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Binary equality sets are generated by two words
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Abstract

We show that the equality set Eq(g,h) of two non-periodic binary morphismsg,h :A∗ →Σ∗ is
generated by at most two words. If the rank of Eq(g,h)= {α,β}∗ is two, thenα andβ begin and end
with different letters. This in particular implies that any binary language has a test set of cardinality
at most two.
 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Binary equality language, i.e. the set on which two binary morphisms agree, is the sim-
plest non-trivial example of an equality language, the notion of which was introduced
in [9]. Equality languages in general play an important role in formal language theory.
For a survey and bibliography see [5, Section 5].

In the binary case the morphisms are defined on a monoid generated by two letters.
It was for the first time extensively studied by K.Čulík II and J. Karhumäki in [6].
There the main claim of our work was conjectured, viz. that a binary equality language
is generated by at most two words as soon as at least one of the morphisms is non-periodic
(or, equivalently, injective). An important step towards the proof of the conjecture was
made in [8] where the following partial characterization was obtained.
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Theorem 1. The equality set of two binary morphismsg andh has the following structure:

(A) If h andg are periodic, then eitherE(h,g)= {ε} or

E(h,g)= {ε} ∪
{
α ∈A+

∣∣∣ |α|a|α|b = k

}

for somek � 0 or k =∞.
(B) If exactly one morphism is periodic, then

E(h,g)= α∗

for some wordα ∈Σ∗.
(C) If bothg andh are non-periodic, then either

E(h,g)= {α,β}∗

for some wordsα,β ∈Σ∗, or

E(h,g)= (αγ ∗β)∗

for some wordsα,β, γ ∈Σ+.

The question remained open whether the second possibility of case (C), contradicting
the conjecture, can actually occur. In the present paper we show that the answer is negative
and, moreover, ifα andβ are both non-empty, they start and end with different letters. This
is formulated in

Theorem 2. Letg,h :A∗ →Σ∗ be non-periodic binary morphisms.

(A) Letα andβ , with α �= β , be non-empty minimal elements ofEq(g,h). Then

pref1(α) �= pref1(β) and suff1(α) �= suff1(β).

(B) Eq(g,h) is generated by at most two words.

Note that (B) is a trivial consequence of (A). Our proof does not deal directly with (B),
but is focused on (A). We are not aware of any way how to prove (B) not using (A).

Remark. The caseg = h is trivial. Throughout the paper we shall implicitly suppose
g �= h.

Let us mention two problems closely related to the question about the structure of binary
equality sets. The first one is the binary case of the famous Post Correspondence Problem,
shortly PCP(2). The cohesion of the two problems is obvious, as PCP(2) consists in decid-
ing, given two binary morphisms, whether their equality set is empty. The proof that the
question is algorithmically decidable (see [2]) was one of the important moments in the
development of theoretical computer science. A survey of recent results concerning PCP
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can be found in [3]. It was especially shown in [4] that generalized PCP of arbitrary size is
decidable in marked case.

The second problem akin to the structure of binary equality languages is the existence
of a test set for binary languages. Indeed, if two morphisms agree on a language, it must
be a subset of an equality language. In [8] it is shown that all binary languages have a
test set of three elements. Our result allows to cut down this bound to two. Let us remark
that this improvement is not a simple consequence of the fact that the equality language is
generated by two words—the difference in the first (or last) letter is a necessary ingredient.

This paper has the following structure. In Section 2 some definitions and elementary
combinatorial tools are given. In Section 3 we study basic properties of words on which
two binary morphisms agree. In Section 4 we describe a typical case of a pair of binary
morphisms to which all other cases can be reduced. The findings of Section 3 are applied
in Section 5 to marked morphisms. The main result is proved in Section 6 divided into
several subsections. Within that section the existence of an equality set not fitting Theo-
rem 2 is gradually shown to be contradictory. Section 7 is dedicated to the test set of binary
languages bounding its cardinality by two.

2. Preliminaries

We use the basic notation from [1,5]. ByΣ we denote an arbitrary alphabet, byA the
two-letter alphabet{a, b}. Σ∗ is the free monoid andΣ+ the free semigroup generated
by Σ . The empty word is denoted byε.

Expression|u| represents the length of a wordu, and|u|x the number of occurrences
of the letterx in u. The set of all letters having at least one occurrence in the wordu is
denoted by alph(u).

A prefixof u is any wordv ∈Σ∗ such that there exists a wordv′ ∈Σ∗ with u = vv′ .
The set of all prefixes ofu is denoted by pref(u). A prefix v of u is proper if v �= ε and
v �= u. Similarly suffixandproper suffixare defined. The set of all suffixes ofu is denoted
by suff(u). The first (the last respectively) letter of a non-empty wordu is also denoted
by pref1(u) (suff1(u) respectively). A wordv is called afactor of u if there exist words
w,w′ ∈Σ∗ such thatu=wvw′.

The positive powersun of a word are defined as usually, withu0 = ε. We shall also
use negative powers to simplify notation. Ifuv = w, we writeu = wv−1 andv = u−1w.
Obviously,u−n is an abbreviation for(un)−1.

The notions of prefix, suffix and factor can be extended to languages: a prefix
(suffix, factor respectively) of a language is prefix (suffix, factor) of any of its elements.
Accordingly,

pref(L)=
⋃
u∈L

pref(u).

Similarly for suff(L).
The language{ui | i ∈N+} is denoted byu+ and

u∗ = u+ ∪ {ε}.
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A word u is calledprimitive if and only if u = vn implies u = v. Theprimitive root
of u is the (uniquely given) primitive wordr such thatu ∈ r+. Wordsu andv are called
conjugatesif u=ww′ andv =w′w.

If we speak about minimality or maximality of some element, the implicit ordering
is the prefix one, i.e.v � u if and only if v ∈ pref(u). (While by theshortestword we
mean the word with the smallest length!) Ifv ∈ pref(u) or u ∈ pref(v), we say that they
arecomparable, denoted byu Prefv. The maximal common prefix of wordsu andv is
denoted byu ∧ v. It is empty if and only if one of the words is empty or they start with
different letters. Ifu andv are words, the maximalu-prefixof v is the maximal element of

pref(v) ∩ pref
(
u+

)
.

Let u ∈Σ+ be a wordu= l1l2 . . . ld , with d = |u| andli ∈Σ . Then themirror image
of the wordu, denoted byu, is obtained by inverting the order of the letters, viz.

u= ld ld−1 . . . l1.

Let g be an arbitrary morphism. Themirror imageof g is the morphism denoted byg
and defined by

g(x)= g(x),

for eachx ∈Σ . Note that in generalg(u) need not be equal tog(u) or g(u). Instead,

g(u)= g(u).

All concepts and reasonings regarding prefixes are valid dually for suffixes, mirror images
considered. We shall often use this fact.

A morphismg defined onΣ is called non-erasing ifg(x) is non-empty for allx ∈Σ .
Let S be a subsemigroup ofΣ+ generated by a setM. Therankof M is the cardinality

of the minimal set generatingS. We can write

rank(M)=Card(S \ S · S).
By the rank of a monoidM we mean the rank of semigroupM \ {ε}.

It is a well-known fact that for each setM ⊂ Σ+ there exists the smallest free
subsemigroup ofΣ+ containingM and called itsfree hull.

Let g,h :Σ∗ →Σ∗ be binary morphisms. Theirequality setis defined by

Eq(g,h)= {
u ∈Σ∗ ∣∣ g(u)= h(u)

}
.

It is easy to verify that the set Eq(g,h) is a free submonoid ofΣ∗ generated by the set of
its minimal elements

eq(g,h)= Eq(g,h) \ (Eq(g,h) \ {ε})2 \ {ε}.
Note that eq(g,h) is a biprefix code.
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Let g :A∗ → Σ∗ be a non-periodic binary morphism. Byzg we denote the maximal
common prefix ofg(ab) andg(ba), i.e.

zg = g(ab)∧ g(ba).
Sinceg is non-periodic, we have, by Periodicity Lemma (see below),|zh|< |g(a)|+|g(b)|.
If pref1(g(a)) �= pref1(g(b)), i.e.zg = ε, we say thatg is marked.

Similarly we definezg as a maximal common suffix ofg(ab) andg(ba). Note that

zg = g(ab)∧ g(ba)= zg

andzg = ε is equivalent tog being marked.
Cartesian productA∗ ×A∗ is the set of ordered pairs(u, v) of words. It can be seen as

a monoid with operation of catenation defined by(u, v)(u′, v′)= (uu′, vv′), with the unit
(ε, ε). Such a monoid is obviously not free, it is even not isomorphic to a submonoid of a
free monoid.

Let g,h :A∗ →Σ∗ be binary morphisms. The subset ofA∗ × A∗ denoted byC(g,h)

and defined by

C(g,h)= {
(u, v)

∣∣ g(u)= h(v)
}

will be called thecoincidence setof morphismsg andh. It is generated by the set

c(g,h)=C(g,h) \ (C(g,h) \ {(ε, ε)})2 \ {(ε, ε)}.
It is not difficult, but quite important to note the following statement.

Lemma 3. C(g,h) is, as a submonoid ofA∗ ×A∗, freely generated byc(g,h). Moreover,
if (u1, v1), (u2, v2), and(u1xu2, v1yv2) are elements ofC(g,h) then also(x, y) ∈C(g,h)

(i.e.,C(g,h) is left and right unitary inA∗ ×A∗).

This fact is illustrated by the following picture, which represents the unique factoriza-
tion of the pair(abaababab, bababbb)∈C(g,h) into elements of the base, namely:

(abaababab, bababbb)= (ab, ba)(aa, b)(ba, ab)(bab, bb).

g:

h:

a b a a b a b a b

b a b a b b b

Obviously,(u,u) is an element ofC(g,h) for eachu ∈ Eq(g,h), and Eq(g,h) is given
uniquely byC(g,h) as

Eq(g,h)= {
u

∣∣ (u,u) ∈C(g,h)
}
.

We present several combinatorial lemmas for future (often implicit) reference. The
following three lemmas are part of the folklore.
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Lemma 4. The wordsu andv commute if and only if they have the same primitive root.

Lemma 5 (Periodicity Lemma).Let u+ and v+ have a common factor of the length
|u| + |v|. Then the wordsu andv commute.

