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ABSTRACT 

In the rounding error analysis of a so-called hyperbolic rotation algorithm applied 
to downdating the Cholesky factor, a sharp upper bound is needed for a product 

'i 

I_($_ . _g_, 1 ’ 
where a=(~,,..., u,)~ E R”, llalj < 0 < 1, and 0 is fixed. It is shown that 

a, l-a?- ... -a:_, 1 = [1+/l-(1-82,‘/“]“. 

In the original proof by Pan and Sigmon, the principle of Lagrange multipliers was 
used. A second proof by using vector majorization is presented here, which provides 
insights into this rather strange-looking bound. Moreover, the new proof can be 
readily generalized to solve a large class of nonlinear programming problems. 

0. INTRODUCTION 

When we perform the rounding error analysis of a so-called hyperbolic 
rotation algorithm applied to downdating the Cholesky factor [ 11, the conclu- 
sion of the weak stability of the algorithm is based on the solution of the 

LINEAR ALGEBRA AND ITS APPLICATIONS 119:129-139 (1989) 

0 Elsevier Science F’ublishing Co., Inc., 1989 

129 

655 Avenue of the Americas, New York, NY 10010 0024-3795/89/$3.50 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82541321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


130 C.-T. PAN 

following problem: 

maximize 
‘i 

J l-a:- ..a -af_l 

subjectto ]]a]j<8<1, 

(04 

where a=(a r,. . . , an)T E R” and 8 is fixed. Notice that in (0.1) the first 
factor is (1 + al). For the detail of the connection between this problem and 
the error analysis of the hyperbolic rotation algorithm, the reader is referred 
to [l] and [4]. What we are interested in in this paper is the problem (0.1) 
itself. 

The solution of (0.1) was based on an intuitive guess. We assume that the 
product in (0.1) reaches its maximum value when all the terms 

ai/ l-a:- ... - af-1 are equal and ]]a]] = 8, i.e., that the optimal vector 
of the problem (0.1) is the vector a satisfying 

and 

a” 
a,=-= **. = 

l-a:- ..a -a”,_1 
(0.2) 

llall = 6. (04 

The interesting consequence of (0.2) is that the squares of the components of 
the optimal vector a form a geometric sequence, i.e., that 

According to (0.3), 

a;--af(l-a:)” 
11~11~~ f a:= l_(l_aF) =l-(l-af)“=~2 

i=l 

and thus 

aI= i-(i-e2)““. i 
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Therefore, if the assumption is true, the optimal value of (0.1) should be 

(1+q)“= (1+/TqL-7jyn. 

To prove the intuitive guess above, the vector majorization method is 
naturally applied in connection with the assumption (0.2). The rest of this 
paper is organized as follows. In Section 1 we briefly review the concept of 
vector majorization and a theorem of Schur’s for our needs. In Section 2 we 
prove the main results. Finally, in Section 3 a generalization of the main 
results to a class of nonlinear programming problems with symmetric func- 
tions in both objectives and constraints is discussed. 

1. VECTOR MAJORIZATION PRELIMINARIES 

The vector majorization method was formally introduced in the classical 
work Zrwqualities by Hardy, Littlewood, and Polya (1934) [2], but the 
method was known to Schur as early as 1923 under the concept of doubly 
stochastic matrices [3]. 

NOTATION. Let R” be the Euclidean space with dimension n, and ]I*]) 
be the Euclidean vector norm defined by ]]x]] = &%, x E R” (T denotes the 
transpose). The set of all matrices with m rows and n columns is denoted by 
R mxn. If A E Rmx”, then Aij denotes the (i, j)th entry of A. The vector 
space of interest in this paper is R”, n > 2. 

We will follow Schur in using the doubly stochastic matrix to define 
vector majorization, a partial ordering of R”. 

DEFINITION 1.1. A matrix P E Rnx” with all its entries nonnegative is 
doubly stochastic if 

i qj=1 for j = l,...,fl 
i-l 

and 

2 pii= for i = l,...,n. 
j = 1 
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DEFINITION 1.2. For x, y E R”, x is mujorized by y, denoted by x Q y, if 
nr 

there exists a doubly stochastic matrix P such that 

x=Py. (1.1) 

EXAMPLE 1.1. In R3, 

(;,;, ;)‘2 (LO,O)T, 

since 

Generally, in R” one has 

with 

since 

II = 5 1 I 3 3 1 1 1 1 3 3 3 L L 1 3 3 3 

IH 
() 0 1 

(F,..., xy< (X1,...,X”)T 
n, 

xc 
x1 + x2 + . . . + X” 

n 

1 

n 

1 
- 
n 

. . . 

