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a b s t r a c t

The Wulungu Depression is the northernmost first-order tectonic unit in the Junggar Basin. It can be
divided into three sub-units: the Hongyan step-fault zone, the Suosuoquan sag and the Wulungu south
slope. The Cenozoic strata in the basin are intact and MesozoiceCenozoic deformation can be observed in
the Wulungu step-fault zone, so this is an ideal place to study the MesozoiceCenozoic deformation. By
integration of fault-related folding theories, regional geology and drilling data, the strata of the Creta-
ceousePaleogene systems are divided into small layers which are selected as the subjects of this
research. The combination of the developing unconformity with existing growth strata makes it
conceivable that faults on the step-fault zone have experienced different degrees of reactivation of
movement since the Cretaceous. Evolutionary analyses of the small layers using 2D-Move software
showed certain differences in the reactivation of different segments of the Wulungu Depression such as
the timing of reactivation of thrusting, for which the reactivity time of the eastern segment was late
compared with those of the western and middle segments. In addition the resurrection strength was
similarly slightly different, with the shortening rate being higher in the western segment than in the
other segments. Moreover, the thrust fault mechanism is basement-involved combined with triangle
shear fold, for which a forward evolution model was proposed.

� 2015, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. All rights reserved.
1. Introduction

The Central Asian Orogenic Belt (CAOB) is a giant accretionary
orogen between the European, Siberian, Tarim and North China
cratons (Şengör et al., 1993; Jahn, 2004; Xiao et al., 2010) and is the
most important area of Phanerozoic continental growth around the
world (Şengör et al., 1993; Jahn et al., 2000; Kovalenko et al., 2004;
Kröner et al., 2007, 2014; Safonova et al., 2009, 2011; Xiao et al.,
2009, 2013, 2014; Li et al., 2013; Xiao and Santosh, 2014). It is
widely accepted that the CAOB resulted from complicated accr-
etionecollision processes involving Precambrian micro-continents,
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island arcs, seamounts, accretionary complexes and ophiolites
during the evolution of the Paleo-Asian Ocean from the late Mes-
oproterozoic to the Mesozoic (Jahn, 2004; Windley et al., 2007;
Xiao and Kusky, 2009; Xiao et al., 2010).

CAOB collision events had ceased by the end of the late Paleo-
zoic, signalling the intra-plate evolution stage. The Paleozoic rocks
were involved into theMesozoiceCenozoic deformation events (De
Grave et al., 2007b); the Altay-Sayan experienced JurassiceCreta-
ceous large-scale denudation, and as a result kilometres thick
clastic sediments were accumulated in the intermountain basin
(Howard et al., 2003). During the late Cretaceouseearly Paleogene,
the Altai experienced widespread peneplanation (Dobretsov et al.,
1996; De Grave et al., 2007a,b, 2009). This period of peneplana-
tion affected the entire CAOB, albeit somewhat earlier in the Gobi-
Altai and Tianshan (Jolivet et al., 2007, 2010; Vassallo et al., 2007),
to the south of the Altai. MesozoiceCenozoic basalt is widely
distributed in several different parts of the central Asian region.
duction and hosting by Elsevier B.V. All rights reserved.
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However there are still controversies regarding the tectonic de-
formations during the MesozoiceCenozoic. There are many unre-
solved questions, for example, were the early faults reactive? What
are the features of the reactivation? Furthermore, are the de-
formations continuous or staged? Chen et al. (2011) proposed that
the Cenozoic tectonics of North Junggar involved reactivation of
early deep-seated thrusts, resulting in extensional fractures and
formation of many small depressions at the shallow crustal level.
However, although this research attempted to describe the for-
mation of the shallow depressions, there was little kinematic
analysis of the deep early faults, and there was no reference to the
late Mesozoic.

The Junggar Basin (JB) of northwestern China is located in the
southwestern CAOB (Windley et al., 2007; Choulet et al., 2011; Xiao
et al., 2013) (Fig. 1a and b). The northern Junggar Basin is bounded
by the Kelameili Mountains to the southeast and the Qinggelidi
Figure 1. (a) Location of the study area in the Central Asian Orogenic Belt (modified from
Central Asian Orogenic Belt; (c) Geological map of the northern Junggar terrane. C1eL
QeQuaternary, OeOrdovician.
Mountains to the northeast (Fig. 1c). The Cenozoic strata in the
basin are intact and MesozoiceCenozoic deformation can be
observed in the Wulungu step-fault zone. Therefore it is an ideal
place to study this deformation.