Lemma 6. The following conditions are equivalent:

(i) Wordsu andv are conjugates.
(ii) There is a wordz such thatuz= zv.
(iii) There are wordst1 andt2 such thatt2 is non-empty,t1t2 is primitive, and

u ∈ (t1t2)+, v ∈ (t2t1)+.

Moreover, ift1 andt2 are like in(iii) andz is like in (ii) , thenz ∈ (t1t2)∗t1.

We shall often use the following lemma. It is based on the well-known fact that
a primitive wordt cannot satisfy equalityt t = utv, with u andv non-empty.

Lemma 7. (A) Let sw be a factor ofw+. Thens is a suffix ofw+.
(B) Letwp be a factor ofw+. Thenp is a prefix ofw+.
(C) Letuw be a prefix ofw+. Thenu andw commute.
(D) Let u1, u2, w, w′ ∈ Σ+ be words such thatw′ is a conjugate ofw, |u1| � |u2|,

and the wordsu1w
′, u2w

′ are prefixes ofw+. Thenu1 is suffix ofu2 andu2u
−1
1 commutes

with w.

The last preliminary lemma plays an important rôle in this paper.

Lemma 8. Let g :A∗ → A∗ be a marked morphism and letu,v ∈ A∗. Then there exists
a wordw ∈A∗ such thatg(w)= g(u)∧ g(v).

3. The coincidence set

In this section we study the relation of coincidence sets of non-periodic morphisms
to their equality set. We will partially follow the exposition from [1, pp. 347–351]. First
notice the following nice lemma.

Lemma 9. LetX = {x, y} ⊆Σ+ be non-periodic set(i.e.xy �= yx). Letu ∈ xX∗, v ∈ yX∗
be words such that|u|, |v|� |xy ∧ yx|. Thenu∧ v = xy ∧ yx.

The proof is not difficult (see [1, p. 348]).
The lemma immediately implies that for a non-periodic binary morphismh and an

arbitrary sufficiently long wordu ∈A+, the wordzh is a prefix ofh(u) and the(|zh|+1)th
letter ofh(u) indicates the first letter ofu. For anyu,v ∈A∗ we have

zh = h(au)zh ∧ h(bv)zh. (1)
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It is now easy to see that the morphismhm, such that

hm(u)= z−1
h h(u)zh, (2)

u ∈ A, is well defined. Moreover, it is marked, and Eq. (2) holds for anyu ∈ A∗. We
shall call it themarked versionof h. Similarly we can define marked version ofg. In the
following, however, we shall simply suppose thatg is marked. This restriction will be
justified in Lemma 22.

Let u,v ∈ Σ∗ be words such thatg(u) Prefh(v). Following lemmas show that the
possibility to lengthen the wordsu, v to wordsu′, v′ such thatg(u′) = h(v′) is very
restricted.

Lemma 10. Letg andh be binary morphisms, and letg be marked. Letu,v ∈A∗ be words
such thatg(u) Prefh(v) and let

g(u) �= h(v)zh.

Letu1, u2, v1, v2 ∈A+ be words such that

g(uu1)= h(vv1), g(uu2)= h(vv2).

Thenpref1(u1)= pref1(u2) or pref1(v1)= pref1(v2).

Proof. If u1, u2, v1, andv2 satisfy the conditions of the lemma, then the same conditions
are satisfied also by the wordsu1uu1, u2uu2, v1vv1, andv2vv2 respectively. Hence we can
suppose that each of the wordsu1, u2, v1, v2 is longer thanzh. Consider three cases.

1. First suppose that|g(u)|< |h(v)| + |zh|. By Eq. (1),h(v)zh is a prefix of bothh(vv1)

andh(vv2), and

pref1
(
g(u1)

)= pref1
(
g(u2)

)= pref1
(
g(u)−1h(v)zh

)= x.

Sinceg is a marked morphism, this implies that pref1(u1)= pref1(u2).

g(u)

h(v) x︸ ︷︷ ︸
zh

2. Suppose, on the other hand, that|g(u)|> |h(v)| + |zh|. Thenv1, v2 have the common
prefix longer thanzh, and pref1(v1) = pref1(v2) is determined by the letterx =
pref1((h(v)zh)

−1g(u)).

g(u)

h(v) zh x
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3. If |g(u)| = |h(v)| + |zh|, then, clearly,g(u)= h(v)zh.

g(u)

h(v) zh
✷

The following immediate corollary of the previous lemma describes the unique case in
whichu, v can be extended in two different ways.

Corollary 11. Letg andh be binary morphisms, and letg be marked. Let(c, d) and(c′, d ′)
be distinct elements ofc(g,h). Put

u= c∧ c′, v = d ∧ d ′.

Then

g(u)= h(v)zh.

The ground for the characterization of coincidence set is the following lemma.

Lemma 12. Let g and h be binary morphisms, and letg be marked. Let the words
e, f ∈A+ satisfy the following conditions:

(i) zhg(e)= h(f )zh.
(ii) The wordse, f are minimal, i.e.: if u is a proper prefix ofe andv is a proper prefix of

f thenzhg(u) �= h(v)zh.

Then, given the first letter ofe or the first letter off , the wordse andf are determined
uniquely.

zh g(e)

h(f ) zh

Proof. Supposee, f , ande′, f ′ satisfy (i) and (ii), and pref1(e)= pref1(e
′). Putc= e∧e′,

d = f ∧ f ′. Sinceg is a marked morphism, we have

zhg(e)∧ zhg(e′)= zhg(c). (3)

From Eq. (1) we deduce

h(f )zh ∧ h(f ′)zh = h(d)zh. (4)

Sincezhg(e)= h(f )zh andzhg(e′)= h(f ′)zh, Eqs. (3), (4) yield

zhg(c)= h(d)zh.
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Sincec is non-empty, we deduce from (ii) thatc = e = e′ andd = f = f ′. Similarly for
pref1(f )= pref1(f

′).

Lemma 13. Letg andh be binary morphisms, and letg be marked.

(A) The rank ofC(g,hm) is at most two.
(B) If rank ofC(g,hm) is two andc(g,hm)= {(e, f ), (e′, f ′)}, then

pref1(e) �= pref1(e
′), pref1(f ) �= pref1(f

′).

Proof. Recall thathm(u)= z−1
h h(u)zh to see that

C(g,hm)=
{
(u, v) ∈A∗ ×A∗

∣∣ zhg(u)= h(v)zh
}
.

The rest is a consequence of Lemma 12.✷
Note that bothg and hm are marked morphisms, and(e, f ) ∈ c(g,hm) is just an

expression of the fact that the pair(e, f ) satisfies conditions described in Lemma 12.
The question on the structure of the equality set Eq(g,h) can be seen as a special case

of the above considerations. If conditions

u= v, c= d, e= f, ui = vi, c′ = d ′, e′ = f ′,

with i = 1,2, are added, then we get following modification of Lemmas 10, 12, and 13 and
Corollary 11.

Lemma 14. Letg andh be binary morphisms, and letg be marked. Letu ∈A∗ be a word
such thatg(u) Prefh(u) and

g(u) �= h(u)zh.

Letu1, u2 ∈A+ be words such that

g(uu1)= h(uu1), g(uu2)= h(uu2).

Thenpref1(u1)= pref1(u2).

Corollary 15. Let g and h be binary morphisms, and letg be marked. Letc and c′ be
distinct elements ofeq(g,h). Putu= c ∧ c′. Then

g(u)= h(u)zh.

Lemma 16. Let g andh be binary morphisms, and letg be marked. Let the worde ∈ A+
satisfy the following conditions:

(i) zhg(e)= h(e)zh.
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(ii) The worde is minimal, i.e.: if e1 is a proper prefix ofe thenzhg(e1) �= h(e1)zh.

Then the worde is determined uniquely by its first letter.

Lemma 17. Letg andh be binary morphisms, and letg be marked.

(A) The rank ofEq(g,hm) is at most two.
(B) If rank of Eq(g,hm) is two andeq(g,hm)= {e, e′}, then

pref1(e) �= pref1(e
′).

We can now give the following proof.

Proof of Theorem 1(C). By Lemma 22 below, we can assume thatg is marked.

1. If there do not exist a wordu ∈ A∗ such thatg(u) = h(u)zh, then, by Corollary 15,
Eq(g,h) is generated by at most one word.

2. Suppose that such a wordu exists and suppose no non-empty prefix ofu is an element
of Eq(g,h). By Corollary 15, the wordu is a prefix of anyu′ ∈ Eq(g,h). If eq(g,h) is
not empty, there exists a (minimal) worde1 such that

g(ue1)= h(ue1).

g:

h:
u

zh e1

Note that in such a case

zhg(e1u)= h(e1u)zh,

g:

h:
zh

e1 u
zh

and thuse1u is an element of eq(g,hm).
2.1. If Eq(g,hm) is generated bye1u then

eq(g,h)= {ue1}.

2.2. The cardinality of eq(g,hm) is at most two, by Lemma 17. Suppose that there is
another worde′ ∈ eq(g,hm). We have two possibilities.
2.2.1. Let first exist a prefixe′1 of e′ such that

zhg(e
′
1)= h(e′1).

Thene′ = e′1u, and thusg(ue′1)= h(ue′1) and
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eq(g,h)= {ue1, ue
′
1}.

g:

h:
zh e′

zh
e′1 u

2.2.2. If such a prefix does not exist, then

eq(g,h)= ue′∗e1.

g:

h:
u e′ e′ e1 ✷

4. Typical morphisms

In this section we introduce some properties of morphismsg, h and show that in the
following investigation these properties can be assumed without loss of generality.

Definition 18. We say that an (unordered) pair of binary morphismsg,h :A∗ → Σ∗ is
principal if the target alphabetΣ is the base of the free hull of the set{g(a), g(b),h(a),
h(b)}.

Definition 19. An ordered pair(g,h) of morphisms is calledtypical if

(a) bothg,h are binary non-periodic morphismsA∗ →A∗;
(b) the morphismg is marked;
(c) |g(a)|> |h(a)|, |g(b)|< |h(b)|.

The following is an important property of the base of the free hull generated by a set.

Lemma 20. LetX be a finite subset ofΣ∗ and letY be the base of the free hull ofX. Then
for each elementy ∈ Y there is a wordx ∈X such thaty is a prefix(suffix) of x.