1 
- 
n Xl 

i . 
- 

n x* 

(1.2) 

(1.3) 

EXAMPLE 1.2. AU the permutation matrices (square matrices which in 
each row and in each column has some one entry 1, all other entries zero) are 
doubly stochastic. Therefore, (xi, rs)r < (~a, ri)r and (x,, xi)r < (x,, xs)’ 

m n, 
are both true. 

Notice that in R, a < b if and only if a = b; therefore, as mentioned 

before, in this paper we ge concerned with R”, n > 2. 
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DEFINITION 1.3. Let I be an open interval of R, and I” be the 
corresponding open n-dimensional box in R”. A function +: I” + R is called 
Schur-conver [Schur-concave] on I” if 

G(x) G G(y) [G(x) > G(Y), co~ewn~~glyl 

whenever x < y for any x, y E I”. 
m 

Observe that a Schur-convex (Schur-concave) function is always a sym- 
metric function [i.e., 4(x) = +(Ax) for any permutation matrix n] on certain 
symmetric sets, since the permutation matrices are all doubly stochastic 
(Example 1.2). 

Finally, we introduce the following theorem for later use. 

THEOREM 1.1 [Schur (1923), Ostrowski (1952)]. Let Z c R be an open 

interval and $I: I” + R be a continuously differentiable function. Then + is 

Schur-convex [Schur-concave] if and only if 

(1) + is symmetric on I”, 

(2) (x1 - xz)[ c?c#I/c?~, - f3+/ax2] > 0 [ < 0, correspondingly] for all x = 

(X l,...rX”)TEz”. 

The proof can be found, for example, in [3]. 

2. MAIN RESULTS 

Precisely, we will prove the following main result. 

THEOREM 2.1. Fix 6 (0~6~1) and let a=(a,,...,a,)TER” with 

](a]] < 8. Then 

‘i 
\I’ 
l-a?- ... -& (2.1) 

where the maximum value is reached with the optimal vector a such that 

al= 
ai 

l-af- *** -a;_, 
for i = 2,..., n and ]]a]] = 8. 

In order to prove Theorem 2.1, we start from several lemmas. 



134 C.-T. PAN 

LEMMA 2.1. The jimcti4m 

F(t) = t ti" - 1 t&F + . . . +(-1)“-‘t,2t,2-*t; 
i=l i+j 

is a Schur-convex jimction on ( - 1,l)“. 

Proof. According to Theorem 1.1, we only need to check that 

aF aF 
h-t,) at,-at, aoo, 

[ I (2.2) 

where t E I” and 
obvious. 

First we claim 

I = ( - 1, l), since the symmetry of F(t) on ( - 1,l)” is 

that 

aF 
-- 
at, 

~=2(tl-t,)(l+t,t,)(l-t,2)*~~(l-t~) (2.3) 
2 

for n 2 2. For the case n = 2, the formula (2.3) is easy to verify. To proceed 
with induction on n, one needs an equality 

F(t l,...,t,,) = F(t ,,...,t,_,)+tn"(1-t~)--(1-tn2-1)~ (2.4) 

which is obvious. Thus, 

aF aF aF(t I,..., t,_1) aqt,,..., t,_1> ---= 
at, at, at, - at2 

+2t2(l-t,2)(1-g)~~~(1-t~_Jt~ 

-2t,( l-t,“)...(l-t,z_,)t,2 

=2(tl-t2)(l+t,t,)(l-tt,2)...(1-t;), 

and (2.3) is proved. Therefore, (2.2) is true and the lemma is proved. W 
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LEMMA 2.2. The fin&on 
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Q(t) = fJ1(l+tJ 

is Schur-concaue on ( - 1, co)“. 

Proof. Again Q(t) is symmetric about t 1,. . . , t,; therefore, one only 
needs to check condition (2) in Theorem 1.1. By computation one knows that 

g-g=(l+t,)-(1+t,)(t,-t,): 
1 2 

thus, 

(t1-t2)[;-g]= -(tl-t2)2(1+t3)***(1+tn)<0 
1 2 

for all ti E ( - 1, co). n 

Before introducing the next lemma, let us introduce some new notation, 
which will be frequently used in the following text. 

NOTATION. For a vector variable function Q(t) = Q(tl, t2,. . . , t,), we 

define a scalar function &t ) of one scalar variable such that c( t ) = 
Q(t,t,...,t). 