2. Geological setting

2.1. Tectonic position

The northern margin of the Junggar Basin was an active tectonic
belt during the Paleozoic (Coleman, 1989; Zhang et al., 2008; Zhang
and Guo, 2010). The ancient Junggar Ocean, crossing the northern
Xinjiang region, existed between the Siberian plate and the
Kazakhstan plate. The ophiolite belt, outcropped in the northern
margin of the Junggar Basin, has preserved information about the
evolution of the ancient oceans (Jian et al., 2003; Zhang et al., 2003;
Ma et al., 2012); (b) Topographic map showing the location of the East Junggar in the
ower Carboniferous, C2eUpper Carboniferous, DeDevonian, SeSilurian, PePermian,
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Xiao et al., 2006; Tang et al., 2007). Three ophiolite belts are
distributed in the northeastern part of the basin. From north to
south, these are the Kurt ophiolite belt, the Armantai ophiolite belt
(Xiao et al., 2006, 2009) and the Kelameili ophiolite belt (Fig. 1c).
The Kelameili ophiolite belt, along with the Da’erbute ophiolite belt
in the western Junggar, represents the ancient Junggar Ocean (Ping
et al., 2005; Tang et al., 2007; Wang et al., 2009). The Zhaheba
ophiolite belt corresponds to a marginal basin or the back-arc basin
and the Kuert ophiolite belt represents a back-arc basin to the north
of the Junggar Ocean (Zhang et al., 2003; Shen et al., 2013). The
suture zone closed completely at the end of the Carboniferous. The
Yemaquan arc zone and the Kelameili suture can be tracked in the
residual magnetic anomaly map of the northern margin of the
Junggar Basin (Fig. 2a and b).

2.2. Tectonic units

The Wulungu Depression can be divided into three sub-units
(Ren, 2008): the Hongyan step-fault zone; the Suosuoquan sag
and the Wulungu south slope (Fig. 1c).

The Hongyan step-fault zone, which in the form of a ladder
inclined to the south, is connected with the Wulungu north uplift
belt in the north and the Suosuoquan sag in the south. The
boundaries between them are faults: the Tuzituoyila Fault (F1), the
Wulungu north Fault (F4), the Well Lun-2 south Fault (F2) and the
Bai’erkuduke Fault. The northwest trending pan-like Suosuoquan
sag is connected with the Wulungu south slope in the south by the
Kalasayi Fault (F6). The sag was formed during the late Triassic (Ren,
2008). To the south of the Wulungu south slope is the Luliang
Figure 2. (a) Simplified tectonic framework of Northern Xinjiang; (b) Resi
Uplift, the boundaries between the two are the Lubei Fault (F5) and
the Dishuiquan north Fault (F7). During theMesozoiceCenozoic the
boundary between the Wulungu Depression and the Luliang Uplift
moved southwards relative to its position during the Paleozoic era
(Ren, 2008).

2.3. Stratigraphy

Paleozoic strata mainly crop out in the peripheral part of
northern margin of the Junggar Basin, in which there are also oc-
casional outcrops of Cenozoic strata (Fig. 1c). The deepest drilling
well in the Suosuoquan sag isWell Wucan-1, which was drilled into
clastic rock of lower Carboniferous, while other wells only drilled
the upper Carboniferous. The only drilled Paleozoic strata are
Carboniferous, and are mainly a series of volcanic rocks: the top is
predominantly made up of tuff, with a few breccias, and the bottom
is composed of tuffaceous shale. A large-scale regional unconfor-
mity exists between Paleozoic and Mesozoic strata, corresponding
to Hercynian movements. Permian rocks are absent over the entire
area. The development of the Triassic is not complete: only the
upper Triassic is drilled in the Hongyan step-fault zone, while the
Triassic developed relatively intact on the Suosuoquan sag, the
Triassic is mainly made up of lacustrine clastic rock, containing
some coal sandwich. Jurassic formations are coal measures strata
(Fig. 3). A large-scale diachronic unconformity surface is present
between the Jurassic and the Cretaceous strata. The unconformity
corresponds to the second-phase Yanshan movement. The Creta-
ceous strata are predominantly of the Tugulu Group: brown
mudstone and silty mudstone interbedded with minor siltstone
dual magnetic anomaly at the northern margin of the Junggar Basin.



Figure 3. Comprehensive stratigraphical column of the Wulungu Depression.
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and having a pale green basal conglomerate at the deepest point of
the group (Fig. 3). The Cretaceous layers are in unconformable
contact with the Paleogene (Fig. 4d). The Paleogene formations
contain some mudstone and siltstone, with sandy conglomerate at
the base and the top. The Neogene strata are mainly mudstone and
sandy mudstone, containing conglomerate lenses. The base of the
Neogene is a regionally diachronous unconformity surface.
3. Methods and database

Deposition in active tectonic settings is always controlled by
growing structures at different scales. The inherent synchroneity of
growth strata and coupled folding or faulting activity makes
growth strata crucial to interpret fold-and-thrust geometry and
kinematics (Suppe et al., 1992; Anastasio et al., 1997). Good ex-
amples of growth strata have been documented in the Pyrenees
and the Ebro Basin (Anadón et al., 1986; Riba, 1989), the Alps
(Lickorish and Ford, 1998), and the Apennines (Zoetemeijer et al.,
1992; Butler and Lickorish, 1997). The western boundary of North
and South America also provides significant examples of growth
strata, such as in the Transverse Ranges in California (Medwedeff,
1989; Hummon et al., 1994; Shaw and Suppe, 1994; Souter and
Hager, 1997), and the frontal Andes in Argentina (Zapata and
Allmendinger, 1996). Precise studies of the geometries and sedi-
mentological characteristics of growth strata associated with a
particular structure are the key to understanding the kinematics of
folding and faulting and the timing of deformation (Mascle et al.,
1998).

