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Abstract

We describe the strong coupling limit (g → ∞) for the Yang–Mills type matrix models. In this limit the dynamics of the model is reduce
one of the diagonal components which is characterized by a linearly confining potential. We also shortly discuss the case of the pure Y
model in more than one dimension.
 2005 Elsevier B.V.Open access under CC BY license.
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1. Introduction

The development of string and gauge theories is chara
ized by their strong inter-relations. The most intriguing res
of this interaction is, probably, the AdS/CFT conjecture[1,2]
(see[3] for a classical review of the subject). This conjectu
relates the string theory in the anti-de Sitter background on
one side with the conformal theory on the Minkowski spa
time on the other. The Minkowski space–time of the conform
theory in this case is related to the (conformal) boundary of
anti-de Sitter space.

This conjecture relates a weak coupled model to a str
coupled one and vice versa, which is a true Ising-type dua
Once proved, it would have an immense predictive force, e
for describing the strong coupled dynamics of both strings
gauge fields. On the other hand, it is clear, that for a direct pr
one needs to know the strong coupled behavior of at least
of these models (in addition to the weak coupled one for
both). A considerable progress was achieved in recent yea
the way of indirect proofs of the correspondence (for a rec
review see, e.g.,[4]).

On the other hand, in spite of difficulties in the description
seems, that the strong coupled regime of the gauge models
most natural regime realized in the Nature at the most com
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(i.e., low) energies. Perhaps, the most success in the des
tion of the strong coupled gauge theories was achieved in
framework of the lattice formulation.2 An important problem
of this approach, however, is that the continuum limit of stro
coupled systems is problematic and it is difficult to separate
real physical effects of the strong coupling from the artifa
of the lattice description. Therefore, it would be important
have a strong coupling approach not related to the lattice
cretization. In the present work we attempt to move into
direction.

Although at the end we also consider the Yang–Mills mod
the main subject of this Letter is the BFSS type matrix mo
alias Yang–Mills mechanics. Yang–Mills type matrix mo
els appear in both contexts of string and gauge theory. T
BFSS[6] and IKKT [7] matrix models were proposed to d
scribe, respectively the “zero”- and “minus-one”-brane c
figurations in the nonperturbative string approach (M-theo
They can be obtained as dimensional reductions to, res
tively, 1 + 0 and 0 dimensions of the ten-dimensional sup
Yang–Mills model. (See, e.g.,[8] for a review.)

The plan of the Letter is as follows. In the next sect
we shortly introduce the matrix model. Then we consider
g → ∞ limit of the matrix model. First, as a warmup we co
sider what we call a strong limit. In this limit we do not consid
the contribution from the high frequency modes. It leads t

2 A good reference for the lattice approach to gauge theories is given by[5].
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model for the diagonal components where all fields are sta
cally confined (condensed) to a single value. Next, we cons
a more refined weak limit where we take into considera
the above higher modes. This leads to a dynamically non
ial model for the diagonal components which are interac
by linear attracting potential. In addition this model appear
be semi-classical asg goes to infinity. At the end of this sec
tion we discuss a possibility for a systematic expansion at l
coupling.

At the end we discuss the possibility to extend the anal
to the Yang–Mills model.

2. Matrix model

Consider the matrix model (Yang–Mills mechanics) wh
is described by the following classical action:

(2.1)S =
∫

dt tr

{
1

2
(∇0Xa)

2 + g2

4
[Xa,Xb]2

}
,

whereXa areD, a = 1, . . . ,D time-dependent HermitianN ×
N matrices whileg is the gauge coupling. The covariant tim
derivative is defined by the use of the (nondynamical) temp
gauge fieldA ≡ A0,

(2.2)∇0Xa = Ẋa + [A,Xa].
The role of the gauge field is to impose the Gauss law c
straint[Xa,∇0Xa] = 0 which provides the gauge invariance
the action with respect to the time-dependent U(N ) gauge trans
formations

Xa �→ U−1(t)XaU(t),

(2.3)A �→ U−1(t)AU(t) + U−1U̇ ,

whereU(t) ∈ U(N). Other features of the model include:

• Invariance with the respect to shifts by a constant sc
matrix

(2.4)Xa �→ Xa + ca · I.