LEMMA 2.3. For the nonlinear programming problem 

maximize ifiI(l+ ti), 

subject to 

()<F(t)=&;- c t;t,?+ ... +(-1)“-‘t,2t,2~~~t~<82<l (2.5) 
I i#j 
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themaximum (l+f)“, withf= 1-(1-O ) /P, is attained when t = T = 

(F,...,tl)? 

Proof. Let t =(tl,..., t,,) E R” be a vector satisfying (2.5) and let 

i=(i,...J)’ with i =(t,+ ... +t,)/n. 

By Lemma 2.2, n:=,(l + ti) is Schur-concave on ( - 1, + XI)” and there- 
fore 

ifJl(1+ti)4(l+i)n. (2.6) 

Notice that vector t need not satisfy (2.5) even though 0 < t < 1 is 
guaranteed by i=(t,+ ..e + t,)/n and 0 Q ti < 1. But Lemma 2.1 implies 
that 

F(i) d F(t). 

On the other hand 

F(i)=(‘t)P-($4+ ... +(-l)nPl(;)t2n 

= 1 - (1 -P)“. 

We now define the function 

F(x)=l-(l-X2)” (2.7) 

and let f be such that F( tl) = 0 2, i.e., f is the solution of F(x) = 8 2; actually 

f= l-(1-8 ) i---P, (2.8) 

if we restrict 0 < t’< 1. 
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Summarizing from the beginning of this proof, we have 

j?(j) = F(i) < E-(t) < e2 = F(f) (2.9) 

for any t satisfying (2.5). 
By directly checking the derivative, one knows that F(x) is a monotonic 

increasing function on [0, l), and so is the inverse of F(x). Thus, from (2.9) 
one has 

Finally we have proved 

(2.10) 

with an arbitrary t satisfying (2.5). From (2.7) and (2.8) one knows that 
t =i=(t’,..., t”)r satisfies (2.5) also; therefore the lemma is proved. n 

We are now ready to prove Theorem 2.1. 

Proof of Theorem 2.1. In Lemma 2.3 let 

'i 
ti = 

1-af- . . . -aBp, ’ 
i=2 n, >*.., (2.11) 

and 

t, = a,. 

Notice that as the maximum value in (2.1) is of interest, one only needs to 
consider the case when ah ai > 0. 

It is easy to check that the conditions a, > 0 and llalj < 1 are equivalent to 
O<tj<lfori=l,...,n,ifonenoticesthat 

= a:+ ..f ( +af)(l-a:- ... -a:_,). 

One alsO needs to check that 0 Q llall< 6 is equivalent to 0 =S F(t) d e2. By 
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using (2.11), it comes from direct computing that 

al+ ... ++t,2+t2(1-t;)+ ... +tn2(1--t12)(1--t22)...(l--t,2-1) 

= F(t). 

Therefore, the two nonlinear programming problems (0.1) and (2.5) are 
equivalent and Theorem 2.1 is proved. W 

3. GENERALIZATION 

It is seen in the literature that many inequalities can be proved by using 
the vector majorization method [3]; however, its use in solving certain 
optimization problems appears to be new (at least to the author). One of the 
possible generalizations of Lemma 2.3 is the following. 

THEOREM 3.1. Let Q be a Schur-concave function on ( - q, K)” with 
q > 0, F be a Schur-convex j&n&ion on ( - f, G)” with f > 0, and _both Q 
and F have the same direction of morwtonicity on [0, + 00) with F being 
strictly montonic. 7’hen the nonlinear programming problem 

maximize Q(x~,...,x~), 

subjectto a<F(r, ,..., xn)<j3, O<xi<+co, 

has its optimal value Q<?) such that F(C) = p, provided that F(x) = /3 has a 
soZution Z in [0, K). 

The proof is exactly the same as that of Lemma 2.3. 
Table 1 shows the possible alternatives to Theorem 3.1, where the other 

conditions are modified correspondingly: 

optimize Q(x) 

subjectto (Y<F(x)<~, Odxi<+m* 

The author is grateful to the referee, whose carefil reading and valuable 
suggestion definitely improved this presentation. 
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Q 

TABLE 1 

Monotonicity Optimal value ? 
F Q F Qw satisfies 

Schur-concave SchUr- L L 
convex 7 7 M=Q F(Z) = /3 

schur- L 2 
concave 7 L 

M=Q F(Z) = a 

Schur-convex Schur- L L 
concave 7 7 

Min Q F(Z) = a 

sclmr- L 7 
convex 7 L 

MinQ F(f) = p 
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