The stages of deformation, as indicated by extensive angular
unconformities, resulted in significant changes in the tectonic
geomorphology and geography of the basin (Lin et al., 2012). The
development of unconformities, particularly their erosion and
originwithin the dynamic setting of a basin, has been an important
and long-term controversy in basin analysis. The formation of
stratigraphic unconformities can be attributed to tectonics, eustasy,
or climatic change (Huuse and Clausen, 2001; Dickinson et al.,
2002; Jaimes and de De Freitas, 2006; Otonicar, 2007; Baranoski
et al., 2009). However, angular unconformities with underlying
deformed strata are usually generated by tectonic events or uplift
(Coakley et al., 1991; Mindszenty et al., 1995; Paola and Domenico,
1995; Yu and Chou, 2001; Rafini et al., 2002; Li et al., 2004;
Ghiglione and Ramos, 2005).

The northern Junggar Basin has been imaged by many 2D
seismic reflection profiles which can reveal the structural defor-
mation. In addition, many wells have been drilled in the Wulungu
Depression: Wells Lun2, Lun3, Lun5 and Lun6 were drilled in the
Hongyan step-fault zone, and Wells Luncan1, Lun7, Lun8 and
Wucan1 are located in the Suosuoquan sag. All the wells can be
incorporated in the horizon calibration of seismic data. This study
uses an integrated database that includes distributed seismic pro-
files, well logs, and outcrop sections. Comprehensive analysis of 20
2D seismic profiles across the Wulungu Depression provides a firm
basis for the recognition of the major angular unconformities. The



Figure 4. (a) ① Angular unconformity between the Jurassic and the Cretaceous, ② Angular unconformity between the Cretaceous and the Neogene (the green point indicates the
truncation, the red point indicates onlap); (b) Angular unconformity between the Jurassic and the Cretaceous from the BeB0 profile (the green point indicates the truncation); (c)
Angular unconformity between the Jurassic, the Triassic and the Neogene from the BeB0 profile; (d) Angular unconformity between the Paleogene and the Cretaceous (the green
point indicates the truncation, the red point indicates onlap) from the CeC0 profile.
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angular unconformities can be related to the major tectonic events
or uplifts (Ghiglione and Ramos, 2005), and can then be used to
determine the movement times of major tectonic events or uplifts.
Accurate analysis of growth strata has revealed their significance
for unravelling both fold kinematics and the timing of deformation
in both compressive and extensive settings. This study uses analysis
of growth strata in profiles to better study the growth structures
and indicate the deformation times of the major faults along the
Hongyan step-fault zone.

This study shows that multiple overlap points exist within the
CretaceousePaleogene strata. The width between the overlap
seismic events above the base of Cretaceous increases from the
edge to the interior of the basin. This is a product of divergent
overlap, which is not only caused by the sea-level change and
tectonic subsidence, but also corresponds to tectonic deformation
resulted from the activity of the faults. These kinds of overlap
points can, to a certain extent, reflect the dynamic balance rela-
tionship between the tectonic activity rate and deposition rate.

In order to resolve the folding kinematics and study the
comprehensive movement information of the faults, balanced
cross-section construction, unfolding techniques and forward
modelling techniques (e.g., Mount et al., 1990; Novoa et al., 2000)
are needed. In this study, strata in the CretaceousePaleogene sys-
tem are divided into small layers corresponding to events. By using
2D-Move software, evolutionary analysis of these small layers can
be performed, from which we can draw conclusions about the
characteristics of deformations since the Cretaceous.

By integrating fault-related folding theories, regional geology
and drilling data, four typical profiles are selected and presented in
this paper.
4. Analyses of seismic profiles

4.1. Characteristics of unconformities

The Wulungu region has developed three large regional un-
conformities since the Cretaceous. A large-scale diachronous un-
conformity surface occurs between the Jurassic and the Cretaceous
strata, and this surface has a strong-amplitude continuous reflec-
tion axis on the seismic profile (Fig. 4a and b). In addition, obvious
truncation points can be seen under the unconformity surface
(Fig. 4b), as well as overlap points above the unconformity surface
(Fig. 4a). The unconformity corresponds to the second-phase Yan-
shan movement. The Cretaceous strata are in unconformable con-
tact with the Paleogene strata (Fig. 4d); this unconformity is visible
in the seismic profile as a middle-strong amplitude and continuous
reflection axis (Fig. 4d). Obvious truncation points can be seen
under the reflection axis. The base of the Neogene is a regionally
diachronous unconformity surface, with different contact re-
lationships from the Suosuoquan sag to the step-fault zone from
south to north: the Neogene unconformity overlies the Paleogene
in the Suosuoquan sag (Fig. 4a); in the transition zone between the
sag and step-fault zone, the Neogene cover on the Cretaceous strata
with angle unconformity contact relationship. On the step-fault
zone, the Neogene are successively angled unconformable contact
with Jurassic and Triassic (Fig. 4c).

4.2. Characteristics of the sequence structure

The four survey lines chosen by this research cover the west,
middle and east segments of the Wulungu Depression. The four



Figure 5. Seismic profile of AeA0 . (a) Original profile of AeA0; (b) Interpreted profile of AeA0; (c) Pure interpreted profile of AeA0 .
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Figure 6. Seismic profile of BeB0 . (a) Original profile of BeB0; (b) Interpreted profile of BeB0; (c) Pure interpreted profile of BeB0 .