For the proof see [7, Lemma 3.1]. For our purpose note the following immediate
consequence.

Corollary 21. LetX be a finite subset ofΣ∗ such thatΣ is the base of the free hull ofX.
Then

Σ = {
pref1(u) | u ∈X

}= {
suff1(u) | u ∈X

}
.

We can now prove a statement allowing to restrict our considerations to principal and
typical pairs.
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Lemma 22. Letg1, h1 be non-periodic binary morphismsA∗ →Σ∗ such that the rank of
Eq(g1, h1) is at least two. Then there exists a pair of morphisms(g,h) which is principal
and typical, and

C(g,h)= C(g1, h1).

Moreover, ifh1 (g1, h1 respectively) is marked then such is alsoh (g, h respectively).

Proof. Let F ⊂ Σ∗ be the free hull of the set{g1(a), g1(b), h1(a), h1(b)} and letC be
an alphabet whose cardinality equals the rank ofF . Let ϕ :F → C∗ be an isomorphism.
Define morphismsg,h :A∗ → C∗ by

g = ϕ ◦ g1, h= ϕ ◦ h1. (5)

A∗
g1,h1

g,h

F
ϕ

C∗
ϕ−1

Obviously, (g,h) is a principal pair of non-periodic morphisms, the above diagram
commutes, andC(g,h)=C(g1, h1).

By symmetry of lettersa and b, suppose that the condition of Definition 19(c) is
satisfied. By symmetry ofg andh, we can assume

|zh|� |zg |. (6)

By Corollary 21,

C = {
pref1

(
g(a)

)
,pref1

(
g(b)

)
,pref1

(
h(a)

)
,pref1

(
h(b)

)}
.

1. Supposeg is not marked. Then alsoh is not marked, by Eq. (6), and

pref1
(
g(a)

)= pref1
(
g(b)

)
, pref1

(
h(a)

)= pref1
(
h(b)

)
.

Let x be a first letter of a wordu ∈ Eq(g,h). Then

pref1
(
g(x)

)= pref1
(
h(x)

)
implies that the cardinality ofC is one, a contradiction to non-periodicity ofg andh.

2. Thusg is marked. We claim that cardinality ofC is two. This completes the proof,
since we can then chooseC =A.
2.1. To prove the claim suppose first thath is marked. By Lemma 17, the set Eq(g,h)

contains two words starting with different letters. This implies

pref1
(
h(a)

)= pref1
(
g(a)

)
, pref1

(
h(b)

)= pref1
(
g(b)

)
,
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and cardinality ofC is two.
2.2. Supposezh is non-empty. Let againx be the starting letter of a word in Eq(g,h).

Then

pref1
(
h(y)

)= pref1
(
h(x)

)= pref1
(
g(x)

)
,

where{x, y} = {a, b}, and cardinality ofC is again two.

We have proved that a pair(g,h) is principal and typical. Ifh is not marked then neither
h1= ϕ−1 ◦ h is. Similarly forg andh. ✷

Let π :A∗ →A∗ denote the morphism exchanging lettersa andb,

π(a)= b, π(b)= a.

From a typical and principal pair we can derive another one using the mirror image.

Lemma 23. Let (g,h) be a pair of morphisms which is typical and principal.

(A) If zg = ε then(g,h) is typical and principal.
(B) If zg �= ε then(h ◦ π,g ◦ π) is typical and principal.

Proof. (A) The verification is straightforward.
(B) The pair(h ◦ π,g ◦ π), clearly, satisfies conditions (a) and (c) of Definition 19. We

have to show thath ◦ π is marked. Since(g,h) is principal,

A= {
suff1

(
g(a)

)
,suff1

(
g(b)

)
,suff1

(
h(a)

)
,suff1

(
h(b)

)}
,

by Corollary 21. Supposeh ◦ π is not marked. Then bothzg andzh are non-empty and
from eq(g,h) �= ∅ we can conclude

suff1
(
g(a)

)= suff1
(
g(b)

)= suff1
(
h(a)

)= suff1
(
h(b)

)
,

a contradiction to cardinality ofA being two.
Principality of both studied pairs follows directly from mirror symmetry.✷

5. Marked morphisms

The structure of an equality set is much more transparent if both morphisms are marked
as shown in the following lemma.

Lemma 24. Letg,h :A∗ →A∗ be marked morphisms. Then

Eq(g,h)= {α,β}∗
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with α,β ∈A∗. If rank ofEq(g,h) is two, then

pref1(α) �= pref1(β).

Proof. The claim follows directly from Lemma 17.✷
Let us further investigate the relation between the coincidence and equality sets of two

marked binary morphisms.

Lemma 25. Letg,h :A∗ →A∗ be marked morphisms such that the rank of

Eq(g,h)= {v,w}∗

is two. Then

C(g,h)= {
(e, f ), (e′, f ′)

}∗
for some non-empty wordse, f , e′, f ′ such that

pref1(e)= p1(f )= a, pref1(e
′)= p1(f

′)= b.

Define a pair of morphismsg1, h1 :A∗ →A∗ by

{
g1(a)= e,

g1(b)= e′,

{
h1(a)= f,

h1(b)= f ′.

Theng1, h1 are marked non-erasing morphisms and there exist non-empty wordsv1, w1
such that

g1(v1)= h1(v1)= v, g1(w1)= h1(w1)=w,

and

Eq(g1, h1)= {v1,w1}∗.

Proof. Suppose that pref1(v) = a, pref1(w)= b. By Lemma 12, the words(e, f ) can be
defined as the minimal prefix of(v, v) satisfyingg(e) = h(f ). Similarly, (e′, f ′) is the
minimal prefix of (w,w) with the same property. Thus the wordse, f , e′, f ′ are non-
empty and, still by Lemma 12,

C(g,h)= {
(e, f ), (e′, f ′)

}∗
,

andg1, h1 are marked non-erasing morphisms.
Let u be an element of Eq(g,h). Since(u,u) ∈C(g,h), there exists a wordu′ such that

g1(u
′)= h1(u

′)= u.
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Conversely, ifg1(u
′)= h1(u

′) then also

g ◦ g1(u
′)= h ◦ h1(u

′).

Therefore bothg1 andh1 are bijections betweenE(g1, h1) andE(g,h). ✷
In the previous lemma the morphismsg1, h1 have the properties assumed forg, h and

the construction can be iterated to obtain a sequence of pairs of morphisms. We formulate
the fact in the following lemma.

Lemma 26. Letg0, h0 :A∗ →A∗ be marked morphisms such that the rank of

Eq(g0, h0)= {v0,w0}∗

is two. Then the following statements hold.

(A) There exists a sequence of non-erasing marked morphisms(gi, hi)i∈N such that for
eachi ∈N

C(gi, hi)=
{
(ei , fi),

(
e′i , f ′i

)}∗
,

with {
ei = gi+1(a),

e′i = gi+1(b),

{
fi = hi+1(a),

f ′i = hi+1(b),

and

pref1
(
gi(a)

)= pref1
(
hi(a)

)= a,

pref1
(
gi(b)

)= pref1
(
hi(b)

)= b.

(B) For anyi < j

E(gi, hi)= gi+1 ◦ gi+2 ◦ · · · ◦ gj
(
E(gj ,hj )

)
.

(C) There exists a numberm such thatem = fm, e′m = f ′m, andei = fi = a, e′i = f ′i = b

for all i > m.

Proof. The items (A) and (B) follow from Lemma 25 by induction. For item (C) it is
enough to note that unless|ei | = |fi | = |ei | = |fi | = 1, the length of the wordviwi is
strictly decreasing. ✷

The construction of the sequence(gi , hi)i∈N is similar to an idea used in the proof that
Post Correspondence Problem is decidable in the binary case (see [2]). The sequence has
also the following interesting property.
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Lemma 27. Let i, j � 0 and let

gi+j (u)= hi+j (v),

with u �= v. Theni + j <m and

gi ◦ gi+1 ◦ · · · ◦ gi+j (u)= hi ◦ hi+1 ◦ · · · ◦ hi+j (v)
if and only ifj is even.

Proof. By induction, it is enough to show

gi ◦ gi+1(u) �= hi ◦ hi+1(v)

and

gi ◦ gi+1 ◦ gi+2(u)= hi ◦ hi+1 ◦ hi+2(v).

By definition,gi(u′)= hi(v
′) if and only if (u′, v′) ∈ {(ei, fi), (e′i , f ′i )}∗, i.e. if and only if

there exists a wordw such thatu′ = gi+1(w), v′ = hi+1(w). But we assumeu �= v. On the
other hand, ifj = 2, putw = gi+2(u)= hi+2(v).

For k � m, we haveek = fk , e′k = f ′k and thusgk(u) = hk(v) if and only if u = v.
Therefore,i + j must be less thanm. ✷

Latter, we will need the following technical lemma.

Lemma 28. Letg,h :A∗ →A∗ be two marked morphisms. Letu, u′, v, v′ ∈A∗ be words,
ands, r, q be positive integers, such that

g(asbu)= h(asbu′), g(arbv)= h(aqbv′).

Thens = r = q .

Proof. Recall that we assumeg �= h (for g = h only r = q holds, as is easy to see).
Let g and h be morphisms satisfying assumptions, buts = r = q does not hold.

Suppose, moreover, that the length ofasbu is smallest possible. We show thatasbu can be
shortened, and thus we obtain a contradiction.

We first claim thatg(a) andh(a) do not commute. Suppose for a while that|g(a)|>
|h(a)| (similarly, if |g(a)|< |h(a)|). The claim follows fromh being marked and

pref1
(
h(b)

)= pref1
(
h(a)−sg(a)sbu

)
.

(Clearly,g(a)= h(a) impliesg = h.)
By Corollary 11,

g(asbu∧ arbv)= h(asbu′ ∧ aqbv′). (7)
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1. If s �= r ands �= q , then (7) yields

g
(
ai

)= h
(
aj

)
,

with i = min(s, r), j = min(s, q). Therefore, the wordsg(a) andh(a) commute, a
contradiction.