Restricting the gauge group to SU(N) removes this degree o
freedom

• Invariance with respect to the (target space) rotations

(2.5)Xa �→ Λa
bXb,

Λ ∈ SO(D)

• In the case ofD = 10 Eq.(2.1)represents the bosonic pa
of the supersymmetric BFSS matrix model[6],∫

dt tr

{
1

2
(∇0Xa)

2 + g2

4
[Xa,Xb]2 + ψ∇0ψ

(2.6)+ ψΓ a[Xa,ψ]
}
,

whereψ is the fermionicN × N matrix with 10 dimensiona
Majorana–Weyl fermionic indices.
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For the matrix model under consideration one can formu
a perturbative expansion in terms of the powers of the ga
couplingg similar to the perturbative expansion of the Yan
Mills theory. In what follows we will not discuss this type o
perturbative expansion but refer the reader to the approp
Yang–Mills perturbation theory literature instead.

3. Spontaneous symmetry breaking at strong coupling

It is expected that the strong coupling limitg → ∞ implies
the commutativity of the matricesXa ,

(3.1)[Xa,Xb] = 0.

Indeed, asg goes to infinity the path integral contribution
configurations with nonzero commutator are exponentially s
pressed.

Since this is the case, one can diagonalize simultaneous
the matricesXa , whose eigenvalues would then correspond
the coordinates of some branes. In this case one can say t
the strong coupling limit the branes can be localized. (Bey
this limit they are fuzzed by the strings by which the bra
interact.)

Let us consider the aboveg → ∞ limit in more details. For
this let us split the matrix degrees of freedomXmn

a into the di-
agonal part:

(3.2)xa = diagXa,

and the remaining off-diagonal one:

(3.3)za = Xa − xa.

This splitting seems somehow abusive, since it does
respect the gauge invariance(2.3). In fact, it corresponds to
a particular choice of commutative background among ga
equivalent ones. This choice breaksspontaneously the U(N)

symmetry down to U(1)N . At the same timeza can be treated
as a perturbation above this background.

The spontaneous breaking of the symmetry is always a
ciated with the zero modes corresponding to different ga
equivalent choices of the background.3 An appropriate choice
of SU(N) gauge apparently solves this problem since it restr
the allowed perturbations of the vacuum to the transversa
rection. The unbroken gauge symmetry as well as the pos
ity to fix the gauge depends strongly on whether the diag
background is degenerate or no. Although the exceptional
figurations with the degenerate background may in princ
contribute (and even dominate) in spite of zero measure
so far neglect this issue and consider in rest of this Letter
general position point: where all diagonal eigenvaluesxn are
different (asD-dimensional vectors).

4. g → ∞: the strong limit

One can define different strong coupling limits depending
the relation of the coupling with other parameters (likeN or the

3 In the present case this is the symmetry:xa → U−1xaU .
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cut-off). In this section we consider thestrong limit: this limit
assumes that the model is UV-regularized and the limitg → ∞
is taken prior to removing the regularization. Technically, t
means that one can drop in this limit the time derivatives if t
come with a factor vanishing in the limitg → ∞. In contrast
to this, theweak limit which is taken after the removal of (o
eventually not imposing at all) the regularization is discusse
the next section.

In the nondegenerate case the whole U(N) gauge group is
broken by the diagonal component of the background d
to U(1)N . The infinitesimal gauge transformation of the ba
ground is given byδxa = 0 andδza = [xa,u] + [za, u]. This is
very similar to the ordinary gauge transformation in the n
Abelian Yang–Mills theory if the role of the partial derivativ
operator∂a is attributed to the commutator[xa, ·]. In the com-
plete analogy with this one can fix the gauge by imposing
Lorenz gauge condition4:

(4.1)Fg.f. ≡ [xa, za] = 0.

The Faddeev–Popov determinant corresponding to the g
fixing condition(4.1) is given by

(4.2)∆
(∞)
2 (x) =

∏
time

[∏
mn

′(
xm
a − xn

a

)2
]1/2

,

where the prime denote that the product extends over the
tinct indicesm andn only. Formally, the determinant is diffe
ent from zero (which is important for the implementation of
gauge condition) when allx-eigenvalues are given by distin
pointsxn

a , n = 1, . . . ,N .
All above can be appropriately formalized in the quant

theory by adding the gauge fixing term and the Faddeev–P
determinant in the (Euclidean) partition function which tak
the form

Z =
∫

[dx][dz][dA]∆(∞)
2 (x)

(4.3)× exp

{
−

(
S + g2

2
tr[xa, za]2

)}
,

where we used so-called “alpha-gauge” (withα = g2) imple-
mentation of the gauge fixing rather than the “delta-funct
implementation”. Note, that since the introduction of the ga
fixing condition(4.1) one cannot anymore impose any furth
restriction5 on the gauge fieldA which should remain in the
action.

