t

lim inf p s exp a � d� ds �Ž . Ž .H Hž / et�� t�� s��

Ž .then all solutions of 3 are oscillatory.

Remark 7. Corollary 1 improves and generalizes respectively Theorem
� � � � � �5 in 1 , Theorem 3.2 in 7 , and Theorem 2 in 13 .

Ž � . Ž . Ž � . Ž .COROLLARY 2. Assume that A , A , A hold and p t 
 0 for1 2 3
t 
 t . If0

st m
lim sup p s exp a � d� ds � 1 � MŽ . Ž . Ž .H Hž /t�� s��t��

Ž .then all solutions of 3 are oscillatory.

The following result provides a sufficient condition for the existence of a
Ž .nonoscillatory solution of 3 .

Ž . Ž . Ž .THEOREM 4. Let A � A hold and p t 
 0 for t 
 t . Assume that1 3 0
there exists T 
 t such that for all t 
 T0

s 1t �11 � b p s exp a � d� ds � . 18Ž . Ž . Ž . Ž .ŁH Hk ž / et�� s��s���t �sk

Ž . � .Then 3 has a nonoscillatory solution on T , � .
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Proof. By Theorem 1, we only need to prove that

z� t � P t z t � � � 0Ž . Ž . Ž .1

Ž . � . Ž . Ž .has a nonoscillatory solution z t on T , � , where P t is defined by 10 .1
We define a sequence of functions as

P t , t 
 T ,Ž .1u t �Ž .1 ½ 0, T � � � t � T ,

t�
P t exp u s ds , t 
 T ,Ž . Ž .H1 k� ž /u t � 19Ž . Ž .t��k�1 �
0, T � � � t � T , k 	 N.

It is easy to show that for all t 
 T 
 � and k 	 N

0 � u t � u t . 20Ž . Ž . Ž .k k�1

Ž . Ž . Ž .For u t we have u t � P t e, t 
 T � � . Suppose that for some k1 1 1

u t � P t e, t 
 T � � .Ž . Ž .k 1

Ž . Ž .Thus, by 18 and 19 we obtain that for t 
 T

t t
u t � P t exp u s ds � P t exp e P s ds � P t e.Ž . Ž . Ž . Ž . Ž . Ž .H Hk�1 1 k 1 1 1ž / ž /t�� t��

Hence by induction we prove

u t � eP t , t 
 T � � , k 	 N 21Ž . Ž . Ž .k 1

Ž . � Ž .4which with 20 implies u t is a nondecreasing bounded sequence ofk
� . � Ž .4functions on T � � , � . Thus u t , t 
 T � � , has a pointwise limitingk

Ž . Ž . Ž . Ž . � Ž .4function u t , that is, lim u t � u t . Furthermore, 21 implies u tk �� k k
� �is uniformly bounded on t � � , t for all t 
 T. Consequently, by applying

the Lebesgue’s dominated convergence theorem, we obtain

P t exp H t u s ds , t 
 T ,Ž . Ž .Ž .1 t��u t �Ž . ½ 0, T � � � t � T .

Set

t
z t � exp � u s ds , t 
 T � � .Ž . Ž .Hž /T

Ž . Ž . � .It is easy to check that z t is a positive solution of 9 on T , � . The proof
of Theorem 4 is complete.
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The following corollary is an immediate result of Theorem 4.

Ž � . Ž . Ž . Ž .COROLLARY 3. Let A , A , A hold and p t 
 0 for t 
 t .1 2 3 0
Assume that there exist T 
 t and a constant 
 with �1 � 
 � b for0 k
t 
 T such thatk

m
s 1 � 
Ž .t

p s exp a � d� ds � for t 
 T . 22Ž . Ž . Ž .H Hž / et�� s��

Ž .Then 3 has a nonoscillatory solution.

Remark 8. In particular, by applying Theorem 4 to the differential
equation,

x� t � px t � � � 0, t � t ,Ž . Ž . k
23Ž .�½ x t � x t � b x t , k 	 N ,Ž . Ž .Ž .k k k k

Ž .where p � 0, � � 0, and b 
 0 for k 	 N. It is easy from 18 to see thatk
if

p� e � 1

Ž .then 23 has a nonoscillatory solution. From which we find that Theorem
� �4 is a substantial improvement of Theorem 3.3 in 7 and it generalizes and

� �improves Theorem 3 and Theorem 4 in 13 .
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