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Pregabalin (PGB) is a valuable therapeutic drug against chronic pain. Here we attempted to perform the
combinatorial drug therapy with P-glycoprotein (P-gp) inhibitors to lower therapeutic dosage of PGB in
the intermittent cold stress-induced fibromyalgia-like pain model. Single intracerebroventricular (i.c.v.)
PGB injection exerted long-lasting anti-hyperalgesic effects for 72 h, while the effect of PGB given
intraperitoneally (i.p.) disappeared within 3 h. Importantly, the pretreatment with P-gp inhibitors
markedly prolonged the PGB (i.p.) effects, which lasted for 72 h. These results suggest that the combi-
natorial treatment with P-gp inhibitor enables the prolongation of dose-interval for PGB.

© 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of Japanese Pharmacological
Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
Pregabalin (PGB) is a central nervous system (CNS) targeting
drug clinically used for epilepsy, trigeminal neuralgia, diabetic
peripheral neuropathy and fibromyalgia (FM) (1, 2). High affinity
and selective binding to voltage-gated calcium channels alpha2-
delta (a2d) subunits (3) is underlie the biological activity of PGB.
Indeed PGB is known to modulate the voltage-dependent calcium
channels gating dynamics and reduce calcium-dependent presyn-
aptic release of neurotransmitters (4), leading to anti-hyperalgic or
anti-allodynic actions (5). Although PGB is therapeutically valuable
against neuropathic pain (NP) and FM, frequently observed side
effects including peripheral edema limit their effective clinical use
(6). Thus specific brain targeting or lowered therapeutic dosage is
important therapeutic strategy with reduced adverse side effects.

CNS-partition of PGB is carefully regulated by influx and efflux
transporters at bloodebrain barrier (BBB) (7, 8). Especially,
P-glycoprotein (P-gp), one of the ATP-binding cassette transporters
is known to be involved (7). Here we investigated the effect of P-gp
inhibitor on PGB-mediated anti-hyperalgesia and anti-allodynia
phenotypes in intermittent cold stress (ICS)-induced FM-like pain
model in mice.
: þ81 95 819 2420.
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Male C57BL/6J mice (TEXAM Corporation, Nagasaki, Japan)
(20e25 g) were used. The mice were housed in a room (22 ± 3 �C)
with free access to a standard laboratory diet and tap water. All
procedures were approved by the Nagasaki University Animal Care
Committee, and complied with the fundamental guidelines for the
proper conduct of animal experiments and related activities in
academic research institutions under the jurisdiction of the Min-
istry of Education, Culture, Sports, Science and Technology, Japan.

Pregabalin was given by Pfizer (Ann Arbor, MI), while valspodar
(Val) were purchased from SigmaeAldrich Japan (Tokyo, Japan).
These drugs were dissolved in physiological saline for intraperito-
neal (i.p.) injection or in artificial cerebrospinal fluid (aCSF) for
intrathecal (i.t.) and intracerebroventricular (i.c.v.) injection. Valwas
injected subcutaneously (s.c.) 0.5 h prior to PGB injection. The i.t.
injection was given into the space between spinal L5 and L6 seg-
ments, according to themethoddescribedbyHylden andWilcox (9).

Mice were exposed to intermittent cold stress (ICS), as previ-
ously described (10). We designated day 3 following the onset of
the stress exposure as day 1 post-stress exposure (P1). Mice in the
control group were maintained at 24 �C for all 3 days without any
analgesics. Partial ligation of the sciatic nerve (SNL) was performed
under pentobarbital (50 mg/kg) anesthesia, following the methods
of Malmberg and Basbaum (11). The nociception test was per-
formed 5 days after SNL.

In the thermal paw withdrawal tests, the nociception threshold
was determined using thermal stimulator (IITC Inc., Woodland
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Hills, CA, USA) as previously described (12). A cut-off time of 20 s
was set to avoid tissue damage. The mechanical paw pressure test
was performed using a Transducer Indicator (Model 1601; IITC Inc.)
as previously described (12). A cutoff pressure of 20 g was set to
avoid tissue damage. ED50 was calculated based on the linear
doseeresponse equation using 2 different dose/response points
that include 50% maximum effect between them.

Statistical analyses were performed using one-way analysis of
variance with the TukeyeKramer multiple comparison post-hoc
test. The criterion of significance was set at p < 0.05. All results are
expressed as means ± standard error of the mean (SEM).