Now we are ready to take the limitg → ∞ and separate
the leading contribution in this limit. There are several ways
do this, which, naturally, lead to the same result. Let us c
sider the following one. Let us substitute the variablesza by the
rescaled ones as follows

(4.4)za → gza.

4 Admissible gauge fixing and corresponding Faddeev–Popov determi
are discussed in the classical book on gauge theories[9].

5 Except for the vanishing of the diagonal part ofA, Ann = 0.
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Then, the matrix action(2.1) takes the following form:

S = −
∫

dt

(
1

2
ẋ2
a + 1

2g2
ż2
a + 1

g
[A,za]ẋa

+ 1

2

[
A,

(
xa + 1

g
za

)]2

+ 1

g

[
A,

(
xa + 1

g
za

)]
ża

(4.5)

+ 1

4

(
[xa, zb] − [xb, za] + 1

g2
[za, zb]

)2

+ 1

2
[xa, za]2

)
.

As we are taking the strongg → ∞ limit, we should discard al
terms formally vanishing in this limit. Thus, the leading part
the action becomes

(4.6)Sg→∞ = −
∫

dt

(
1

2
ẋ2
a + 1

2
[A,xa]2 + 1

2
[xa, zb]2

)
.

The action is quadratic in the gauge fieldA as well as in the
off-diagonal fieldza . Integrating in bothA andza , one gets the
factor coinciding with the Faddeev–Popov determinant at
power−(D + 1)/2. The partition function then reads

(4.7)Z =
∫ [

dx ∆
(∞)
2 (x)−(D−1)/2]exp

{∫
dt

1

2
ẋ2

}
,

which apart from the determinant factor in the measure co
sponds to a free particle partition function.

The modification of the measure in(4.7) signals the confin
ing of the eigenvaluesxn to a common value which itself is
subject to free motion. Indeed, in the case of only two eigen
ues the path integral(4.7) reduces to (seeAppendix A)

(4.8)Z =
∫ [

dDY
][

dDy y−2(D−1)
]
ei

∫
dt ( 1

2 Ẏ 2+ 1
2 ẏ2),

where y is the distance between branes whileY is the free
moving “center of mass”. Consider they-measure locally a
the instantt : dDy (y2)−D+1(t) = dΩD dr r−D+1. Integration
with such a measure is divergent atr ≡ √

y2 = 0 unless the
integrand vanishes quickly enough asy approaches the origin
which is not the case for slowy modes. Statistically this mean
that configurations with smally2 produces a contribution to th
partition function which is infinitely larger than the contributio
of all the configurations with larger values ofy2. Therefore, un-
der the normalization the configurations withnonzero y2 will
get zero expectation values. One can see also that the con
sion is very sensitive to the power of∆

(∞)
2 . Thus, if the power

were, e.g.,−(D − 1)/4 no such statistical confinement wou
occur.

It may appear however that this simple estimation ofg → ∞
is too rough and one must weaken the limit allowing the con
bution of higher frequency modes. We come to this in the n
section.

5. g → ∞: the weak limit

Consider the stationary points of the action(2.1), i.e., the
solutions to the equations of motion. There is a class of s
solutions to the equations of motion given by constant c
muting matricesxa . We can assume that these matrices dep
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adiabatically on time. One can consider perturbations abou
background. The perturbation is given by the off-diagonal
za as well as by the fast diagonal modes. The diagonal m
do not contribute at the one-loop level since there are no
linear terms in the action corresponding to diagonal–diag
interaction. As a sequence, we can neglect the fast diag
fluctuations and consider only the adiabatic modes.

Therefore, consider the contribution of the off-diago
modes as well as of the auxiliary (gauge and ghost) fi
and evaluate their contribution in the one-loop approxima
in 1/g expansion. Throughout this section we use the euc
eanized version of the theory.

