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1. INTRODUCTION 
In past decades, maximum entropy (ME) distributions, having assigned moments, have been 
widely used in applied sciences to recover a discrete (or absolutely continuous) distribution on 
the basis of partial information. Much effort had been devoted to provide an answer to the 
main problems underlying the correct, use of such distributions, lie existence, convergence, and 
stability. On the basis of the attained results, the ME distributions have been tivolved in the 
numerical inversion of integral transforms, as Laplace and Mellin. 

Results widely accepted in literature have been recently questioned in [l]. The above paper, 
concerning the conditions of existence of Stieltjes and Hamburger moment problems, gives dif- 
ferent, results compared to the one8 provided in several previously published papers [2-41. The 
discrepancy between Junk [l], Tagliani [2,3], and F’rontini [4] consists in the evaluation of the 
admissible values of the highest-order moment employed, in order to guarantee the existence of 
the maximum entropy solution. 

The purpose of the present note is: 

(1) to prove that the conclusions in [l], ss well as in [2-4], are only partially correct, and 
consequently, 

(2) to state the correct existence conditions underlying Stieltjes and symmetric Hamburger 
moment problems joining the results of the both papers. 

2. THE PROBLEM IN STILTJES CASE 

Our attention will be mainly addressed to the Stieltjes moment problem. The symmetric 

Hamburger case is similar. 
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Let P = (1 = ~0~~1,. . . , PM) be a vector of given moments. The reduced Stieltjes moment 
problem consists in finding a probability density function f(z) so that 

pi= m J df(z) dz, i = 0,. . . , M. 
0 

(2.1) 

Problem (2.1) is indeterminate and we call DM the set of solutions such that 

i=o,.. .,M, Vf E D”. 

A common way to regularize the problem is the maximum entropy principle (see [5]) in which a 
solution of (2.1) is singled out as minimizer of the strictly concave entropy functional 

WI = - Jm f(z) lnf(z) dz 
0 

under constraints (2.1). The approximate density takes the analytical form (see [5]) 

satisfying 

=: exp), 

pi= O” J ZifM(4 dz, i = 0,. . . , M, 
0 

(2.2) 

(2.3) 

whereX=(Xe,..., XM) is the vector of Lagrange multipliers. The required integrability of expx 
restricts the multipliers vector to the set 

A={XEW”+l : exp, E L1[O, +oo)} 

For X E A, the moments of expx in any order are well defined so that the collection of integrable 
exponential densities 

EM =: {exp,, : X E A} 

is a subset of D”. In general p(D”) (the interior of moment space) will include strictly p(E”) 
(the moment space relative to the ME densities). Consequently, there are admissible moment 
vectors p E p(D”) for which the moment problem (2.1) is solvable, but the ME problem (2.3) 
has no solution. This is the main result in [l], namely, for M I 4 then p(E”) c p(D”) holds, 
in contrast to the result ,u(E”) = p(D”) in [2,3]. M ore p recisely, the procedure in [l] to obtain 
p(E”) c p(D”) is as follows. 

l Pick any X E A II ah. (In what follows int(A) indicates the interior of a set A, while dh 
is its boundary. A E A 17 aA implies that highest component AM = 0.) 

l Calculate the moment vector px = ~(exp~). 
l Add any positive number to the highest component p= p~ + EeM+r, E > 0 and eM+l the 

canonical unit vector E W”+l.~ 

Then p is an admissible vector (namely, there exists a positive density f(z) so that p(f) = p), 
but the ME problem with constraints /.J has no solution. 

The following are the opposing results in [l-4], respectively. 

THEOREM 1. 
p(D”)\p(EM) ={p:c1>p(expl), JEA~~A}. 

In particular, the ME problem is solvable if and only if p E p(D”) satisfies /J ;d p(expx) for all 
XEA~~A. 
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THEOREM 2. when M 2 4, the ME problem is solvable if and only if ,u E p(D”) = p(E”). 

The order relation 

(uo, . . . ,w) 2 (vo,..., UM) - 21o=uo , . . . ,UM-1 = 21M-1, UM > VM 

and the symmetric definite positive Hankel matrices 

&z/c = IlPi+jll&=o 1 As+1 = b‘i+j+~ II;+0 (2.4) 

are introduced. 
Let us fix (~0 , . . . ,pi-r,pi+r,. . . ,PM), with i = 0,. . . , M, while only pi varies continuously. 

From (2.3) and (2.4), we have 

(2.5) 

whilst from (2.5), with i = M, we have 

0-c -$...,z] .AzM. 

3. THE EXISTENCE 

dXo dXM =- G”” -1 dh d/w .eM+l = -&i (2.6) 

CONDITIONS IN STIELTJES CASE 

Without loss of generality, we may assume ~1 = 1, so that in the moment space p(E”) 
or p(D”) we include only (~2,. . . ,pM), while ~1 may be disregarded. Before facing the case 
M = 4 we review the existence conditions for ME solutions when M = 2 or M = 3 moments are 
assigned [1,2]. 

M = 2. p(E”) = {p2 : 1 < ,u~ 52). 
M = 3. The admissible values of (~z,/.Q) (E p(E”)) are shown in Figure 1 (region [a]). The 

moment space p(D”) is provided by regions [a] U [b]. 

Figure 1. A4 = 3. [a]= &!@), [a] U [b]= p(D”). Lower boundary of [a] is given by 
lAMI = 0. 