First we determined the anti-hyperalgesic effect of PGB in SNL
model mice. As Fig. 1A shows, systemic PGB injection (30 mg/kg,
i.p.) significantly inhibited the decrease in paw withdrawal latency
(PWL) in SNLmice, indicating an anti-thermal hyperalgesic effect of
PGB (i.p.). The effect of PGB (i.p.) was disappeared at 3 h after in-
jection (Fig. 1A). Furthermore, PGB (i.p.) showed dose-dependent
increase in the PWL in the dose range of 3e30 mg/kg
(ED50 ¼ 14.0 mg/kg). This corresponds with the previous report
using other neuropathic pain model showing anti-cold allodynic
effect of PGB (13). Similar effect was observed in the mechanical
paw pressure test (Supplemental Fig. 1A). To determine the role of
CNS in PGB effects, mice were injected with PGB (30 mg) via i.c.v.
However, it did not show any effect (Fig. 1B). On the other hand, i.t.
PGB (30 mg) showed significant anti-thermal hyperalgesic effect in
SNL mice (Fig. 1C). The dose-dependent effect of PGB (i.t.) was also
confirmed (ED50 ¼ 1.8 mg).

Next we determined the anti-hyperalgesic effect of PGB in ICS
model mice. As Fig. 1D shows, PGB injection (1 mg/kg, i.p.) signif-
icantly increased the PWL, indicating an anti-thermal hyperalgesic
effect of PGB (i.p.) on ICS-induced FM-like pain. Furthermore, PGB
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Fig. 1. Blockade of ICS but not of SNL-induced hyperalgesia by supra-spinal PGB. Therma
mice on 5 days (P5) after the onset of stress. The test was performed at the indicated periods
(E) and i.t. (10 mg) (F) PGB injection. Data are expressed as means ± SEM. *p < 0.05, vs. Sha
(i.p.) showed dose-dependent increase in PWL in the dose range of
0.1e1 mg/kg (ED50 ¼ 0.3 mg/kg). Similar results were obtained in
mechanical paw pressure test (Supplemental Fig. 1B). To determine
the role of CNS in PGB effect on ICS, micewere injectedwith PGB via
i.c.v. at the dose of 1 mg. Pregabalin (i.c.v.) significantly increased the
PWL in ICS exposed mice up to 72 h after injection (Fig. 1E). The
dose-dependent effect of PGB (i.c.v.) was also confirmed in the dose
range of 0.1e0.3 mg (ED50 ¼ 0.2 mg). On the other hand, i.t. PGB
(10 mg) showed significant effect only at 0.5 h after injection
(Fig. 1F). The dose-dependent effect of PGB (i.t.) was also confirmed
in the dose range of 1e10 mg (ED50 ¼ 5.7 mg).

We have previously reported ICS exposure induces persistent
hyperalgesia that last over 19 days after the stress (14). To deter-
mine the effect of PGB on ICS exposure-induced persistent hyper-
algesia, mice were repeatedly injected with PGB (i.c.v.) at every 3
days starting on P5, and the effect of PGB was determined on the
same days. As shown in Fig. 2A, on P5, PGB injection (i.c.v., 1 mg)
significantly increased the PWL of ICS exposed mice up to 3 h in
thermal paw withdrawal test. Similar effects were observed on P8
and P11. Importantly, PWL was gradually increased and completely
returned to the normal (i.e., control mice) levels even after the
cessation of repeated PGB (i.c.v.) injection (i.e., P14 to P20) (Fig. 2B).
Similar results were obtained in the mechanical paw pressure test
(Supplemental Fig. 2A). To determine whether the delivery of PGB
to the brain is important for their therapeutic effects, we used
specific inhibitor of P-gp, one of the ATP-binding cassette trans-
porter that regulate effective CNS drug delivery at BBB. As P-gp
inhibitors, we used Val, a Cyclosporine A-analog lacking immuno-
suppressant effects (28). In thermal paw withdrawal test, pre-
treatment of Val (3 mg/kg, s.c.) markedly prolonged the anti-
thermal hyperalgesic effect of PGB (1 mg/kg, i.p.) up to 48 h after
30 μg, i.c.v.
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Fig. 2. Complete blockade of ICS-induced thermal hyperalgesia by repeated i.c.v. PGB treatment or combinatorial treatments of PGB with P-gp inhibitor. Thermal hyper-
algesia was determined in ICS exposed mice on 5 days (P5) (A, C and D) or indicated days (B and E) after the onset of ICS. Repeated i.c.v. PGB injection (A and B) and i.p. PGB injection
(D and E) was performed every 3 days (P5eP11) and every 2 days (P5eP13), respectively. Val was injected systemically (s.c., 3 mg/kg) 30 min before the PGB (1 mg/kg, i.p.) injection
(CeE). Data are expressed as means ± SEM. *p < 0.05, vs. Cont Veh; #p < 0.05, vs. ICS Veh (A and B); *p < 0.05, vs. Control Veh Veh; #p < 0.05, yp < 0.05, vs. ICS Veh Veh, $p < 0.05, vs.
ICS Veh PGB (CeE).
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injection (Fig. 2C), indicating that P-gp inhibition can significantly
enhance and prolong the systemic PGB effect.