To proceed with the evaluation let us fix the gauge by add
the following gauge fixing term to the Lagrangian:

(5.1)Lg.f. = − tr

(
1

2g2
Ȧ2 + 1

2
[xa, za]2

)
.

The variation of the gauge fixing condition gives the Fadde
Popov operator

(5.2)MFPu = ∂0∇0u + [
xa,

[
(xa + za), u

]]
,

whose determinant∆FP = detMFP is the Faddeev–Popov de-
terminant which we have to use together with the conditi
(5.1). In the one-loop approximation no contribution will com
from A- andz-dependent terms in the Faddeev–Popov op
tor. Therefore, in what follows we will discard these terms.
a result, the Faddeev–Popov determinant restricted to one
relevant terms takes the following form:

(5.3)∆FP|(1-loop) =
∏
m,n

′
det

[
− 1

g2
∂2
t + r2

mn

]
≡ ∆2(x),

wherer2
mn = (xa

m −xa
n)2 is the square distance betweennth and

mth branes and the prime denotes that the product is take
distinctm andn.

Let us turn to the action(2.1). The matrix model action ca
be rewritten in the form as follows,

S = −
∫

dt

(
1

2

(
ẋa
n

)2 + 1

2g2

∣∣ża
mn

∣∣2 + 1

2g2
|Ȧmn|2 + 1

g2
˙̄cmnċmn

(5.4)+ 1

2
r2
mn

(∣∣za
mn

∣∣2 + |Amn|2 + c̄mncmn

) + · · ·
)

,

where the dots stand for the terms not contributing at the
loop level (e.g., terms which are higher than the second ord
A andz).

After the integration over the gauge fieldA, the off-diagonal
componentz and the ghostsc andc̄ the partition function take
the form

(5.5)Z =
∫

[dx]∆− D−1
2

2 (x)e
∫

dt 1
2 ẋ2

.

As it can be seen, the problem is reduced to the comp
tion of the determinant∆2, of an elliptic differential operator
Let us use theζ -function approach to do such a computatio6

6 A similar computation for constant diagonal modes was done in[14] and its
phenomenological implications were explored in[15]. I thank Amir H. Fathol-
lahi for pointing my attention to these papers.
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(see, e.g.,[10]). According to this approach, the logarithm
the determinant of an elliptic operatorD is given by the (mi-
nus) derivative of theζ -function

(5.6)lndetD = −ζ ′
D(0),

where the functionζD(s) is defined as the analytic continuatio
of the series

(5.7)ζD(s) =
∑
λ

1

λs
= 1

�(s)

∞∫
0

dρ ρs−1 tr e−ρD.

The trace tr e−ρD can be written as

(5.8)tr e−ρD =
∫

dt KD(t, t;ρ),

whereKD(t ′, t ′′;ρ) is the heat kernel for the operatorD. It is
the solution to the heat equation

(5.9)∂ρK(t, t0;ρ) = −DK(t, t0;ρ),

with the initial conditions given by

(5.10)K(t, t0;0) = δ(t − t0).

In the case at handD = (− 1
g2 ∂2

t + r2
mn) and the solution for

the heat kernel is given by

(5.11)K(t ′, t ′′;ρ) = g√
4πρ

exp

(
−g2(t ′′ − t ′)2

4ρ
− r2

mnρ

)
.

Since the time integral in the r.h.s. of the equation(5.8) di-
verges fort ∈ (−∞,+∞) it is useful to put the system in th
time box intervalτ . Beyond its regularization function theτ
plays another important role, namely, that of being also theadi-
abaticity box. Roughly speaking, theτ -interval is the “dt ” for
the adiabatic time “t ”.

Theζ -function for the time intervalτ is then given by

ζD(s) = gτ√
4π�(s)

∑
mn

′
+∞∫
0

dρ ρs−3/2 e−r2
mnρ

(5.12)= g�(s − 1/2)√
4π�(s)

τ
∑
mn

′(
r2
mn

)1/2−s
.

Computing the derivative of(5.12) and taking the limit
s → 0 we obtain

(5.13)−ζ ′
D(0) = gτ

∑
mn

′√
r2
mn.