J. Tang et al. / Geoscience Frontiers 6 (2015) 227e246 233
profiles are similar in structure (Figs. 5e8). The profiles are divided
into the Suosuoquan sag and the Hongyan step-fault zone by the
sag-controlled faults. In the west segment the Tuzituoyila fault is
the sag-controlled fault, while in the middle and east they are the
South Lun-2 Fault and the Hongpen Fault, respectively. In the AeA0

profile from the west segment (Fig. 5), the fault plane of the Tuzi-
tuoyila Fault is northeastward, with a steep upward angle. In the
middle segment of the Wulungu Depression (Figs. 6 and 7), it is
easy to recognize two sets of structural layers in the deep, structural
wedge at the bottom and an imbricate structure at the top, sepa-
rated by a detachment surface (Figs. 6 and 7). In the top imbricate
structure, imbricate distributed faults, including the South Lun-2
Fault (F2), converge at the lower detachment layer, and the faults
became steeper with decreasing of depth. In addition, the CeC0

profile in the middle segment has already developed into antithetic
faults, which meet the major fault in a Y-shape (Fig. 7). An analysis
of the sag-controlled fault indicated that the folds that have
resulted from the sag-controlled fault are asymmetrical and their
fore-limbs are generally much steeper and narrower than their
corresponding back-limbs. The fault displacement becomes smaller
from the Triassic to the Jurassic strata, becoming zero at the
endpoint. From these characteristics, we believe that the sag-
controlled fault is a typical fault-propagation fold (Suppe and
Medwedeff, 1990).

The Wulungu Depression lacks Permian sedimentary rocks
entirely (Fig. 2) and there was no deposition in this area until the



Figure 7. Seismic profile of CeC0 . (a) Original profile of CeC0; (b) Interpreted profile of CeC0; (c) Pure interpreted profile of CeC0 .
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early Triassic. With the expansion of the lake domain in the late
Triassic Junggar area, the entire basin was covered by water, with
the Wulungu Depression acting as a sink for deposits (Ren, 2008).
An analysis of the formation thickness up into the Triassic indicates
that before the deposition of the Cretaceous rocks the sedimentary
centre of the depression was located in the northernmost region of
the Suosuoquan sag, close to the Hongyan fault terrace in the
middle and west profiles (Figs. 5e7). At the beginning of the
Cretaceous, the sedimentary centre migrated to the southwest.
However, in the eastern profile (Fig. 8), as the width of the Suo-
suoquan sag is smaller and the south slope zone of the Wulungu
Depression is closed to the step-fault zone, the sedimentary centre
is located between them, and there was no significant migration.

The sag-controlled fault did not break through the Cretaceous
strata in all the profiles. However, the formations above the
Cretaceous were involved in fold deformation to different degrees.
Growth strata could be recognized in many profiles. In the BeB0

profile and the CeC0 profile (Figs. 6 and 7), The Cretaceous strata
and the Cenozoic strata are growth strata, and a growth triangle
zone is restricted by the antiformal axial surface (indicated in green
colour) and the synformal axial surface (indicated in red colour).
Denudation was widespread as the growth triangle zone was not
closed. In the DeD0 profile (Fig. 8), there is also a growth triangle
zone formed by the Cretaceous to Cenozoic strata, with the closing
point located in the Cenozoic layer.

4.3. Characteristics of the CretaceousePaleogene strata

All the profiles indicate the presence of complex internal
structures in the CretaceousePaleogene strata. We selected three
profiles from the western, middle and eastern segments for
detailed study.

In the western profile (Fig. 9a), 11 small layers are recognized in
both the Cretaceous and the Paleogene. The base of the Cretaceous
is an unconformity with truncations and onlap points near it. The
K2eK6 events successively onlap onto the K1 event, and K8, K9 also
onlap onto the K7 event. Strong onlap points could be observed
above the base of Paleogene (E1). In addition, the E5 and E9 events
onlap onto the E4 and E8 events, respectively.

In the middle profile (Fig. 9b), the Cretaceous could be divided
into 17 small layers (K1eK17), and the Paleogene has 10 small layers
(E1eE10). Strong truncation can be observed along the base of the
Cretaceous (K1), particularly in the Hongyan step-fault zone and the
Suosuoquan sag. The K2 event is parallel to the K1 event, and the



Figure 8. Seismic profile of DeD0 . (a) Original profile of DeD0; (b) Interpreted profile of DeD0; (c) Pure interpreted profile of DeD0 .
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Figure 9. Interpreted profile showing the small layers. (a) Profile from the western profile (AeA0); (b) Profile from the middle profile (BeB0); (c) Profile from the eastern profile (DeD0).
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K3eK8 events successively onlap onto the K2 event. The K9eK17 and
E1eE6 are all truncated by the Neogene event except for the K11
event, which is a regressive offlap event that offlaps onto the K10
event. The E7eE10 events onlap onto the K6 event with no variation
in width.

