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Abstract

We show that the equality set Eq /) of two non-periodic binary morphismg h: A* — X* is
generated by at most two words. If the rank of £¢i) = {«, B}* is two, thenw and begin and end
with different letters. This in particular implies that any binary language has a test set of cardinality
at most two.
0 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Binary equality language, i.e. the set on which two binary morphisms agree, is the sim-
plest non-trivial example of an equality language, the notion of which was introduced
in [9]. Equality languages in general play an important role in formal language theory.
For a survey and bibliography see [5, Section 5].

In the binary case the morphisms are defined on a monoid generated by two letters.
It was for the first time extensively studied by Kulik Il and J. Karhuméki in [6].

There the main claim of our work was conjectured, viz. that a binary equality language
is generated by at most two words as soon as at least one of the morphisms is non-periodic
(or, equivalently, injective). An important step towards the proof of the conjecture was
made in [8] where the following partial characterization was obtained.
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Theorem 1. The equality set of two binary morphisgand# has the following structute
(A) If h andg are periodic, then eitheE (h, g) = {¢} or

E(h.g)={e}U {oz At |12 =k}
la|p

for somek > 0 or k = co.
(B) If exactly one morphism is periodic, then

E(h,g)=a"

for some wordx € X*.
(C) If both g andh are non-periodic, then either

E(h,g) = {a, B}

for some wordsgy, g € X*, or

E(h,g) = (ay*B)*
for some words:, 8,y € X+.

The question remained open whether the second possibility of case (C), contradicting
the conjecture, can actually occur. In the present paper we show that the answer is negative
and, moreover, it andg are both non-empty, they start and end with different letters. This
is formulated in

Theorem 2. Letg, h: A* — X* be non-periodic binary morphisms.
(A) Leta andp, witha # 8, be non-empty minimal elementskaf(g, /). Then

pref(a) # prefi(8) and suffi(e) # suffi(8).

(B) Eq(g, h) is generated by at most two words.

Note that (B) is a trivial consequence of (A). Our proof does not deal directly with (B),
but is focused on (A). We are not aware of any way how to prove (B) not using (A).

Remark. The caseg = 4 is trivial. Throughout the paper we shall implicitly suppose
g#h.

Let us mention two problems closely related to the question about the structure of binary
equality sets. The first one is the binary case of the famous Post Correspondence Problem,
shortly PCP(2). The cohesion of the two problems is obvious, as PCP(2) consists in decid-
ing, given two binary morphisms, whether their equality set is empty. The proof that the
guestion is algorithmically decidable (see [2]) was one of the important moments in the
development of theoretical computer science. A survey of recent results concerning PCP
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can be found in [3]. It was especially shown in [4] that generalized PCP of arbitrary size is
decidable in marked case.

The second problem akin to the structure of binary equality languages is the existence
of a test set for binary languages. Indeed, if two morphisms agree on a language, it must
be a subset of an equality language. In [8] it is shown that all binary languages have a
test set of three elements. Our result allows to cut down this bound to two. Let us remark
that this improvement is not a simple consequence of the fact that the equality language is
generated by two words—the difference in the first (or last) letter is a necessary ingredient.

This paper has the following structure. In Section 2 some definitions and elementary
combinatorial tools are given. In Section 3 we study basic properties of words on which
two binary morphisms agree. In Section 4 we describe a typical case of a pair of binary
morphisms to which all other cases can be reduced. The findings of Section 3 are applied
in Section 5 to marked morphisms. The main result is proved in Section 6 divided into
several subsections. Within that section the existence of an equality set not fitting Theo-
rem 2 is gradually shown to be contradictory. Section 7 is dedicated to the test set of binary
languages bounding its cardinality by two.

2. Preliminaries

We use the basic notation from [1,5]. By we denote an arbitrary alphabet, Bythe
two-letter alphabeta, b}. X* is the free monoid anc™* the free semigroup generated
by ¥. The empty word is denoted hy

Expressionu| represents the length of a woung and |« |, the number of occurrences
of the letterx in u. The set of all letters having at least one occurrence in the wasd
denoted by alpfu).