2. Suppose next, by symmetry,s = r ands �= q . Putm=min(s, q). Equality (7) implies

g(asbw)= h(am), (8)

wherew = u∧ v.
The setC(g,h) contains elements(asbu, asbu′) and (asbw,am), whence it is not
difficult to see that the rank ofC(g,h) is two. Lete, f , e′, f ′ be words, andg1, h1

morphisms, defined as in Lemma 25.
Equality (8) implies that there is a positive integerp, such thatf = ap. From this we
deducee /∈ a+ and thus|e|> s. Sinceasbu′ andaqbv′ are elements of{f,f ′}∗, both
s andq are multiples ofp. Put

s1= s

p
, q1= q

p
,

and define wordsu1 andv1 by

g1(u1)= asbu, h1(u1)= asbu′,

g1(v1)= asbv, h1(v1)= aqbv′.

Sinceh1(a)= f = ap, the wordsu1 andv1 can be factorized as

u1= as1bu2, v1= aq1bv2,

with u2, v2 ∈A∗. If s > q , from

h1
(
as1bv2

)= h1
(
as1−q1aq1bv2

)= as−qaqbv′ = asbv′

we deduce

g ◦ g1
(
as1bu2

)= h ◦ h1
(
as1bu2

)
, g ◦ g1

(
aq1bv2

)= h ◦ h1
(
as1bv2

)
.

The same equalities are obtained in a similar way ifs < q .
Inequalitys �= q impliess1 �= q1, and|e|> s yields|as1bu2|< |asbu|. This completes
the proof. ✷
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6. The (non-existence of a) counter-example

The consecutive proof of our main claim, Theorem 2, will be essentially made by
contradiction. We shall assume that there exist a counter-example to it and gradually show
that such an assumption is wrong. Actually, the first step in this direction has been already
made in Lemma 24, where we proved that a counter-example cannot consist of two marked
morphisms. (Note that our proof does not deal directly with the rank of equality set. It is
rather concentrated on the different first letter of generating elements.)

To enable an argument by induction, we can also assume that the counter-example is in
a sense of minimal length. This leads to the following definitions.

Definition 29. We say that a pair of morphisms(g,h) is a counter-exampleif

(a) (g,h) is a typical pair of morphisms.
(b) eq(g,h) contains two distinct elementsu, v such that pref1(u)= pref1(v).

We say that a pair of morphisms(g,h) is ashortest counter-exampleif it satisfies the
following additional condition.

(c) Let (g′, h′) be a counter-example. Letd (d ′ respectively) be the length of the shortest
element of eq(g,h) (eq(g′, h′) respectively). Thend � d ′.

We say that a pair of morphisms(g,h) is simpleif g(e)= h(f ) impliese= f .

The following lemma yields basic information about the structure of the equality set of
a counter-example.

Lemma 30. Let (g,h) be a counter-example. Thenzh is non-empty and there exist non-
empty wordsσ , νa , andνb such that

pref1(νa)= a, pref1(νb)= b,

the wordsσνa , σνb are the two shortest elements ofeq(g,h), and

g(σ) = h(σ)zh, (9)

zhg(νl) = h(νl), with l ∈A. (10)

g:

h:
σ

zh νl

Moreover,

pref1
(
g(x)

) �= pref1
(
g(y)

)= pref1
(
h(x)

)= pref1
(
h(y)

)
(11)

holds, with{x, y} = {a, b} andy = pref1(σ ).
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Proof. If the wordsσνa andσνb are elements of eq(g,h), then Eqs. (9) and (10) follow
from Corollary 15.

Corollary 15 and Definition 29(b) imply thatzh is non-empty and pref1(u) =
pref1(v) for any two wordsu,v ∈ Eq(g,h). Therefore, suppose thatu, v mentioned in
Definition 29(b) are the two shortest elements of eq(g,h). Put σ = u ∧ v. Sinceu and
v are minimal, there exist non-empty wordsu1 andv1 such thatσu1 = u, σv1 = v, and
pref1(u1) �= pref1(v1). The choice ofνa andνb is obvious.

Equality (11) follows, sinceg is marked whileh is not. ✷
From Definition 19(c) and Eqs. (9), (10) we deduce that

|σ |a � 1, |νx |b � 1, with x ∈A. (12)

The following lemma shows the connection between a general counter-example and
marked morphisms.

Lemma 31. Let (g,h) be a counter-example. Then(g,hm) is a typical pair of morphisms,

νaσ, νbσ ∈ Eq(g,hm),

and the rank ofEq(g,hm) is two.

Proof. The claim is a direct consequence of Lemmas 24 and 30.✷
6.1. The casezg �= ε

In this subsection we shall assume thatzg is non-empty, i.e.g is not marked. By
Lemma 23, the pair(h ◦ π,g ◦ π) is typical. Sincezg �= ε, it is also a counter-example,
by Corollary 15. This implies that we can suppose

|zg |� |zh|, (13)

because otherwise we consider(h ◦ π,g ◦ π) instead of(g,h).
Let τ denote the maximal common suffix of two different elements of Eq(g,h). Then

any solution of(g,h) looks like

g:

h:
σ zh

zg
τ .

The mirror variant of (1) implies thatzg is a suffix of anyg(u), sufficiently long.
Especially

zg ∈ suff
(
g(a)+

)
, zg ∈ suff

(
g(b)+

)
. (14)
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Thus also

zh ∈ suff(zg). (15)

The following lemma is the first of several claims investigating the possible structure
of zh.

Lemma 32. Let (g,h) be a counter-example such thatzg �= ε. Let pref(σ ) = b. Then
zh ∈ g(b)+.

Proof. Let bl be the maximalb-prefix of σ and letbk be the maximalb-prefix of νbσ .
From (14) and (15) we deduce thatzh = sg(b)i for some suffixs of g(b) andi ∈N. Thus
zhg(b)= sg(b)i+1. Equalities (9) and (10) imply thatg(b) is a prefix ofzhg(b) and thus
s, g(b), andzh commute. Let

zh = tm1, g(b)= tm2,

with t primitive andm1,m2 ∈ N+. Then (10) yields thattm1+k·m2 is the maximalt-prefix
of zhg(νbσ ). Similarly from (9) follows thatt l·m2 is the maximalt-prefix ofh(σνa).

1. Suppose thath(b)= tm3 for somem3 ∈N+. Then, by (9), the wordg(b)l ·pref1(g(a))
is a prefix oft l·m3, a contradiction withg being marked.

2. This implies, by Periodicity Lemma, that the maximalt-prefix of h(b)zh is shorter
than|h(b)t|. Hencet l·m2 is the maximalt-prefix of any wordh(bu)zh, u ∈A∗.
Equality (10) now implies

m1+ k ·m2= l ·m2.

Thus

m1= (l − k) ·m2 and zh = g(b)l−k. ✷
Next lemma is similar to Lemma 32.

Lemma 33. Let (g,h) be a counter-example such thatzg �= ε. Let pref(σ ) = a. Then
zh ∈ h(a)+.

Proof. Equality (9) yieldsh(a) ∈ pref(g(a)). Equality (10) implies thath(a)zh is a prefix
of zhg(a) and thuszhh(a)= h(a)zh. Hence we have

zh = tm1, h(a)= tm2

for a primitive wordt and somem1,m2 ∈N+.
Let al be the maximala-prefix of σνb andak be the maximala-prefix of νaσ . Since

zh is the maximalt-prefix of everyh(au)zh, the wordt l·m2+m1 is the maximalt-prefix of
g(σνb). The maximalt-prefix ofh(νaσ ) is tk·m2+m1.
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1. First suppose thatg(a) = tm3 for somem3 ∈ N+. Sinceg is marked, the wordtk·m3

is the maximalt-prefix of g(νaσ ) andtk·m3+m1 is the maximalt-prefix of zhg(νaσ ).
Thus, by Eq. (10),

k ·m3+m1= k ·m2+m1, (16)

andm2=m3, a contradiction to|g(a)|> |h(a)|.
2. From Eqs. (14), (15) we deduce thatt is a suffix ofg(a). Sinceg(a) /∈ t+, the maximal

t-prefix of g(σνb), i.e. t l·m2+m1 is also the maximalt-prefix of g(a). Eq. (10) now
yields

k ·m2+m1= l ·m2+ 2 ·m1 and zh = h(a)k−l . ✷
Now we can complete the subsection by showing that ifzg is non-empty, then(g,h) is

not a counter-example.

Lemma 34. Let (g,h) be a counter-example. Thenzg = ε.

Proof. 1. Suppose first pref1(σ )= a andzg �= ε. By Lemma 33,zh = h(as), s ∈N+. From
(9) and (10) we have

zhg(σ )= h(asσ )zh, zhg(νaσ )= h(νaσ )zh.

Verify that morphismshm, g satisfy the assumptions of Lemma 28, a contradiction.

2. Suppose pref1(σ )= b andzg �= ε. Let l (k respectively) be the maximalb-prefix of
σ (νbσ respectively) and let, by the proof of Lemma 32,zh = g(bs), with s = l − k. Put
σ ′ = b−sσ . Then

zhg(σ
′)= h(bsσ ′)zh, zhg(νbσ )= h(νbσ )zh,

and Lemma 28, applied to morphismshm ◦ π andg ◦ π , again yields a contradiction. This
completes the proof. ✷
6.2. The casezh �= ε

In this subsection we show that we can assumezh = ε, i.e.h is marked. First we give a
more precise description of possible counter-example structure.

Lemma 35. Let (g,h) be a counter-example.

(A) Let the rank ofEq(g,h) be two. Then there exist wordsσ,µa,µb ∈ A+ and τ ∈ A∗
such that
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eq(g,h)= {σµaτ,σµbτ }, zhg(µa)zh = h(µa), pref1(µa)= a,

g(σ )= h(σ)zh, zhg(µb)zh = h(µb), pref1(µb)= b,

g(τ )= zhh(τ ), suff1(µa) �= suff1(µb).

g:

h:
σ zh

µx zh
τ

(B) Let the rank ofEq(g,h) beω. Then there exist wordsζ,µ,ρ, τ ∈A+ such that

eq(g,h)= ζ(ρµ)∗ρτ = ζρ(µρ)∗τ,

g(ζ )zh = h(ζ ), zhg(µ)zh = h(µ), pref1(µ) �= pref1(τ ),

g(ρ)= zhh(ρ)zh, zhg(τ )= h(τ), suff1(µ) �= suff1(ζ ).

g:

h:
ζ zh

ρ
zh

µ
zh

ρ
zh

τ

Proof. This proof is in fact a refinement of the proof of Theorem 1(C) (we shall refer to it
as the Proof).