In the eastern profile (Fig. 9c), the Cretaceous strata could be
divided into 21 small layers (K1eK21) and the Paleogene could be
divided into six small layers (E1eE6). Visible truncated points can be
observed along the base of the Cretaceous (K1), particularly in the
Hongyan step-fault zone. However, no overlap points exist above
the base of the Cretaceous (K1). The K2eK5 events are parallel to the
K1 event, the width between them does not vary from the edge to
the interior of the basin. The K6 event is an onlap surface, and the K7
and K8 events successively onlap onto the K6 event. The K9 event
regressively offlaps onto the K8 event, and the K10 event onlaps onto
the K8 event. The K13 event is a mini-unconformity with truncation
points underneath, and the K14 event onlaps on the K13 event. The
K15eK20 events are all truncated by the Neogene event. The E1 event
is an unconformity truncating the K21 event; however the E1eE6
events are also successively truncated by the Neogene event.

5. Discussions

5.1. Timing of the reactivation

Three large regional unconformities have been developed in The
Wulungu region since the Cretaceous, and the degree of denuda-
tion is relatively large near the transitional zone between the
Suosuoquan sag and the Hongyan step-fault zone. In our opinion,
this tectonic movement has occurred since the Cretaceous, with the
relatively large-scale uplift near the step-fault zone being denuded.
The sag-controlled fault at the edge of the step-fault zone, which
developed since the Triassic, can control tectonic movement. In
addition, the existence of growth strata also limited the active stage
of the fault. Growth triangle zones could be recognized on all the
profiles, which prove that the sag-controlled faults were reac-
tivated after they formed.

Thus, together with the development of unconformities and the
existing growth triangle zone, we have reasons to believe that the
faults in the step-fault zone have experienced reactivation to
different degrees since the Cretaceous.

5.2. Evolution since the Cretaceous

5.2.1. Western segment
The Cretaceous and Paleogene can both be divided into 11 small

layers: K1eK11 and E1eE11, respectively (Fig. 10ael). Before forma-
tion of the Cretaceous regional unconformity, two uplifts existed in
the transition and the Suosuoquan sag. These were eroded by the
base of the Cretaceous, resulting in many truncation points. At the
beginning of the Cretaceous, the Tuzituoyila Fault (F1) recom-
menced thrusting, making the step-fault zone rise slightly. The
depositional rate, however, was greater than the rate of tectonic
uplift over the entire depression, and events occurred not only at
the overlap at the basin edges, but were also involved in the fold
caused by the thrusting of F1 (Fig.10b and c). When the K7 sequence
was formed, the overlap phenomenon ceased, resulting in strati-
graphical sedimentary cover to the step-fault zone (Fig. 10d).
However, after deposition of K7, the step-fault zone was rapidly
uplifted, outpacing the depositional rate. Offlap points can be seen
on the seismic profile (Fig. 10e, K8 seismic event). But immediately
after the short-term offlap, there was a reoccurrence of onlap
(Fig. 10e and f). During the Cretaceous period, the uplift rate of the
step-fault zone was generally small, with rapid uplift in the me-
dium term.
Before the formation of the Paleogene unconformity, a con-
struction highness existed in the transitional zone caused by the
reactivity of F1 (Fig. 10g). This was eroded by the base of Paleogene,
forming many truncation points. The Paleogene, together with the
lower layers of the Cretaceous strata, subsequently tilted signifi-
cantly (about 15�) towards to the basin (Fig. 10h and i). However,
the sequence was still onlapping from the basin to the step-fault
zone. Therefore, the rate of deposition remained comparatively
greater than the rate of uplift. Prior to the sedimentary layer E10, an
uplift was formed in the sag, indicating that two uplifts were pre-
sent in the sag and the step-fault zone in the profile. It is easy to
determine that the E9 seismic event onlapped onto the two uplifts
at the same time (Fig. 10j). Subsequently, both sides of the uplift
continued to be active, andwere truncated by the bottom boundary
of the Neogene. Deformation during the whole Paleogene was
mainly tilted at a large angle to the basin. Meanwhile, an uplift
formed in the Suosuoquan sag.

The length of the AeA0 profile from the western segment at
present is 15.08 km. The length before deposition of the Cretaceous
strata, however, was 17.64 km, making the shortening length
2.56 km and the shortening rate 14.5%.

5.2.2. Middle segment
The Cretaceous can be divided into 17 small layers in the middle

segment (K1eK17). Overall, the characteristics of the small layers
are very similar to those of the western segment (Fig. 11aeg): a
large-scale onlap phenomenon at the beginning of the Cretaceous
(Fig. 11b) and a K2 event parallel to the base of the Cretaceous.
However, the K3eK9 seismic events were onlap onto the K2 event. A
short-term offlap appeared (Fig. 11c) during which the K10 seismic
event covered the step-fault zone and the K11 seismic event was
deposited into the Suosuoquan sag with offlap phenomenon. Sub-
sequent Cretaceous layers (K12eK17) with growth strata covered the
entire region.