A prefixof u is any wordv € X* such that there exists a wotd e X* with u = vv'.

The set of all prefixes af is denoted by préfi). A prefix v of u is properif v # ¢ and

v # u. Similarly suffixandproper suffixare defined. The set of all suffixeswis denoted
by suff(u). The first (the last respectively) letter of a non-empty worid also denoted
by pref (u) (suffi(u) respectively). A wordv is called afactor of « if there exist words
w, w € X* such thatt = wow'.

The positive powers” of a word are defined as usually, witl! = . We shall also
use negative powers to simplify notationub = w, we writeu = wv=! andv = u~1w.
Obviously,u ™ is an abbreviation fo¢u”) 1.

The notions of prefix, suffix and factor can be extended to languages: a prefix
(suffix, factor respectively) of a language is prefix (suffix, factor) of any of its elements.
Accordingly,

pref(L) = U pref(u).

uel

Similarly for suff(L).
The languagéu’ | i € N} is denoted by:+ and

w*=utU{e).
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A word u is calledprimitive if and only if u = v" impliesu = v. The primitive root
of u is the (uniquely given) primitive word such that: € r+. Wordsu andv are called
conjugatesf u = ww’ andv = w'w.

If we speak about minimality or maximality of some element, the implicit ordering
is the prefix one, i.ev < u if and only if v € pref(u). (While by theshortestword we
mean the word with the smallest length!)ufe pref(x) or u € pref(v), we say that they
arecomparable denoted by Prefv. The maximal common prefix of wordsandv is
denoted by A v. It is empty if and only if one of the words is empty or they start with
different letters. I andv are words, the maximal-prefixof v is the maximal element of

pref(v) N pref(u™).

Letu € X be awordu =1l1l5...1;, with d = |u| andl; € X. Then themirror image
of the wordu, denoted by, is obtained by inverting the order of the letters, viz.

u=lglyg_1...17.

Let ¢ be an arbitrary morphism. Thwirror imageof g is the morphism denoted kg
and defined by

g =g,
for eachx € ¥. Note that in generaj(x) need not be equal tg(iz) or g(u). Instead,
) = g(u).

All concepts and reasonings regarding prefixes are valid dually for suffixes, mirror images
considered. We shall often use this fact.

A morphismg defined onX' is called non-erasing g(x) is non-empty for alk € X.

Let S be a subsemigroup &'+ generated by a sét. Therank of M is the cardinality
of the minimal set generating} We can write

rankM) =Card S\ S - S).

By the rank of a monoidZ we mean the rank of semigrou \ {¢}.

It is a well-known fact that for each se c X there exists the smallest free
subsemigroup o£* containingM and called itdree hull

Letg, h: X* — X* be binary morphisms. The@quality seis defined by

Eqg.h) ={ueZ* | gw)=hw)}.

It is easy to verify that the set g} /) is a free submonoid o£* generated by the set of
its minimal elements

eq(g, h) =Ed(g, h) \ (Eq(g, h) \ {e})°\ {e}.

Note that eqg, /) is a biprefix code.
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Let g: A* — X* be a non-periodic binary morphism. By we denote the maximal
common prefix ofg(ab) andg(ba), i.e.

zg = g(ab) A g(ba).

Sinceg is non-periodic, we have, by Periodicity Lemma (see beltwy),< |g(a)|+|g(®b)|.
If pref(g(a)) # pref (g(d)), i.e.z, = ¢, we say thag is marked
Similarly we definez, as a maximal common suffix @f(ab) andg(ba). Note that

zg = glab) A g(ba) = z3

andz, = ¢ is equivalent tg being marked.
Cartesian producd™* x A* is the set of ordered pairg, v) of words. It can be seen as
a monoid with operation of catenation defined(ayv)(u’, v') = (uu’, vv’), with the unit
(g, ). Such a monoid is obviously not free, it is even not isomorphic to a submonoid of a
free monoid.
Let g, h: A* — X* be binary morphisms. The subset4f x A* denoted byC(g, #)
and defined by