Since the rank of Eq(g,h) is at least two, the rank of Eq(g,hm) is two. Let eq(g,hm)=
{e, e′}, with pref1(e) �= pref1(e

′).

(A) Suppose thate = e1u, e′ = e′1u, and eq(g,h)= {ue1, ue
′
1} (cf. Proof 2.2.1). Letv be

the maximal common suffix ofe1 ande′1. Sincee1 ande′1 are not a suffix one of the
other, the wordv is a proper suffix of bothe1 ande′1, ande1= cv, e′1= c′v.
By Corollary 15, applied to morphismsg andh, we have

g(v)= zhh(v).

Now it suffices to identifyσ with u, τ with v, andµa , µb with c, c′, according to the
first letter.

(B) Suppose now thate= e1u, u is not a suffix ofe′, and eq(g,h)= ue′∗e1 (cf. Proof 2.2.2).
Let v be the maximal common suffix ofe ande′. The wordv is a proper suffix of both
words and, by assumption, it is also a proper suffix ofu. Let u= pv ande′ = qv.
The wordve1 is the maximal common suffix ofue1 andue′e1, and thus

g(ve1)= zhh(ve1).

Now identify ζ with p, ρ with v, µ with q , andτ with e1. ✷
Note that between Lemma 30 and Lemma 35 there exists the following correspondence.

In the case (A) of Lemma 35, the wordσ is the same as in Lemma 30, and

νa = µaτ, νb = µbτ.
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In the case (B) of Lemma 35,

σ = ζρ, {νa, νb} = {τ,µρτ }.

The following lemma shows that we can suppose, without loss of generality, thatzh is
empty, i.e.h is marked.

Lemma 36. If there exists any shortest counter-example, then there exists also a shortest
counter-example(g,h) such thatzh = ε.

Proof. Let (g1, h1) be a shortest counter-example. Supposezh1 �= ε and defineg andh by

g(u)= g1(u), h(u)= zh1h1(u)(zh1)
−1.

It is not difficult to see that morphismh is well defined. The claim is now a consequence
of the characterization presented in Lemma 35. Let wordsζ , σ , τ , ρ, µa , µb, andµ be as
in that lemma with respect to the pair(g1, h1).

1. If rank of Eq(g1, h1) is two then, by Lemma 35(A),

Eq(g,h)= {τσµa, τσµb}.
g:

h:
τσ zh = zh1

zh1
µx

2. If, on the other hand, rank of Eq(g1, h1) is ω then, by Lemma 35(B),

Eq(g,h)= {ρµ,ρτζ }.
g:

h:
ρ

zh = zh1
zh1

µ
g:

h:
ρ

zh = zh1
zh1

τζ

By Lemma 22, we can assume that(g,h) is typical. The wordsτσ andρ are non-empty
and(g,h) is a counter-example withzh = ε. It is also a shortest counter-example, because
the length of words in eq(g,h) has not changed.✷

In the previous lemma the equality set of morphismsg1 andh1 is possibly of infinite
rank. We have reduced that pair to a pair(g,h) with equality set generated by two words.
The claim that rank of Eq(g1, h1) is notω is now reduced to the claim thatσ is empty.

6.3. The casepref1(σ )= a

In this subsection we show that we can assume the wordσ starts with a letterb.
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First note that if bothg andh are marked, then, by Lemma 15, the set Eq(g,h) contains
an elementu with suff1(u)= a. This implies, since|g(a)|> |h(a)|,

h(a) ∈ suff
(
g(a)

)
. (17)

The next lemma is a parallel to Lemma 33.

Lemma 37. Let (g,h) be a counter-example such that bothg and h are marked. Let
pref(σ )= a. Thenzh ∈ h(a)+.

Proof. The proof is identical to the proof of Lemma 33, with the only exception that
t ∈ suff(g(a)) (in the beginning of part 2) is deduced from (17).✷

We can now prove the claim of this subsection.

Lemma 38. Let (g,h) be a counter-example such that bothg and h are marked. Then
pref1(σ ) �= a.

Proof. Suppose pref1(σ )= a andzg = zh = ε. By Lemma 37,zh = h(as), s ∈N+. From
(9) and (10) we have

zhg(σ )= h(asσ )zh, zhg(νaσ )= h(νaσ )zh.

Verify that morphismshm, g satisfy the assumptions of Lemma 28; a contradiction.✷
The results of Sections 6.1–6.3 are summarized by the following lemma.

Lemma 39. If there exists a counter-example, then there exists a shortest counter-example
(g,h) such that

(A) g andh are marked(i.e.zg = zh = ε),
(B) pref1(u)= b for eachu ∈ eq(g,h),
(C) g(b) andh(b) do not commute,
(D) suff1(σ )= b.

Proof. (A) The claim follows from Lemmas 34 and 36.
(B) Follows directly from Lemma 38.
(C) Proof by contradiction. Lett be the common primitive root ofg(b) andh(b). Then

from |g(b)|< |h(b)| and from (9) we deduce that pref1(t) = pref1(g(a)), a contradiction
with g being marked.

(D) By Lemmas 23 and 31, the pair of morphisms(g,hm) is typical. The set Eq(g,hm)

contains two distinct elementsνaσ = σνa andνbσ = σνb with a common prefixσ and
distinct last letters. Thus pref1(σ )= suff1(σ )= b, by Lemma 38. ✷

To rule out the remaining possibility described in Lemma 39 we shall deal separately
with cases|g(ba)|< |h(b)| and|g(ba)|� |h(b)|.
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6.4. Relative position

In this section we define some important concepts.
Let u be an element of Eq(g,h) and letqu = g(u)= h(u).
The positionp in q = qu is given by the factorizationq = q1q2 with |q1| = p. By

q[i, j ], with i � j , we shall denote the factor ofq spreading between positionsi andj , i.e.

q = vq[i, j ]v′, with |v| = i,
∣∣vq[i, j ]∣∣= j.

Clearly,|q[i, j ]| = j − i.
By “ ith occurrence ofg(b) (h(b) respectively) inq” we mean the occurrence of the

factorg(b) (h(b) respectively) inq which is the image of theith occurrence of the letterb
in u by the morphismg (h respectively).

We define integersci ∈ {0,1,2, . . . , |u|}, i = 1,2, . . . , |u|b, as follows. Letu′i andui be
prefixes ofu such that

ui = u′ib and
∣∣g(ui)∣∣b = i.

Then

ci =
∣∣g(ui)∣∣− ∣∣g(b)∣∣= ∣∣g(

u′i
)∣∣.

The integerci is thestarting positionof ith occurrence ofg(b) in q . Similarly, we define
the starting position ofith occurrence ofh(b) in q by

di =
∣∣h(ui)∣∣− ∣∣h(b)∣∣= ∣∣h(

u′i
)∣∣.

Note that

ci+1− ci �
∣∣g(b)∣∣ and di+1− di �

∣∣h(b)∣∣,
for eachi = 1, . . . , |u|b − 1. Note also that

q
[
ci +

∣∣g(b)∣∣, ci+1
] ∈ g(a)∗ and q

[
di +

∣∣h(b)∣∣, di+1
] ∈ h(a)∗,

for eachi = 1, . . . , |u|b − 1.
The relation between the occurrences ofg(b) andh(b) in q is given by the mappings

Φ =Φu, Ψ = Ψu : {1, . . . , |u|b}→ {0,1, . . . , |u|b}
defined as follows:

Φ(i)=
{
j, if dj � ci < dj + |h(b)| for some 1� j � |u|b,
0, otherwise;

Ψ (i)=
{
j, if dj < ci + |g(b)|� dj + |h(b)| for some 1� j � |u|b,
0, otherwise.
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The value ofΦ(i) is 0 if the ith occurrence ofg(b) in q begins withinh(a) in the
factorization ofq induced byh, andΦ(i) = j if the ith occurrence ofg(b) in q begins
within thej th occurrence ofh(b) in q .

The mapΨ has similar values for the positions in which the occurrences ofg(b) end.
The following lemma shows the way mappingsΦ andΨ will be used.

Lemma 40. Let (g,h) be a typical pair of morphisms, and letu ∈ bA∗b be an element of
Eq(g,h).

(A) Let an integerj ∈ {1, . . . , |u|b} be not in the range ofΦ. Thenh(b) is either a factor
of g(a)+ or a prefix ofsg(a)+ for some proper suffixs of g(b).

(B) Let an integerj ∈ {1, . . . , |u|b} be not in the range ofΨ. Thenh(b) is either a factor
of g(a)+ or a suffix ofg(a)+p for some proper prefixp of g(b).

(C) Let

Range(Ψ )=Range(Φ)= {1, . . . , |u|b}.
Then

h(b)= rig(b)qi, g
(
u′i

)= h
(
u′i

)
ri, g(ui)qi = h(ui), (18)

with i = 1, . . . , |u|b, andri ∈ suff(g(a)+), qi ∈ pref(g(a)+).

g(u′i ) g(b)

h(u′i ) h(b)ri qi

Proof. Putq = g(u)= h(u).

(A) Let j /∈ Range(Φ). By assumption, we haveΦ(1) = 1 and Φ(|u|b) = |u|b.
Therefore, there exists an integeri such that

ci < dj < dj +
∣∣h(b)∣∣ � ci+1.

This implies, looking at thej th occurrence ofh(b) in q , that h(b) is a factor of
q[ci + 1, ci+1], which is a proper suffix ofg(b)g(a)∗. The claim follows.

(B) Similarly as (A).

(C) Clearly,

di � ci < ci +
∣∣g(b)∣∣ � di +

∣∣h(b)∣∣, (19)

with i = 1. By assumption, within each occurrence ofh(b) in q , some occurrences ofg(b)
start and some end. One can easily see, by induction, that occurrences ofg(b) starting
and ending within one occurrence ofh(b) coincide. Therefore, Eq. (19) holds for each
i = 1, . . . , |u|b. Thush(b)= rig(b)qi for someri, qi ∈A∗. From injectivity ofΦ we also
deduce thatri is a suffix andqi a prefix ofg(a)+. ✷
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6.5. The case|g(ba)|< |h(b)|

First adopt the following definitions.