The Paleogene can be divided into 10 small layers (E1eE10).
Truncation points under the base of the Paleogene are predomi-
nantly present in the transition and step-fault zones, making these
two places construction highnesses prior to the formation of the
unconformity. The E2 and E3 events were then onlap onto the un-
conformity. Thewidth between the two events did not change from
the basin to the step-fault zone, suggesting that they were caused
by sea level change. Subsequent, seismic events have covered the
entire area, and have been involved in the folding caused by the
reactivity of fault (Fig. 11d). After the E6 event, similarly to the
western profile, the fault experienced a large-scale thrust move-
ment which titled (about 5�) the E7 and underlying layers towards
the basin (Fig. 11e). E7 was an offlapping seismic event, whereas the
other events in the sag after E6 were all onlapping. However, the
width between E7 and E10 events was stable (Fig. 11f), making it
obvious that the South Lun-2 Fault (F2), following the large angular
tilt, experienced a stable period during which tectonic movement
almost ceased. Meanwhile, the sequence above the E6 event, which
was located in the construction highness, was denuded and dis-
played many truncation points.

The length of the BeB0 profile from the middle segment at
present is 9.87 km, while the length before deposition of the
Cretaceous strata was 10.94 km, indicating a shortening length of
1.07 km and a shortening rate of 9.8%.

5.2.3. Eastern segment
The structure of the Cretaceous strata in the eastern profile is

relatively complex, and can be divided into 21 small layers (K1eK21)
(Fig. 12aek). The step-fault zone was a construction highness prior
to the formation of the base of the Cretaceous (K1), which was
denuded by the Cretaceous unconformity (Fig. 12a). The sag-



Figure 10. The tectonic evolution of the small layers since the Cretaceous from the western profile (AeA0).
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Figure 11. The tectonic evolution of the small layers since the Cretaceous from the middle profile (BeB0).
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Figure 12. The tectonic evolution of the small layers since the Cretaceous from the eastern profile (DeD0).
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controlled fault (F3) was not reactivated during the sedimentation
of K2eK5 intervals (Fig. 12b). At the beginning of the K6 interval, the
Hongpen Fault (F3) commenced its reactivity. With the reactivation
of F3, the early depositional layers (K2eK5) above the unconformity
were involved in the flexural deformation. Alternatively the se-
quences formed at a later period were syndepositional deformation
(Fig. 12c and d). The sedimentary centre was located in the sag
behind the step-fault zone. The thickness of the strata in the sag
was obviously greater than that of the strata within the step-fault
zone. After deposition of the K6 interval, the K7 event experi-
enced obvious offlap relative to K6, illustrating that the uplift rate
caused by the thrust of the Hongpen Fault (F3) was high relative to
the sedimentation rate. The widespread overlap subsequently
occurred towards the step-fault zone along K6 (Fig. 12d). K8 and K9
represented a similar offlap and onlap cycle. However, overlap
events also were involved in the folding, and as such it is obvious
that the thrust reactivity of the fault did not cease with the
occurrence of overlap. However, the effect of thrust was weak, with
the uplift rate being less than the deposition rate. The K13 seismic
event was a small erosion surface. It is obvious that many denu-
dation points exist under this surface and many onlap points are
present above the surface. This surface denuded the small uplift
caused by the fault reactivity (Fig. 12f).

The Paleogene can be divided into six small layers (E1eE6).
Movement during the Paleogene was relatively simple. The E2eE5
events were synsedimentary sequences, with a small movement
rate. However during the deposition of E6, the fault experienced
large-scale thrust reactivity, causing rapid uplift of the Creta-
ceousePaleogene strata and denudation of sequences by the
Neogene unconformity surface. Denudation points spread over the
sag and step-fault zone.

The length of the DeD0 profile from the eastern segment at
present is 10.2 km, while the length before deposition of the
Cretaceous strata was 11.1 km, indicating a shortening length of
0.9 km and a shortening rate of 9.7%.

5.2.4. Comparison among western, middle and eastern segments
Thrust reactivation in theWulungu Depressionwas proved in all

the profiles, and the shortening rate was about 10% in all cases. The
visible thrust reactivation strength was high. In addition, the tec-
tonic activity rate relative to the deposition rate changed and
thrusting activities continued for a long time, continuing into the
Cenozoic. Overall, the reactivation of thrusting represents a kind of
episodic activity.

Reactivation in different segments of the Wulungu Depression
showed certain differences, such as the difference in the timing of
thrust reactivation. In the western and middle segments, thrust
reactivation began in the Cretaceous, with widespread onlapping
seismic events related to the tectonic activity on the Cretaceous
unconformity; while the reactivation time of the eastern segment
was relatively late, with no onlapping seismic events visible on the
Cretaceous unconformity surface. The strength of reactivation also
varied slightly: the shortening rate was higher in the western
segment than in the other segments. Additionally, the reactivation
of the western segment was also relatively strong.

5.3. The geometric model

The sag-controlled fault located in the Hongyan step-fault zone,
shows a type of fault-propagation folding. These can be divided into
several types: constant thickness fault-propagation folds and fixed-
axis fault-propagation folds (Suppe and Medwedeff, 1990),
basement-involved (drape) folding with migrating triple junctions
(Narr and Suppe, 1994) and trishear fault-propagation folds (Erslev,
1991; Allmendinger, 1998).
Basement-involved folds commonly have six general charac-
teristics (Narr and Suppe, 1994): (1) they are often monoclines; (2)
the structures commonly form above a contractional fault in the
basement; (3) the main fault can disappear as it proceeds up into
the cover sequence; (4) the basement behaves as a rigid block in
some structures, but is folded in others; (5) the steep limbs of folds
are commonly formed by the cover draping over a faulted edge of
basement as the hanging wall is uplifted; (6) deformation in the
cover is concentrated in the steep limb and can involve both layer-
parallel shortening and layer-parallel extension.