Cg.h) ={u,v) | gw) =h(v)}
will be called thecoincidence sedf morphismsg andh. It is generated by the set
c(g,h) =C(g, ) \ (C(g, M)\ {(e, 8)})2 \ {(e, &)}
It is not difficult, but quite important to note the following statement.
Lemma 3. C(g, h) is, as a submonoid of* x A*, freely generated bg(g, ). Moreover,
if (u1,v1), (u2, v2), and(uixuz, v1yvo) are elements of (g, #) then also(x, y) € C(g, h)

(i.e.,C(g, h) is left and right unitary inA* x A*).

This fact is illustrated by the following picture, which represents the unique factoriza-
tion of the pair(abaababab, bababbb) € C(g, h) into elements of the base, namely:

(abaababab, bababbb) = (ab, ba)(aa, b)(ba, ab)(bab, bb).

g | a i b a i a b i oa b i ai b
h: b ia b ai b b i b

Obviously,(u, u) is an element o€ (g, h) for eachu € Eq(g, k), and Edg, h) is given
uniquely byC(g, h) as

Eq(g, h) = {u | (u,u) € C(g, h)}.

We present several combinatorial lemmas for future (often implicit) reference. The
following three lemmas are part of the folklore.
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Lemma 4. The words: andv commute if and only if they have the same primitive root.

Lemma 5 (Periodicity Lemma)Let »u* and vt have a common factor of the length
|u| + |v|. Then the worda andv commute.

Lemma 6. The following conditions are equivalent

(i) Wordsu andv are conjugates.
(ii) There is a word; such thatuz = zv.
(i) There are words; andr; such thats is non-emptyzi #2 is primitive, and

ue (), ve ().
Moreover, ifry andr are like in(iii) andz is like in (i), thenz € (r112)*11.

We shall often use the following lemma. It is based on the well-known fact that
a primitive wordr cannot satisfy equalityt = utv, with u andv non-empty.

Lemma 7. (A) Letsw be a factor ofw™. Thens is a suffix ofw™.

(B) Letwp be a factor ofw™. Thenp is a prefix ofw™.

(C) Letuw be a prefix ofw™. Thenu andw commute.

(D) Letuq, uz, w, w' € ¥ be words such that’ is a conjugate ofw, |u1| < |uzl,
and the words:1w’, upw’ are prefixes ofv™ . Thenuy is suffix ofup anduzu;* commutes
with w.

The last preliminary lemma plays an important r6le in this paper.

Lemma 8. Let g: A* — A* be a marked morphism and Ietv € A*. Then there exists
awordw € A* such thatg(w) = g(u) A g(v).

3. Thecoincidence set

In this section we study the relation of coincidence sets of non-periodic morphisms
to their equality set. We will partially follow the exposition from [1, pp. 347-351]. First
notice the following nice lemma.

Lemmag. LetX = {x, y} € Xt be non-periodic sefi.e. xy # yx). Letu € xX*, v € yX*
be words such thai|, |v| > |xy A yx|. Thenu Av=xy A yx.

The proof is not difficult (see [1, p. 348]).

The lemma immediately implies that for a non-periodic binary morphisand an
arbitrary sufficiently long word € AT, the wordzy, is a prefix ofi (1) and the(|z;,| + 1)th
letter of i () indicates the first letter aof. For anyu, v € A* we have

zn = h(au)zp A h(bv)zp. (1)



S. Holub / Journal of Algebra 259 (2003) 1-42 7

It is now easy to see that the morphi&m, such that
hm(u) = 2, h )z, (2

u € A, is well defined. Moreover, it is marked, and Eq. (2) holds for any A*. We
shall call it themarked versiorof z. Similarly we can define marked version gfin the
following, however, we shall simply suppose thais marked. This restriction will be
justified in Lemma 22.

Let u,v € ¥* be words such thag(u) Prefi(v). Following lemmas show that the
possibility to lengthen the words, v to wordsu’, v' such thatg(u') = h(v') is very
restricted.