Convention 41.

• Henceforward, if we speak about a counter-example, we implicitly suppose that it has
properties described in Lemma 39.
• Let ξ denote the wordσνb or σνa so that pref1(ξ)= suff1(ξ)= b (see Lemma 39). In

the rest of this section variablesk, l, l′ will have the following meaning:
◦ bl is the maximalb-prefix ofσ ,
◦ bk is the maximalb-prefix of νbσ ,
◦ bl

′
is the maximalb-prefix of ξ (i.e. the maximalb-suffix of ξ ).

Note that by (12), the wordbl (bk respectively) is the proper prefix ofσ (νbσ
respectively). Alsobl

′
is the proper suffix ofξ . Sinceσ is the common prefix of all elements

in Eq(g,h), the wordbl is also the maximalb-prefix of ξ .

Lemma 42. Let (g,h) be a counter-example. Theng(b)l is a proper prefix ofh(b) and
g(b)l

′
is a proper suffix ofh(b).

Proof. By (9), the wordsh(b) and g(b)l are comparable. Sinceg(b) is a suffix of
h(b), there exist a non-empty wordu such thath(b) = ug(b). If h(b) were a prefix of
g(b)l , the wordsu andg(b) would commute, by Lemma 7(C). This is a contradiction to
Lemma 39(C). ✷

The proof of the second part of the statement is symmetric.

Lemma 43. Let (g,h) be a counter-example and let|g(ba)|< |h(b)|. Then

g
(
bla

) ∈ pref
(
h(b)

)
and g

(
abl

′) ∈ suff
(
h(b)

)
.

Proof. With g(ξ) = h(ξ), it is enough to prove|g(bla)|� |h(b)| and |g(abl′)| � |h(b)|.
Consideration for the two cases is mirror symmetric.

Proceed by contradiction and suppose|g(bla)|> |h(b)|. Since|g(ba)|< |h(b)|, l � 2
and the wordg(bla) is a prefix ofh(b)g(b)l−1. By Lemma 42, there are wordsu, q1, and
r1 such that

g(b)= q1r1, h(b)= g(b)lu, g(a)= ug(b)iq1,

with 0 � i � l − 2.

1. Suppose thatblab is a prefix ofσ . Theng(b)iq1g(b) is a prefix ofg(b)l and q1
commutes withg(b). This is a contradiction tog being marked. Similarly ifbabl

′

is a suffix ofξ .
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2. Thusblaa is a prefix, andaabl
′
is a suffix ofξ .

2.1. First suppose|g(blaa)|> |h(bb)|. Then

g(b)= q2r2, h(b)= g(b)iq1ug(b)
l−i−1q2,

where|q2| = |r1|.

g(b)l g(a) g(a)

u︷ ︸︸ ︷ g(b)iq1︷ ︸︸ ︷ u︷ ︸︸ ︷g(b)l−i−1q2︷ ︸︸ ︷
h(b) h(b)

Sincel− i−1� 1 andg(b) is a suffix ofh(b), the wordq2 commutes withg(b).
Thusr1= q2 and alsoq1 commutes withg(b), a contradiction tog being marked.
Similarly we obtain contradiction if|g(aabl′)|> |h(bb)|.

2.2. Suppose now

∣∣g(
blaa

)∣∣ �
∣∣h(bb)∣∣, ∣∣g(aab)l′∣∣ �

∣∣h(bb)∣∣.
Put Φ = Φξ . Since l � 2, the range ofΦ does not contain somej ∈
{1,2, . . . , |ξ |b}. By Lemma 40, eitherh(b) is a factor ofg(a)+ or a prefix of
sg(a)+ for some proper suffixs of g(b).
2.2.1. Supposeh(b) is a prefix ofsg(a)+.

2.2.1.1. If |s| � |g(b)iq1|, thensg(a) is a factor ofg(a)+. This implies
that the words is a suffix g(a)+, a contradiction tog being
marked.

2.2.1.2. If, on the other hand,|s| > |g(b)iq1|, then clearlyi = 0 and
q1g(a) is a prefix ofsg(a). Let

qs = q1r1= g(b).

Sincesg(a) is a prefix ofh(b), there is a prefixp of g(a) such
thatsp = g(b).

g(a)p

pq s

q1︸ ︷︷ ︸
g(b)

g(a)︷ ︸︸ ︷g(b)︷ ︸︸ ︷

Fromqs = sp follows the existence of a primitive wordt = t1t2
such thatt2 is non-empty,

s = (t1t2)
i1t1, q = (t1t2)

j1, p = (t2t1)
j1,
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with i1 ∈ N, j1 ∈ N+. Sinceq1g(a) is a prefix ofh(b), the word
q1p is a prefix ofg(b). From

g(b)= (t1t2)
i1+j1t1, p = (t2t1)

j1

we deduceq1 ∈ (t1t2)
∗t1, andq1 is a suffix of g(b). This is a

contradiction tog being marked, sinceq1 is a suffix ofg(a).
2.2.2. Supposeh(b) is a factor ofg(a)+. Let ta be the primitive root ofg(a), and

let v1 ∈ suff(ta) andv2 ∈ pref(ta) be words such that

h(b) ∈ (
v1t
∗
a v2

)
.

Sinceg(b)iq1ta is a prefix ofh(b), it is also a prefix ofv1t
+
a and we

conclude that

g(b)iq1 ∈ v1t
∗
a .

Therefore,h(bb) is a prefix ofg(b)lt+a . Similarly we deduce thath(bb) is
a suffix of t+a g(b)l

′
. Hence, by primitivity ofta ,

h(bbb)= g(b)l tma g(b)l
′

for somem ∈N+. From

|ta | +
∣∣g(b)∣∣ �

∣∣g(a)∣∣+ ∣∣g(b)∣∣< ∣∣h(b)∣∣,
3 · ∣∣h(b)∣∣= (l + l′) · ∣∣g(b)∣∣+m · |ta|,

it is not difficult to deduce that either

(l + l′) · ∣∣g(b)∣∣> ∣∣g(b)∣∣+ ∣∣h(b)∣∣ or m · |ta|> |ta| +
∣∣h(b)∣∣.

This implies, by Periodicity Lemma, that either ofg(b) or ta commutes
with h(b). We thus obtain a contradiction to Lemma 39(C) or to
pref1(h(b)) �= pref1(g(a)) (see Eq. (11)). ✷

Lemma 44. Let (g,h) be a counter-example such that|g(ba)| < |h(b)|. Let u be an
element ofEq(g,h). Then

Range(Φu)=Range(Ψu)= {1,2, . . . , |u|b}.

Proof. Suppose, for a contradiction, that 1� j � |u|b is not in the range ofΦu. By
Lemma 40, the wordh(b) is either a factor ofg(a)+ or a prefix ofsg(a)+ for some proper
suffix s of g(b).
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1. If h(b) is a factor ofg(a)+ then, by (9) and Lemma 43, the wordg(b)lg(a) is a factor
of g(a)+. This implies, by Lemma 7(A), thatg(b) is a suffix ofg(a)+, a contradiction
to g being marked.

2. Consider now the latter possibility. Letr be the word such thatrs = g(b). Observe
that

(rs)lg(a) ∈ pref
(
sg(a)+

)
. (20)

Define s′ by ss′ = rs. By (20), the words′(rs)l−1g(a) is a prefix of g(a)+. By
Lemma 7(C), the wordss′(rs)l−1 and g(a) commute. This is a contradiction tog
being marked, sinces′(rs)l−1 is a suffix ofg(b)l .

We have proved Range(Φu)= {1,2, . . . , |u|b}. The rest follows from mirror considera-
tions. ✷
Lemma 45. Let (g,h) be a counter-example such that|g(ba)|< |h(b)|. Let u = x1wx2,
with x1, x2 ∈A andu ∈A+, be an element ofeq(g,h). Thenw ∈ a∗.

Proof. In this proofpi (si respectively) will always denote a proper prefix (a proper suffix)
of g(a), andri , qi , ui , u′i are like in (18).

Lemmas 43 and 44 imply

h(b)= g(b)q1, h(b)= rng(b).

Suppose|w|b � 1. Then

h(b)= r2g(b)q2.

1. First suppose that bothr2 andq2 are non-empty. Then we have

h(b)= g(b)g(a)m1p1= s2g(a)
m2g(b)= s3g(a)

m3g(b)g(a)m4p4,

with m1,m2,m3,m4 ∈ N. Sinceg(a)m3r is a factor ofs2g(a)m2 for a non-empty
prefix r of g(b), Lemma 7(B) andg being marked imply thatm3 = 0. The mirrored
consideration yieldsm4= 0.
Hence|h(b)|< |g(b)| + 2 · |g(a)|, and thereforem1=m2= 1. We can write

h(b) = g(b)g(a)p1, (21)

h(b) = s2g(a)g(b), (22)

h(b) = s3g(b)p4, (23)

s3 g(b) p4

s2 g(a) g(b)

g(b) g(a) p1p3
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where |s2| < |s3| and |p1| < |p4|. From (21) and (23) we deducep4 = p3p1 and
g(b)g(a) = s3g(b)p3, with p3s3 = g(a). Henceg(b)p3s3 = s3g(b)p3, and words
g(b)p3 and s3 have a common primitive root, sayt . Let t = t1t2 be a factorization
of t such that

g(b)= (t1t2)
i1t1, p3= t2(t1t2)

i2, s3= (t1t2)
j ,

with i1, i2, j ∈N, j � 1. Then also

g(a)= p3s3= (t2t1)
i2+j t2, g(b)g(a)= (t1t2)

i1+i2+j+1,

g(a)g(b)= (t2t1)
i1+i2+j+1.

From (22) and (21) it follows thats2(t2t1) is a prefix ofg(b)g(a) and thus

s2= (t1t2)
i3t1, h(b)= s2g(a)g(b)= (t1t2)

i1+i2+i3+j+1t1,

with i3 � 0. Equality (23) gives

p4= (t1t2)
i2+i3+1

and, sincep4 is a prefix ofg(a), the wordst1 andt2 commute. Therefore, alsog(a)
andg(b) commute; a contradiction.

2. If, on the other hand, either ofr2 or q2 is empty, then

g
(
u′2

)= h
(
u′2

)
or g(u2)= h(u2).