Basement faults spread upward into the sedimentary cover,
because of the differences in rheological properties between the
basement and the cover. They often have a strong brittle fracture
deformation zone in the basement and are replaced by a widening-
upwards triangular deformation zone in the sedimentary cover. The
vertex of the triangle is fixed at the endpoint of the fault. As the
fault endpoint propagates forwards, the triangular deformation
zone constantly moves forwards. For this type of force fold asso-
ciated with basal faulting, Erslev (1991) put forward the concept of
triangular shear folding and a kinematical model to describe the
geometry.

From the profiles in the Wulungu Depression, it is the authors’
opinion that the research area displays a basement involved fold
mechanism linked with triangular shear folding. The basement is
the Palaeozoic rocks and the MesozoiceCenozoic strata are
involved in the deformation as the cover layers (Fig. 13a and b).
Specifically, the main fault broke through the basement and
entered the Jurassic strata prior to the events associated with the
basement-involved structures during Mesozoic and Cenozoic time.
In order to build an evolutionary model of the triangular shear
folding, six parameters are required: the fault ramp angle, the slip,
the propagation/slip (P/S), the trishear angle and the location of the
fault tip. This paper chose FaultFoldForward, founded by RichardW.
Allmendinger and 2D-Move, as the basic instrument for con-
structing the evolutionary model.

In the BeB0 depth profile (Fig. 13b), the initial fault tip was at A
and the fault tip is located at present at B. The total propagation (Ps)
is 4940 m, the fault ramp angle (q) is about 60� and the trishear
angle (F) is 60�. The fault slip in the Triassic strata (ST) is 1600 m
(Fig. 13b). However, the slip will be greater closer to the fault tip;
the initial fault tip is deeper than T, and therefore, the total slip (S)
must be greater than 1600 m. The P/S value should be less than 3.0.
The elevation difference for the different layers between the foot-
wall and the hanging wall can be calculated from the profile:
DN ¼ 140 m, DE ¼ 420 m, DK ¼ 750 m, DJ2t ¼ 1160 m,
DJ2x ¼ 1450 m, DJ1b ¼ 1570 m and DT ¼ 2000 m. The various pe-
riods of uplift can be calculated using inversion: T
(DT � DJ1b) ¼ 430 m, J1b (DJ1b � DJ2x) ¼ 120 m, J2x
(DJ2x� DJ2t)¼ 290m, J2t (DJ2t� DK)¼ 410m, K (DK� DE)¼ 330m,
E (DE � DN) ¼ 280 m and N (DN) ¼ 140 m. Simulations can then be
conducted by selecting different values of P/S and combining them
with the calculated parameters. The simulations showed that the
slip during each period had no relationship to the P/S, but was
affected by the elevation difference: DST ¼ 500 m, DSJ1b ¼ 140 m,
DSJ2x ¼ 340 m, DSJ2t ¼ 480 m, DSK ¼ 380 m, DSE ¼ 320 m and
DSN ¼ 160 m. Thus, the total slip (Stotal) is 2320 m and the P/S is 2.1.
The evolutionary parameters during various periods have been
obtained (Fig. 14).

As the proposed analysis was performed using the trishear
model, its accuracy depends on whether the trishear model is
representative of the actual deformation. Moreover, the proposed
trishear model was based on these assumptions: (1) the ramp angle
of the fault and the P/S ratio remained constant during all fault
propagation events; and (2) the apical angles along both sides of
the fault line are equal and did not change for all fault propagation



Figure 13. (a) Theoretical model of Triangle Shear Fold; (b) Depth seismic profile from BeB0: FeTrishear angle, qeFault ramp angle, PseThe total propagation, STeThe fault slip in
the Triassic, AeInitial fault tip, BeFault tip.
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events. These assumptions will invariably differ from reality (see
for example a comparison of the results from the sandbox and the
trishear model; Lin et al., 2006). Due to the variety of different li-
thologies present, the trishear angle (F) will be different in the
different strata. Therefore, the inferred fault propagation history
will also differ from the actual propagation history. Further work to
evaluate this discrepancy is necessary.