Lemma 10. Letg andk be binary morphisms, and letbe marked. Let, v € A* be words
such thatg(u) Prefi(v) and let

g(u) # h(v)zp.
Letuy, us, v1, v2 € AT be words such that
g(uu1) = h(vvy), g(uuz) = h(vv2).
Thenpref; (u1) = prefy(u2) or pref;(v1) = pref; (v2).
Proof. If u1, u2, v1, andvy satisfy the conditions of the lemma, then the same conditions
are satisfied also by the wordsuu1, upuuz, vivvi, andvovv, respectively. Hence we can

suppose that each of the wonds u2, v1, vz is longer thary,. Consider three cases.

1. First suppose thag ()| < |h(v)| + |zn]. By EQ. (1),(v)zy is a prefix of bothi(vv)
andhi(vvp), and

prefy (g(u1)) = prefy (g(u2)) = prefy () th(v)zn) = x.

Sinceg is a marked morphism, this implies that pref;) = pref; (u2).

g(u) L
h(v) X
.................

2. Suppose, on the other hand, thgt:)| > |k (v)| + |zx|. Thenvy, v2 have the common
prefix longer thanz,, and pref(vi) = pref(v2) is determined by the letter =
prefy ((h(v)zn)~tgw)).
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3. If |gw)| =|h(W)| + |zal, then, clearlyg(u) = h(v)zy.

gu)

h(v)

The following immediate corollary of the previous lemma describes the unique case in
whichu, v can be extended in two different ways.

Corollary 11. Letg andh be binary morphisms, and lgtbe marked. Letc, d) and(c’, d’)
be distinct elements afg, /). Put

u=cnc, v=dnd'.
Then
gw) =h()zy.
The ground for the characterization of coincidence set is the following lemma.

Lemma 12. Let g and & be binary morphisms, and let be marked. Let the words
e, f € AT satisfy the following conditions

() zng(e) =h(f)zn.
(i) The words, f are minimal, i.e.if u is a proper prefix ok andv is a proper prefix of
f thenzpg(u) #h()zy.

Then, given the first letter @for the first letter off, the wordse and f are determined
uniquely.

EXEN)

| h(f) | 2

Proof. Suppose, f, ande’, f’ satisfy (i) and (ii), and prefe) = pref;(¢/). Putc =e A ¢/,
d= f A f’. Sinceg is a marked morphism, we have

zng(e) Azng(e) = zrg(c). 3)
From Eq. (1) we deduce

h(f)zn AR(f)zn = h(d)z. (4)
Sincezxg(e) = h(f)zn andzpg(e’) = h(f")zn, Eqs. (3), (4) yield

21 g(c) =h(d)zp.
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Sincec is non-empty, we deduce from (ii) that=e¢ = ¢’ andd = f = f’. Similarly for
prefy(f) = prefy(f).

Lemma 13. Let g and & be binary morphisms, and Igtbe marked.

(A) Therank ofC(g, hm) is at most two.
(B) If rank of C(g, hm) is two andc(g, im) = {(e, f), (¢/, f))}, then

prefy (e) # pref, (), prefy(f) # prefi(f).
Proof. Recall thathm(u) = z, “h(u)zj to see that
C(g. hm) = {(u,v) € A* x A* | zag(u) = h(v)zn}.
The restis a consequence of Lemma 121
Note that bothg and iy, are marked morphisms, and, f) € c(g, hm) iS just an
expression of the fact that the p&ir, /) satisfies conditions described in Lemma 12.
The question on the structure of the equality setg-f)) can be seen as a special case
of the above considerations. If conditions
u=v, c=d, e=f, u; = v, d=d, e =,

with i =1, 2, are added, then we get following modification of Lemmas 10, 12, and 13 and
Corollary 11.

Lemma 14. Let g andh be binary morphisms, and lgtbe marked. Let € A* be a word
such thatg () Prefh(u) and

gw) #hw)zy.
Letui, uz € A* be words such that
g(uuy) = h(uuy), g(uuz) = h(uuy).
Thenpref, (u1) = pref (u2).