3.1. The Existence Conditions when M = 4 

(i) Domain of pz 

The admissible values of ~2 stem from the case M = 3, putting X4 = 0. According to Figure 1, 
then the ME density exists for /12 > 1. 
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(ii) Domain of p3 
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The following two cases have to be distinguished. 

CASE 1. r(~s > 2. The admissible values of ~3 stem from the case A4 = 3, putting X4 = 0. 
Then ~3 does not admit an upper bound. 

CASE 2. ~2 5 2. First, we consider the auxiliary density 

f:“(z) = exp (-Xc - Xiz - X5r2 - X4x4) (3.1) 

whose moments (~0, . . . , ~3) are assigned. Let (~0, ~1, /12) be fixed, while ~3 varies continuously. 
Xc, Ai, X2, X4, as well ~4 are functions of ~3. Differentiating both sides of (2.3), with f4(2) replaced 
by f:“(z), we have 

dXo 
G 

dh - 
d/a 

=- (3.2) 

Thus, X4 is a monotonic function. The character of monotonicity does not vary by varying ~2, 
as X4 represents a family of disjointed curves. Equation (3.2) admits the solution X4 = 0, and 
therefore, X4 is monotonic decreasing for each value of ~2, from which the relationship 

PO Pl CL2 P4 

CL1 I-12 P3 P5 > 0. 

p2 p3 p4 p6 
(3.3) 

P3 P4 CL5 P7 

Let us consider (3.1). It is easy to prove that the domain of the admissible values of (p2, p3) is 
given by region [a] of Figure 1. (Indeed, the upper boundary of region [a], when 1 < p2 < 2, is 
obtained putting X3 = 0, which is equivalent to X4 = 0, when (3.1) is considered.) 

Let f4(5) be given by (2.2), h aving (PO,. . , ~3) assigned. For each (~2, ~3) E [e] and As = 0, 
then f4(2) exists. Let (~0, . . , ~3) be fixed, while As varies continuously, assuming negative values 
only, starting from X3 = 0. Then Xc, Xi, As, X4, as well ~4 are functions of As. Differentiating 
both sides of (2.3), we have 

(3.h) 
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Taking into account (3.4) and (3.3), X4 is monotonic decreasing. The solution X4 = 0 is not 
allowed, being Xs < 0. For each (~2, /.Q) E [u] and each Xs = Xi < 0, then the auxiliary function 

fj2’(x) = exp (-X0 - X 1x - x2x2 - xix3 - x4x4) (3.5) 

exists. Now we consider (3.5). Let ~1 and ~2 be fixed, whilst ~3 varies continuously. The 
multipliers X0, X1, X2, X4, as well ~4, are functions of ~3. Differentiating both sides of (2.3), with 
f4(x) replaced by fi2’(z), we have (3 2) The determinant . . 

is positive, being the principal minor of the definite positive matrix PAsP, where P is a permu- 
tation matrix which exchanges last row and column with the previous one. Then X4 is monotonic 
decreasing, with X4 > 0, the particular solution X4 = 0 being not admissible because of the 
condition X3 = X; < 0. Therefore, ~3 does not admit an upper bound. 

Then the domain of the admissible values of (~2, ~3) coincides with ~(0~) (Figure 1, [a] U [b]). 
(It might be in contrast with Junk [l], where the domain of the admissible values of (~2, ~3) 
seems coincident with region [a].) 

(iii) Domain of p4 

Fixed (~2, ~3) E [u] U [b], whilst ~4 varies continuously we obtain (2.5). Then X4 is monotonic 
decreasing. The following two CBS= have to be distinguished. 

(i) (~2,~s) E [b]. The particular solution X4 = 0 is not allowed. Indeed, we are led back to 
the case M = 3, but in presence of the couple (~2, ,u3) not belonging to the domain of the 
admissible values p(E3) ( sue h a result is in accordance with Theorem 2, but in contrast 
with Theorem 1). 

(ii) b2,P3) E [a]. 1 n such a case, X4 = 0 is allowed. The corresponding value ~4 = ~4 = 
/;x4f3(x)dx s J;x4f4(xrX4 = 0)d x represents the upper bound of ,u4 for the ME 
solution (such a result is in accordance with Theorem 1, but in contrast with Theorem 2). 

Following Theorem 1, the moment vectors ~1 E p(@) f or which the ME problem is not solvable 
are found only if (~2,~s) E [a]. When (,u~,ps) E [b], then p(E”) = p(@) holds. 

The above constructive procedure enables us to extend the existence conditions to the general 
case M > 3. Such results are summarized through the following theorem which improves both 
Theorems 1 and 2. 

THEOREM 3. Let M 2 3. The domain of the admissible values of (~2,. . . , PM) which guarantees 
the existence of ME solution is as follows. 

1. The moments (~2, . . . , PM-~) do not admit any upper bound. Their values are provided 
by IA21 > 0,. . . , [AM-II > 0, respectively. 

2. If(/Q,. . . ,PM-1) E i-GM-’ )t then PM 2 PM = so” x”fM-l(x) dx, while its lower bound 
is given by IAMI > 0. 

3. If (&.,... ,/.JM-I) E P(D~-‘)\~(E~-~), then p~ does not admit an upper bound. Its 
values are given by lA~l > 0. 

From Theorem 3, the moment space p(E”), with M 2 3, is obtained only numerically. Then 
for practical purposes, the use of ME distributions is quite cumbersome. Once given the vector 
(PO,. . . , PM), the existence of fin is based only on the numerical evidence. 

The procedure and then the results in the symmetric Hamburger case is similar to the Stieltjes 
one. 
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