5.4. Tectonic implications

The presence of thrusting in the northern Junggar Basin since the
MesozoiceCenozoic has been recognized by many scholars. Shi
(2002) believed that the northern margin of the Junggar Basin
experienced two stages of thrust movement during the Paleogene.
The first movement started in the Palaeocene and ended in the
Eocene. The basal fault experienced a strong thrust reactivation and
a thick layer of coarse clastic sediments, mostly sandy fan and gravel
fan, formed in the front of the fault. At the same time, river alluvial
plain sediment and local underwater gravity flow deposits devel-
oped in places far away from the faults. The second period of activity
occurred during the Eocene and Oligocene. During this period, uplift
of the mountains of northern Xinjiang recommenced and strong
thrust activity again occurred in the northern faults. Coarse clastic
sediment and underwater gravity flow deposits formed in the front
edge and distal area of the thrust belt, respectively. These two thrust
relativities, resulting from the movement of the Tuzituoyila Fault,
were intermittent and discontinuous.
Chen et al. (2011) established a four-stage sedimentary-tectonic
evolution model for the northern Junggar Basin during the
late Cenozoic based on a reconstruction of the sedimentary
filling processes and the Cenozoic tectonic movements. Stage 1
(PalaeoceneeEocene) corresponds to the Honglishan Formation,
which unconformably overlies the lower units. In stage 2
(EoceneeOligocene), the tectonic movement in the early part of the
Eocene, corresponding to the beginning of the Ulunguhe Formation
deposition, caused a new stage of mountain uplift in northern
Xinjiang and thrusting along the northern boundary faults of the
basin (Peng, 1998; Yuan et al., 2006). This led to erosion of the
upper part of the Honglishan Formation. Stage 3 occurred from the
late Miocene to the middle Pleistocene. In stage 4 (late Pleistocene
to the present), most parts of the northern Junggar Basin probably
re-subsided during the late Pleistocene and were filled by the
Xinjiang conglomerates. The basin was again slightly uplifted after
the late Pleistocene in response to thrust and strike-slip deforma-
tion along the Irtysh fault system in the north (Bai, 1996), along the
southern front of the Altai Mountains, and normal and right-lateral
strike-slip faulting along the KeketuohaieErtai Fault to the north-
east (Shen et al., 2003).

Previous studies on thrusting after the MesozoiceCenozoic
along the northern Junggar Basin have all involved the study of
sedimentary response, but have rarely recognized thrusting from
seismic profiles, which can directly reflect structural deformation.
This study could make up for the deficiencies of previous studies.
This research shows that sag-controlled faults of the Wulungu



Figure 14. The forward model with the optimum set of trishear fit parameters.
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Depression along the northern margin of the Junggar Basin have
experienced thrust reactivity to different degrees since the late
Mesozoic. The thrust faulting is from the basement, in combination
with triangular shear folding. The thrusting lasted for a long time,
possibly continuing into the Cenozoic. Overall there was reac-
tivation of episodic activity.

MesozoiceCenozoic deformation in the northern Xinjiang area
consisted of the following: (1) strong uplift and erosion of the
rejuvenated Tianshan Mountains, the Altai Mountains, and the
West and East Junggar terranes (Deng et al., 1999; Guo et al., 2006;
Yuan et al., 2006; Li et al., 2008); (2) well-developed thrusting and
thrust-related folds in the MesozoiceCenozoic depression in
coupled areas of the Junggar Basin with the Tianshan Mountains
(Deng et al., 1999; Guo et al., 2006, 2007; Chen et al., 2009); (3)
basement-related thrusting in the front of the Bogda Mountains
(Peng et al., 1990; Chen et al., 2007; Yang et al., 2008); (4) sinistral
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strike-slip along the Da’erbute Fault inWest Junggar, dextral strike-
slip and earthquake movement along the ErtaieKeketuohai Fault in
the northeast (Shen et al., 2003); and (5) thrusting and strike-slip
movement along the Irtysh Fault at the northern margin of the
Junggar Basin (Bai, 1996).

Field evidence and ESR-dating suggest that the regional de-
formations were NS-trending with shortening in the middle
Pleistocene. Previous data have shown that the intercontinental
convergence between the Indian and Asian blocks played an
important role in the construction of the landforms and the
deformation in the Xinjiang area, NW China, during the Cenozoic.
This indicates that the direction of regional compressional stress
should trend southenorth, with northward descent of Cenozoic
tectonic movement (Guo et al., 2006; Chen et al., 2009).

The Mesozoic deformation of Northern Xinjiang may be related
to the closure of the palaeo-Tethys (Roger et al., 2010) and the
related collisions of peri-Gondwanan continental fragments (so-
called Cimmerian blocks) at the Tethyan margin, south of the
AltaieSayan region (Davies et al., 2010). Furthermore, tectonic ac-
tivity was accompanied by the emplacement of a limited number of
TriassiceJurassic intra-plate intrusions across the entire Altai
basement and tectonic terrane boundaries (Pirajno, 2010; Glorie
et al., 2011). During the late Cretaceous and early Paleogene,
continued Tethyan subduction eventually contributed to major
India-Eurasia continentecontinent collision at the Meso-
zoiceCenozoic transition. This collision and the ongoing conver-
gence between both continents have dominated Asian tectonic
evolution ever since. The Altai Mountains were subjected to late
Cenozoic reactivation as a response to the continued indentation of
India into Eurasia (Dobretsov et al., 1996) and represent an active
transpressional belt between the rigid Junggar and the Kazakhstan
basement (southwest) and Siberia and Mongolia (northeast). That
the tectonic regime is transpressional is demonstrated by the
strike-slip and thrust movement along major faults (e.g. the Irtysh
Fault Zone) (Buslov et al., 1999). This type of thrust reactivation of
basal faults can also be seen in the Wulungu Depression of the
Junggar Basin.

6. Conclusions

The faults in the step-fault zone of the northern margin of the
Junggar Basin have experienced reactivity to different degrees since
the Cretaceous. This represents episodic reactivation.

The shortening rate for all profiles was about 10%. The reac-
tivation differed for various segments of the Wulungu Depression.

The thrust faulting is basement-involved, in combination with
triangular shear folding. Thrusting lasted for a long time and
continued into the Cenozoic.
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