Corollary 15. Let g and & be binary morphisms, and lgt be marked. Let and ¢’ be
distinct elements afq(g, ). Putu =c A ¢’. Then

gw)=h)z.

Lemma 16. Let g andk be binary morphisms, and lgtbe marked. Let the worde AT
satisfy the following conditions

(i) zng(e) =h(e)z.



10

S. Holub / Journal of Algebra 259 (2003) 1-42

(i) The worde is minimal, i.e: if e1 is a proper prefix o thenz, g(e1) # h(e1)zn.

Then the word is determined uniquely by its first letter.

Lemma 17. Let g andh be binary morphisms, and Igtbe marked.

(A) Therank ofEq(g, hm) is at most two.
(B) If rank of Eq(g, hm) is two andeq(g, hm) = {e, ¢'}, then

pref, (e) # prefi(e’).

We can now give the following proof.

Proof of Theorem 1(C). By Lemma 22 below, we can assume thas marked.

1.

2.

If there do not exist a word € A* such thatg(«) = h(u)z;, then, by Corollary 15,
Eq(g, h) is generated by at most one word.

Suppose that such a wardxists and suppose no non-empty prefix @ an element
of Eq(g, h). By Corollary 15, the word is a prefix of anw’ € Eq(g, h). If eq(g, ) is
not empty, there exists a (minimal) woed such that

g(ue1) = h(uey).

& u “h €1
h.

Note that in such a case

zng(eru) = h(eru)zp,

5 e1 u
h: o

and thusequ is an element of e@, /im).
2.1. If Eq(g, hm) is generated byiu then

eqg, h) ={ues}.
2.2. The cardinality of e@, ~n) is at most two, by Lemma 17. Suppose that there is

another word’ € eq(g, hm). We have two possibilities.
2.2.1. Letfirst exist a prefix; of ¢’ such that

zng(ey) = h(ey).

Thene' = eju, and thusg (ue}) = h(ue}) and
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eq(g, h) = {ue1, uey}.

2.2.2. If such a prefix does not exist, then

eqg, h) =uee.
g: y y y ol .
h:

4. Typical morphisms

In this section we introduce some properties of morphigims and show that in the
following investigation these properties can be assumed without loss of generality.

Definition 18. We say that an (unordered) pair of binary morphigms: A* — X* is
principal if the target alphabek is the base of the free hull of the set(a), g(b), h(a),
h(b)}.

Definition 19. An ordered pail(g, #) of morphisms is calletipical if

(a) bothg, i are binary non-periodic morphisms — A*;
(b) the morphisny is marked;
(©) lg(@)] > |h(a)l, |g(b)| < |h(D)I.

The following is an important property of the base of the free hull generated by a set.

Lemma 20. Let X be a finite subset of'* and letY be the base of the free hull &f. Then
for each element € Y there is a wordv € X such thaty is a prefix(suffi® of x.

For the proof see [7, Lemma 3.1]. For our purpose note the following immediate
consequence.

Corollary 21. Let X be a finite subset af'* such that¥ is the base of the free hull of.
Then

= ={pref(u) | ue X} ={suffi(u) |u e X}.

We can now prove a statement allowing to restrict our considerations to principal and
typical pairs.
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Lemma 22. Let g1, h1 be non-periodic binary morphismg&* — X* such that the rank of
Eq(g1, h1) is at least two. Then there exists a pair of morphiggms:) which is principal
and typical, and

C(g, h) = C(g1, h).
Moreover, ifhy (g1, h1 respectivelyis marked then such is aldo(g, i respectively.
Proof. Let F c X* be the free hull of the sdig1(a), g1(b), h1(a), h1(b)} and letC be
an alphabet whose cardinality equals the rankkot.et ¢ : F — C* be an isomorphism.
Define morphismg, h: A* — C* by
g§=¢og,  h=¢ohi. (5)

g1.m
AY——mM8MmM > F

Obviously, (g, h) is a principal pair of non-periodic morphisms, the above diagram
commutes, an@(g, h) = C(g1, h1).