Summing over the all adiabatic boxes we get

(5.14)∆
− D−1

2
2 (x) = e− g(D−1)

2

∫
dt

∑
mn

√
r2
mn,

where we can even drop the prime from the sum.
Therefore, the low energy effective action forxa

n takes the
form

(5.15)

Sg→∞ =
∫

dt

(
−1

2
ẋ2
n − 1

2
g(D − 1)

∑
mn

√
(xm − xn)2

)
.
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As one can see, the action(5.15) corresponds to a syste
with strong linear confinement of the particles. In spite of its
rifying appearance the limitg → ∞ corresponds to nothing els
then the semi-classical limit. Indeed, passing to a rescaledxa

n ,

(5.16)xa
n → xa

n/g(D − 1),

transforms the partition function(5.15) to the following semi-
classical form:

(5.17)Z =
∫

[dx]eg2(D−1)2
∫

dt
(− 1

2 ẋ2
n− 1

2

∑
mn

√
(xm−xn)2)

,

whereg2 plays the role of inverse Planck constanth̄−1. In fact,
the above rescaling introduces a renormalization of the b
coordinate. Its meaning is that the nontrivial dynamics co
sponds to large (in the old scale) brane separations. There
the natural scale of the brane dynamics is given in terms o
attraction force (tension) acting on the branes.

5.1. A remark on the systematic expansion

A trick can be used to modify the value of the coupling co
stant (and even to invert it).

We can consider the model at the finite temperatureT =
1/β. The finite temperature implies that the action in the p
integral is computed for the Euclidean time interval 0� t < β

with periodical boundary condition for the fields. A simple d
mensional analysis that the following rescaling

(5.18)β → β/λ2, g2 → g2λ6,

changes the partition function by a constant multiplicative f
tor only, which can be absorbed in the measure. Indeed, ma
the substitutionX → λX one gets(5.18). Now takingλ arbi-
trarily small one can makeg small as well, e.g., equal tog−1.
At the same timeβ goes to infinity, i.e., the theory rolls dow
to zero temperature.

Unfortunately, because of different scaling properties,
trick cannot be used in the case of Yang–Mills theory in m
than two dimensions.

6. The Yang–Mills model

It is tempting to apply the above analysis to the SU(N)

Yang–Mills model. Let us enumerate the modifications t
occur when passing to the pureD-dimensional Yang–Mills
model:

• Instead of the determinant(5.3) one should compute th
determinant of theD-dimensional differential operator

(6.1)D = 1

g2
∂2
µ − r2

mn,

where the diagonal modes are described by the Abelian g
fieldsan

µ(x), r2
mn = (am

µ − an
µ)2. Also since the gauge group

SU(N) the center of mass is fixed:

(6.2)
∑
n

an
µ = 0.
-

e
-
re,
e

-
g

t

ge

• Heat kernel

K(x′, x′′;ρ)

(6.3)= gD

(4πρ)D/2
exp

(
−g2(x′′ − x′)2

4ρ
− r2

mnρ

)
.

• The one-loop contribution is given by7

(6.4)Leff = 1

4

(
Fn

µν

)2 − gD(D − 2)
∑
mn

Vmn(a),

whereFn
µν = ∂µan

ν − ∂νa
n
µ and

Vmn = (r2
mn)

D/2

(4π)D/2

(6.5)×
{

�(−D/2), D-odd

(−1)D/2

(D/2)! (logr2
mn − h(D/2)), D-even

where h(k) is the kth harmonic number:h(k) = ∑k
l=1 1/l.

(Note also that the�-function is regular at negative half-integ
points.)

As it could be seen, forD > 2 (D = 2 is dynamically trivial)
one can rescale the fields

(6.6)an
µ → g

D
D−2 an

µ,

and get a common factorg
2D

2−D in front of the effective ac-
tion. ForD > 2 this factor vanishes in the limitg → ∞, which
means that in this case the quantum fluctuations are stron
one can note, the qualitative behavior of the effective mo
depends on dimension. Thus, in dimensionsD = 4k and 4k +1
for nonnegative integerk, the strong attractive force binds atan

together, while forD = 4k + 2 and 4k + 3 the repulsive force
keeps them apart at infinity. The common feature is that in
situation we are not able to catch any nontrivial dynamics
yond the fact that all diagonal values are confined to zer
infinity.

A much more serious problem is that forD > 2 the higher
loop contribution is not suppressed at largeg unless an UV-
cutoff (Λ < ∞) is used. A nontrivial contribution can b
then catched taking the double scaling limit withg → ∞ and
Λ → ∞. A more detailed analysis would give the answ
whether this is possible.