Finally we determined the therapeutic effect of combination of
P-gp inhibitor and systemic PGB on ICS exposure-induced persis-
tent hyperalgesia. Mice were repeatedly injected with PGB (1 mg/
kg, i.p.) with or without pretreatment of Val (3 mg/kg, s.c.) at every
other day from P5 to P11. As shown in Fig. 2D, anti-hyperalgesic
effect of PGB (i.p.) was significantly enhanced by pretreatment of
Val on P5 to P11. Importantly, basal PWL was gradually increased
and completely returned to the normal (i.e., control mice) levels
even after the cessation of repeated Val þ PGB injection (i.e., P13 to
P19) (Fig. 2E). Similar results were obtained in the mechanical paw
withdrawal test (Supplemental Fig. 2B).

As we showed here, we used two types of pain model. One is a
classic NP model (11) and the other is a novel pain model of FM
syndrome with the generalized chronic pain phenotype of FM pa-
tients (10). Since the majority of FM patients have no nerve lesions
demonstrable, the FM-associated pain can be maintained by a
number of different mechanisms from the classic NP that is initi-
ated by nervous system lesions or dysfunction leading to a different
pharmacotherapeutic features between them. Here we found that
the ED50 in the thermal paw withdrawal test was 14.0 mg/kg with
PGB (i.p.) in the NP model, which was 47-fold higher than that in
the ICS model (0.3 mg/kg, i.p.). As the anti-hyperalgesic activity
substantially disappears in both cases at 3 h after the single injec-
tion, the difference of potency looked initially attributed to the
severity of pain. However, it was found that the discrepancy is more
complicated from the findings that potent PGB actions in the NP
model were observed with the ED50 (1.8 mg) by i.t. injection, but no
significant actionwith i.c.v. injection of 30 mg PGB, while the actions
in the ICS model were also observed with i.t. injection
(ED50 ¼ 5.7 mg), and with i.c.v. injection (ED50 ¼ 0.2 mg), respec-
tively. Furthermore, the significant anti-hyperalgesia action was
observed as late as 72 h after the i.c.v. injection in the ICS model but
not in SNL model. These results suggest that ICS-induced
hyperalgesia is closely related to the disturbance in the brain, while
the mechanisms located in peripheral nerves to spinal cord may
also have some modest contribution to the hyperalgesia and PGB
effects, equivalent to the levels in the SNL model. Since the target
molecule of PGB such as a2d subunit is expressed in the CNS as well
as peripheral nervous system (15), the stress-related changes in the
levels of these molecules in the supraspinal and spinal might differ
between SNL model and ICS model, while it needs to be
determined.

Interestingly, the repeated i.c.v. treatments of PGB and the
repeated i.p. treatment in combination with P-gp inhibitor gradu-
ally elevated the basal thermal and mechanical threshold to the
naïve mouse levels even after the cessation of treatments, sug-
gesting that the chronic pain status was completely cured. Since it
is known that chronic pain consists of the first acute pain caused by
various stimuli that trigger the secondary pain (16), i.e., the vicious
cycle of pain, the repeated i.c.v. treatments of PGB and the repeated
i.p. treatment in combination with P-gp inhibitor may inhibit not
only the first but also the secondary pain, while the detailed
mechanisms are needed to be determined. Furthermore, the pre-
sent results suggest PGB is likely acting in the brain to exert its
effect against FM-associated pain and the combination therapy of
PGB and P-gp inhibitors may be clinically effective. It would be
needed to determine whether the distribution or transport of PGB
into the brain is increased by the pretreatment of P-gp inhibitor.

In conclusion, here, we succeeded in demonstrating the thera-
peutic effect of PGB on FM. Additionally, we enabled the prolon-
gation of dose-interval for PGB by using P-gp inhibitor and achieved
prolonged and complete pain relief and recovery from the FM by
repeated injections as therapeutic advantages for PGB.
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