This contradicts the minimality ofx1wx2. ✷
Lemma 46. Let (g,h) be a counter-example. Then|g(ba)|� |h(b)|.

Proof. Suppose|g(ba)|< |h(b)|. By Lemma 39, (B) and (D),

pref1(σ )= suff1(σ )= b.

Lemma 45 applied toσνa implies σ = b, a contradiction with|g(σ)| = |h(σ)zh| >
|h(σ)|. ✷
6.6. The case|g(ba)|� |h(b)|

Recall Convention 41. Following two lemmas, a more complicated parallel of Lem-
ma 32, claim that in the given case the wordh(b) commutes with the wordzhg(b)k−l . The
two lemmas correspond to different signs ofk − l.
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Lemma 47. Let (g,h) be a counter-example and letk > l. Thenh(b) commutes with the
word zhg(b)

k−l .

zh

g(b)k g(a)

h(b) h(b)

g(b)k−l︷ ︸︸ ︷ g(b)l︷ ︸︸ ︷ u︷ ︸︸ ︷

︸ ︷︷ ︸
h(b)

Proof. The assumption impliesk � 2. From (9), Lemmas 42 and 46 we deduce that
h(b)= g(b)lu for some prefixu of g(a). Since|h(b)|> |g(b)|, we have

∣∣h(b)kzh∣∣ > ∣∣zhg(b)k−lh(b)∣∣.
Equality (10) now implies that the wordzhg(b)k−lg(b)lu = zhg(b)

k−lh(b) is a prefix of
h(b)+ and thuszhg(b)k−l commutes withh(b). ✷
Lemma 48. Let (g,h) be a counter-example and letk � l. Then

zh = sg(b)l−k

for some words ∈A∗, which commutes withh(b).

Proof. Let u be a prefix ofg(a) such thatg(b)lu= h(b). Thus

∣∣g(b)lug(b)l−k∣∣ < ∣∣g(bla)∣∣
and, by (9),ug(b)l−k is a prefix ofg(a). From (10) we deduce

h(b)zh = zhg(b)
kug(b)l−k. (24)

1. First suppose|zh|� |g(b)l−k|. Equality (24) yieldszh = sg(b)l−k for somes ∈A∗ and
it reads

h(b)sg(b)l−k = sg(b)l−kg(b)kug(b)l−k = sh(b)g(b)l−k.

Thus the wordsh(b) ands commute and we are through.
Note that the previous considerations pass smoothly even ifk = l. The casel = 1 (and
thusk = 1) deserves special attention.

zh

g(b)k g(a)

h(b)

s︷ ︸︸ ︷ g(b)l−k︷ ︸︸ ︷ u︷ ︸︸ ︷ g(b)l−k︷ ︸︸ ︷

︸ ︷︷ ︸
h(b)

︸ ︷︷ ︸
zh

s
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2. Suppose now|zh| < |g(b)l−k| and, consequently,k < l, l � 2. Equality (24) implies
the existence of a non-empty words ∈ A+ such thatszh = g(b)l−k and h(b) =
zhg(b)

kus.

zh

g(b)k g(a)

h(b)

g(b)l−k︷ ︸︸ ︷ u︷ ︸︸ ︷ g(b)l−k︷ ︸︸ ︷

︸ ︷︷ ︸
h(b)

s zh

s

Therefore,

sh(b)= szhg(b)
kus = g(b)l−kg(b)kus = h(b)s.

Thus, the wordsh(b), s, and zhg(b)
ku have the same primitive root, sayt . From

szh = g(b)l−k, we have|t| < |g(b)l−k|. Sinceg(b)l = szhg(b)
k is a prefix oft+, by

Periodicity Lemmat is the primitive root ofg(b), a contradiction to Lemma 39(C).✷
A consequence of Lemmas 47 and 48 appears as two lemmas.

Lemma 49. Let (g,h) be a counter-example such thatk � l. Then either

zhg
(
bk−l

)= h
(
bk−l

)
(25)

or there exist wordsv ∈A+ andw ∈ b+ such that

zhg(v)= h(w)zh. (26)

Proof. By Lemma 47, wordsh(b) andzhg(bk−l ) have a common primitive root, sayt . Let

h(b)= tk1, zhg
(
bk−l

)= tk2.

The wordh(b)kzh = tk·k1zh is the maximalt-prefix of h(νbσ ), and therefore also of
zhg(νbσ ). Sincebk−l is a prefix ofνbσ ,

the word tk·k1−k2zh is the maximalt-prefix of g
(
b−(k−l)νbσ

)
. (27)

From (9) one can similarly deduce that

the word t l·k1zh is the maximalt-prefix of g(σνa). (28)

1. First supposek · k1− k2= l · k1. Then one easily verifieszhg(bk−l)= h(b)(k−l).
2. Suppose thenk · k1− k2 �= l · k1 and put

m=min{k · k1− k2, l · k1}.
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From (27) and (28) we deduce, by Lemma 8, thattmzh = g(u) for someu ∈A+, and

zhg
(
bk−lu

)= tm+k2zh.

Then also

zhg
((
bk−lu

)k1
)= tk1(m+k2)zh = h(b)m+k2zh,

and we are through.✷
If k < l, the first possibility is excluded.

Lemma 50. Let (g,h) be a counter-example such thatk < l. Then

zhg(v)= h(w)zh

for somev ∈A+ andw ∈ b+.

Proof. This proof is essentially the same as the proof of Lemma 49, with(k− l) negative.
By Lemma 48, the wordh(b) commutes withs = zhg(b)

−(l−k). Let t be the primitive
word and

h(b)= tk1, s = tk2.

Inequality k < l yields k · k1 − k2 < l · k1. Verify that statements (27) and (28) hold.
Therefore, by Lemma 8, there is a wordu ∈A+ such thatg(u)= tk·k1−k2zh, and

sg(u)= tk·k1zh = h(b)kzh.

Sincesg(b)l−k = zh is a prefix oftk·k1zh, the wordbl−k is a prefix ofu. Thus we can write

zhg
(
b−(l−k)u

)= h(b)kzh. ✷
6.7. Shortest counter-examples

In this subsection we shall exploit the fact the counter-example can be supposed to
be a shortest one. Obviously, if any counter-example exists, there is also a shortest one.
A contradiction will be obtained by showing that every counter-example can be shortened.

Next lemma deals with possibilities suggested by Lemmas 49 and 50.

Lemma 51. Let (g,h) be a shortest counter-example.

(A) If (e, f ) ∈ c(g,hm) thenf /∈ b+.
(B) If k > l andzhg(bk−l)= h(bk−l ), then the pair(g,hm) is simple(i.e.g(e)= hm(f )⇒

e= f ).
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Proof.

1. If the pair(g,hm) is simple then both claims hold, as is easy to see.
2. By Lemma 31, we can assume that there exist wordse �= f ande′ �= f ′ such that

c(g,hm)=
{
(e, f ), (e′, f ′)

}
, (29)

with (e, f ) �= (e′, f ′).
Define marked morphismsg1, h1 :A∗ →A∗ by

{
g1(a)= e,

g1(b)= e′,

{
h1(a)= f,

h1(b)= f ′.

By Lemma 25, there are wordsu, v such that

g1(u)= h1(u)= νaσ, g1(v)= h1(v)= νbσ.

Then

g1(u)= h1(u)= νaσ = σνa, g1(v)= h1(v)= νbσ = σνb,

andu, v are distinct elements of Eq(g1, h1). The length ofu andv is at least two,
becauseg andh are not simple.

g ◦ g1(u)→
h ◦ h1(u)→

zh
zh

← g ◦ g1(u)

← h ◦ h1(u)

g(νa ) g(σ)

h(νa) h(σ)

By Lemma 22, there exists a typical pair of morphisms(g′, h′) such that

u, v ∈ Eq(g′, h′)= Eq
(
g1, h1

)
.

Since(g,h) is a shortest counter-example, from

|u| = |u|< |σνa| and |v| = |v|< |σνb|
we deduce pref1(u) �= pref1(v). By construction ofg1 and h1, either the words
h1(a)= f andh1(b)= f ′ are comparable, orσ is a proper prefix of bothf andf ′.
2.1. Consider the first possibility. By (29) ,

g(e)= hm
(
f

)
, g

(
e′

)= hm
(
f ′

)
,

and the pairs(e, f ) and(e′, f ′) are minimal elements ofC(g,hm). Suppose, by
symmetry, thatf is a prefix off ′. Sinceg is marked, we conclude that alsoe is
a prefix ofe′, a contradiction to minimality of(e′, f ′).

2.2. Thusσ is a proper prefix of bothf andf ′.
The claim (A) now follows from|σ |a � 1.
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The assumptions of (B) implyνb = bk−l , whence

h1(v)= σbk−l .

Putx = pref1(v). The present assumption (2.2) implies thatσ is a prefix ofh1(x).
Moreover,|v|� 2 and thus

h1
(
x−1v

) ∈ b+.
This yields that eitherf or f ′ is in b+, a contradiction to|σ |a � 1. ✷

We are left with the final case, described in the following lemma.

Lemma 52. Let (g,h) be a shortest counter-example. Then

(A) (g,hm) is simple,
(B) k > l,
(C) νb = bk−l ,
(D) |zh|� |h(b)| − |g(b)l′−1|> |g(b)l|.

Proof. (B), (C). The possibilityk < l is excluded by Lemmas 50 and 51(A). The
possibility (26) of Lemma 49 is also in contradiction with Lemma 51(A). Therefore, the
possibility (25) remains. The minimality ofσνb yieldsνb = bk−l andk > l.

(A) Follows from Lemma 51(B).
(D) From the facts thatg(b)l is a prefix ofh(b), g(b)l

′
is a suffix ofh(b), and the words

h(b) andg(b) do not commute, we deduce, by Periodicity Lemma,

∣∣h(b)∣∣+ ∣∣g(b)∣∣> ∣∣g(b)l∣∣+ ∣∣g(b)l′∣∣.
This implies the second inequality.

Note that the wordξ from Convention 41 is equal toσbk−l . Moreover, suff1(σ ) = b

and thusl′ − 1 � k − l � 1. The first inequality now follows directly from

|zh| =
∣∣h(b)k−l∣∣− ∣∣g(b)k−l∣∣. ✷

We present two more combinatorial lemmas.