7. Discussion

In this Letter we considered the strong coupling limit of t
matrix model. It is shown that the modes which survive in t
limit are described by a system of linearly interacting partic
As coupling goes to infinity the system becomes semi-clas
g2 playing the role of inverse the inverse Planck constanth̄−1.
The scale at which the dynamics takes the semi-classical
is given then by the string tension or the coefficient of lin
interaction. The analysis is performed at the one-loop leve

7 The factor(D − 2) instead of(D − 1) as in the previous sections appea
because the gauge fieldA0 is now counted as one of the fields.
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seems rather possible that a systematic expansion in the in
powers of the coupling constant can be constructed in add
to the standard small coupling constant expansion.

It is also very tempting to apply the 1/g-expansion to the
Yang–Mills theory. The one-loop technique can be easily
tended to the ordinary Yang–Mills model. In the case of
dimensionality higher than two the diagonal component is
anymore semi-classical and most probably does not deco
The implications of this are not yet clear. There are howe
resources we did not use which are given by the largeN and
UV cut-off scaling. Taking a correlated limit of largeg, N and
Λ one may hope to get a nontrivial content for the expans
e.g., by tuning the background.

Another important issue we left beyond our considera
regards the exceptional configurations with somermn = 0. As
the effective parameter of the expansion is 1/grmn the expan-
sion fails if somermn � g−1. Important point is the statistica
weights of such configurations. An estimate can be done
the computation of the average separationr̄ . When the aver-
age separation is nonzeror̄ > 0, it is clear, that one can tru
the approach. In the case of pure Yang–Mills model, howe
it seems that it either vanishes or is infinite according to the
mension.

In the case of branes at close distance the 2× 2 matrix block
corresponding to respective eigenvalues is not decoupled
one should consider the entire matrix dynamics similarly
what is done in the noncommutative gauge theory[11–13]. As
it was found this dynamics is a stochastic one.
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Appendix A. Example: the tale of two branes

Consider the case of two branes. In this case the action
be written in the following form:

L= 1

2
Ẏ 2 + 1

2
ẏ2 + ż · ˙̄z

+ √
2
[
a(ẏ · z̄ − ˙̄z · y) − ā(ẏ · z − ż · y)

]
− (a1 − a2)(ż · z̄ − ˙̄z · z) + √

2(a1 − a2)(ay · z̄ + y · zā)

− 2aā
(
z · z̄ + y2) + z2ā2 + a2z̄2 − 1

2
z · z̄(a1 − a2)

2

(A.1)− g2(2y2z · z̄ + (z · z̄)2 − z2z̄2) − 2y2(cc̄ + c∗c̄∗),
where 2× 2 matrix Xa is given by the following componen
structure:

(A.2)Xa =
( 1√

2
(Ya + ya) za

z̄a
1√
2
(Ya − ya)

)
,

rse
n

-

t
le.
r,

,

y

r,
-

nd

-
-

n

while the gauge field matrixA is given by the components

(A.3)A =
(

a1 a

ā a2

)
,

and two complex conjugate components of the ghost–antig
are used. All diagonal components are real while the off-dia
nal elements are complex. The dot in(A.1) indicates the inne
product with respect to the indexa = 1, . . . ,D.

The first four lines of(A.1) are the contribution from th
kinetic term while the third line comes from the commuta
term together with the gauge fixing term and Faddeev–Po
determinant for the gauge[x, z] = 0.

Let us make the following substitution:

(A.4)z → gz.

After the rescaling one can split the Lagrangian(A.1) in the
leading term and perturbation in 1/g. The leading part of the
Lagrangian looks as follows,

(A.5)Lg→∞ = 1

2
Ẏ 2 + 1

2
ẏ2 − 2y2(aā + z · z̄ + cc̄ + c∗c̄∗).

All fields with the exception of they and the freeY become
nondynamical in the limitg → ∞ and the Lagrangian(A.5) is
quadratic this fields. Therefore, integration ofz, z̄, c, c̄ anda

leads8 to the partition function of the form(4.7)

(A.6)Z =
∫ ∏

t

dDY dDy
[
y2(t)

]−D+1 ei
∫

dt ( 1
2 Ẏ 2+ 1

2 ẏ2).

As in the case of(4.7) the measure in Eq.(A.6) is singular
asy2 → 0.
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