Lemma 53. Letg, h be binary morphisms and letw be an element ofEq(g,h). Let

ub, vb ∈ pref(w)

be words such thatg(u) is a proper prefix ofh(vb) andh(vb) is a proper prefix ofg(ub).
Then(g,h) is not a shortest counter-example.

g(u) g(b)

h(vb)
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Proof. Suppose, for a contradiction, that(g,h) is a shortest counter-example. Letu′ and
v′ be sufficiently long words, such that

g(ubu′)= h(vbv′).

Let s1 be a proper suffix ofh(b) such that

g(u)s1= h(vb), (30)

andp1 be a proper prefix ofzh such that

g(ub)= h(vb)p1.

Sinceg(b) is a prefix ofzh and a suffix ofh(b), we obtain

g(b)= s1p1= p1s1,

and the wordsg(b), s1, andp1 have the same primitive root, sayr. The maximalr-suffix of
h(vb) is equal to the maximalr-suffix ofh(b), i.e. tog(b)l

′
. By (30), the wordg(b)l

′
is also

the maximalr-suffix of g(u)s1. This is in contradiction withg andh being marked. ✷
Lemma 54. Let g andh be binary morphisms and letw be an element ofEq(g,h). Letn
be a positive integer andu, v words such that

vb,uabna ∈ pref(w),

whereh(v) is a proper prefix ofg(ua) andg(uabn) is a proper prefix ofh(vb). Then(g,h)
is not a shortest counter-example.

g(u) g(a) g(b)n g(a)

h(v) h(b)s p

Proof. Proceed by contradiction, and suppose that(g,h) is a shortest counter-example.
Let u′, v′ be sufficiently long words such that

g(uabnau′)= h(vbv′).

The assumptions imply thatg(b)n is a proper factor ofh(b),

sg(bnau′)= h(bv′), (31)

and

h(b)= sg(b)np, (32)
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for a proper suffixs and a proper prefixp of g(a). From the facts thatg andg are marked,
g(b)l ∈ pref(h(b)), g(b)l

′ ∈ suff(h(b)), Lemma 7, and Eq. (32) we deduce the following
inequalities:

|s|> ∣∣g(b)l−1
∣∣, |p|> ∣∣g(b)l′−1

∣∣.
Thus, by Lemma 52(D),

∣∣sg(b)n∣∣ � |zh|. (33)

Recall that|g(b)g(a)|> |h(b)|. Let w be the prefix ofg(b)g(a) of lengthh(b). From
(9) and from|g(b)l|< |zh| (see Lemma 52(D)) we deduce

g(b)l−1w ∈ pref
(
h(b)zh

)
. (34)

Since

sg(bna) Prefh(b)zh,

the inequality (33) implies

sg(b)n−1w ∈ pref
(
h(b)zh

)
. (35)

Lemma 7(D), (34) and (35) now yield thatg(b)l−1 is a suffix ofsg(b)n−1 andsg(b)n−l
commutes withh(b). Hencen � l, becauses is a suffix ofg(a). Denote byr the common
primitive root ofh(b) andsg(b)n−l and let

h(b)= rk1, sg(b)n−l = rk2, with k1 > k2 > 0.

Equality (9) implies that

the maximalr-prefix ofg(σνa)= h(σνa) is rk1·lzh. (36)

Let bm be the maximalb-prefix ofbv′. It follows from (31) that

the maximalr-prefix ofg
(
blau′

)
is rk1·m−k2zh. (37)

From (36) and (37) we deduce, by Lemma 8, that there is a wordu1 such that

g(u1)= rk3zh,

with k3=min{k1 · l, k1 ·m− k2}. Therefore,

zhg
(
bk−lu1

)= h(b)k−lrk3zh = r(k−l)·k1+k3zh
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and

zhg
((
bk−lu1

)k1
)= h

(
b(k−l)·k2+k3

)
zh,

in contradiction with Lemma 51(A). ✷
The whole section is concluded by the following lemma. It shows that the possibility

excluded by Lemma 54 has to take place in a shortest counter-example. That yields the
final contradiction.

Lemma 55. Let (g,h) be a shortest counter-example. Then there exist wordsw, u, andv,
and a positive integern such thatw is an element ofeq(g,h) and

vb,uabna ∈ pref
(
eq(g,h)

)
,

whereh(v) is a proper prefix ofg(ua) andg(uabn) is a proper prefix ofh(vb).

Proof. Consider the wordσνb. Sincezh is empty and since

suff1(νb)= suff1
(
bk−l

)= b,

we conclude that

pref1(νa)= suff1(νa)= a. (38)

First we want to show that ifw1 andw2 are proper prefixes ofνa , then

g(σw1) �= h(σw2).

Suppose the contrary. The minimality ofσνa impliesw1 �=w2. From

zhg(w1σ)= h(w2σ)zh

we deduce that(g,h) is not simple, a contradiction to Lemma 52(A).
Put m = |νa |b. From |g(νa)| < |h(νa)| we deducem � 1. Define wordsui , vi , i =

1, . . . ,m, by

uivi = σνa, pref1(vi)= b, |vi |b =m− i + 1.

Inequalities

∣∣g(σb)∣∣ �
∣∣h(σb)∣∣ and

∣∣g(a)∣∣> ∣∣h(a)∣∣
imply

∣∣g(u1b)
∣∣> ∣∣h(u1b)

∣∣, ∣∣g(umb)∣∣< ∣∣h(umb)∣∣.
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Let j ∈ {2,3, . . . ,m} be the smallest integer such that

∣∣g(uj−1b)
∣∣> ∣∣h(uj−1b)

∣∣, ∣∣g(uj b)∣∣< ∣∣h(uj b)∣∣.
|g(uj )|> |h(uj )|, sinceuj ∈ uj−1ba

∗ and|g(a)|> |h(a)|. Thus

∣∣h(uj )∣∣< ∣∣g(uj )∣∣< ∣∣g(uj b)∣∣< ∣∣h(uj b)∣∣. (39)

Let bm1 be the maximalb-suffix of uj and bm2 be the maximalb-prefix of vj . By
Lemma 53,

∣∣g(
ujb

m2
)∣∣< ∣∣h(uj b)∣∣.

If m1 > 0 then, again by Lemma 53,

∣∣g(
ujb
−m1

)∣∣ > ∣∣h(uj )∣∣.
If m1= 0, then the last inequality is contained in (39). Put

u= ujab
m−1

1 , v = uj , n=m1+m2,

and verify that they satisfy the assumptions. This completes the proof.

g(σ) g(a) g(b)n g(a) g(a)

h(σ ) h(b) h(a)
✷

We can summarize this section by proving Theorem 2 from the introduction.

Proof of Theorem 2. Let g and h be distinct non-periodic binary morphisms. By
Lemma 22, we can assume that(g,h) is typical (Definition 19).

For a contradiction suppose that eq(g,h) contains distinct wordsu and v such that
pref1(u) = pref1(v), and suppose that(g,h) is shortest possible (Definition 29). The
present section shows that the assumption is contradictory.

To prove that eq(g,h) does not contain two distinct wordsu′ andv′ with suff1(u′) =
suff1(v′), consider mirror morphismsg andh. ✷

7. Test sets

In this section we show that each binary language has a test set of cardinality at most
two. We follow the exposition from [8], where a three element test set is constructed. Our
improvement is a direct consequence of Theorem 2.
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Test set of a languageL ⊂ Σ∗ is a subsetT of L such that the agreement of two
morphisms on the languageT guarantees their agreement onL. Formally, for any two
morphismsg andh defined onΣ∗,

(∀u ∈ T ) (
g(u)= h(u)

) ⇒ (∀v ∈L) (
g(v)= h(v)

)
.

Let L ⊂ A∗ be a binary language. Theratio of a non-empty wordu ∈ L is denoted by
r(u) and defined by

r(u)= |u|a|u|b .

If |u|b = 0, thenr(u)=∞. A word u is said to beratio-primitive if no proper prefix ofu
has the same ratio asu. Note that each word has a unique factorization into ratio-primitive
words (or shortly, ratio-primitive factorization).

Theorem 56. LetL⊂A∗ be a language. ThenL possesses a test set of cardinality at most
two.

Proof. Let g andh be binary morphisms. We can assume|g(a)| �= |h(a)| and |g(b)| �=
|h(b)| (the discussion of the remaining cases is trivial).

Clearly, morphismsg andh can agree on a wordu only if they agree lengthwise on it
and one easily sees that it is equivalent to

r(u)= |h(b)| − |g(b)||g(a)| − |h(a)| .

This also implies that ifu = u1u2 · · ·un is the ratio-primitive factorization ofu, then
g(u) = h(u) if and only if g(ui) = h(ui), i = 1, . . . , n. Therefore,g andh agree onL
if and only if they agree on languageLr consisting of all ratio-primitive words occurring
in ratio-primitive factorization of all elements inL. Moreover, any test set ofLr can be
transformed into a test set ofL of the same or smaller cardinality: it is enough to assign to
each wordu ∈ Lr a wordv ∈L such thatu is contained in the ratio-primitive factorization
of v.

The above considerations allow to restrict ourselves to languages consisting of ratio-
primitive words. The proof is based on the observation that in such a case, ifg andh agree
onL, each element ofL is in eq(g,h).

1. If L contains at most two words, we are trivially through.
2. If L contains two words with different ratio, then only morphismsg = h can agree on

L and the two words constitute a test set.
3. Suppose that cardinality ofL is at least three and all words have the same ratio. Let

T = {u,v} with u,v ∈L, u �= v, and pref1(u)= pref1(v). We claim thatT is a test set
of L.
3.1. If both morphisms are periodic, then any single word constitutes a test set.
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3.2. If just one morphism is periodic theng andh do not agree onL, by Theorem
1(B), and any two words constitute a test set.

3.3. If both morphisms are non-periodic, they agree onL just in caseg = h, by
Theorem 2. Again by Theorem 2, the two words inT constitute a test set, since
pref1(u)= pref1(v). ✷

Remark 57. The only known equality languages generated by two words are of the form

L= {aib, bai},
with i ∈ N+ (see [6]). Some partial results of this paper indicate that no other such
languages exist. This suggests a direction of further research.
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