By symmetry of lettersa and b, suppose that the condition of Definition 19(c) is
satisfied. By symmetry of andi, we can assume

zn] = Izgl. (6)
By Corollary 21,
C = {prefy(g(a)). prefy(g(b)). prefy (h(a)), pref (h())}.
1. Supposg is not marked. Then alsois not marked, by Eq. (6), and
prefy(g(a)) = prefy(g(b)), prefy (h(a)) = prefy (h(b)).
Letx be afirst letter of a word € Eq(g, #). Then
prefi (g(x)) = prefy (h(x))

implies that the cardinality of is one, a contradiction to non-periodicity gfand.
2. Thusg is marked. We claim that cardinality @ is two. This completes the proof,

since we can then chooge= A.

2.1. To prove the claim suppose first tthais marked. By Lemma 17, the set &qh)
contains two words starting with different letters. This implies

prefy(h(a)) = prefy(g(a)),  prefy(h(b)) = pref,(g(b)),
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and cardinality ofC is two.
2.2. Supposey, is non-empty. Let again be the starting letter of a word in Eg /).
Then

prefy (h(y)) = prefy (h(x)) = prefy(g(x)),
where{x, y} = {a, b}, and cardinality ofC is again two.

We have proved that a paig, /) is principal and typical. If: is not marked then neither
hi=¢ lohis. Similarly forg andih. O

Letnw: A* — A* denote the morphism exchanging letterandb,
n(a)=>b, n(b)=a.
From a typical and principal pair we can derive another one using the mirror image.
Lemma 23. Let (g, i) be a pair of morphisms which is typical and principal.

(A) If zg =e then(g, h) is typical and principal.
(B) If zo # ¢ then(h o 7, g o ) is typical and principal.

Proof. (A) The verification is straightforward.
(B) The pair(h o 7, g o ), clearly, satisfies conditions (a) and (c) of Definition 19. We
have to show thal o 7 is marked. Sincég, &) is principal,

A = {suffi(g(a)), suffi(g(b)), suffy(h(a)), suffy(h(b))}.

by Corollary 21. Supposk o  is not marked. Then both, andz; are non-empty and
from eqg, h) # @ we can conclude

suffi(g(a)) = suffi(g(b)) = suffy(h(a)) = suffy(h(b)),
a contradiction to cardinality o being two.
Principality of both studied pairs follows directly from mirror symmetrya
5. Marked morphisms

The structure of an equality set is much more transparent if both morphisms are marked
as shown in the following lemma.

Lemma24. Letg, h: A* — A* be marked morphisms. Then

Ed(g. h) = {o, B}
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with o, B € A*. If rank of Eq(g, &) is two, then
prefy (@) # pref,(B).
Proof. The claim follows directly from Lemma 17.0

Let us further investigate the relation between the coincidence and equality sets of two
marked binary morphisms.

Lemma 25. Let g, h: A* — A* be marked morphisms such that the rank of
Eq(g, h) = {v, w}*
is two. Then
C(g. ) ={(e, )., O}
for some non-empty words f, ¢/, f’ such that
prefi(e) = pi(f) =a, prefy(e’) = pa(f") =b.
Define a pair of morphismg, h1: A* — A* by

{gl(a)=e, {hl(a)=f,
g1b)=¢, hi(d) = f'.

Thengs, k1 are marked non-erasing morphisms and there exist non-empty worads,
such that

g1(v1) = h1(v1) = v, g1(w1) = h1(w1) = w,
and
Eq(g1, h1) = {v1, wi}*.
Proof. Suppose that prefv) = a, pref,(w) = b. By Lemma 12, the wordée, f) can be
defined as the minimal prefix ab, v) satisfyingg(e) = (f). Similarly, (¢/, f/) is the

minimal prefix of (w, w) with the same property. Thus the wordsyf, ¢, f' are non-
empty and, still by Lemma 12,

C(g. ) ={(e, )., )},

andgi, h1 are marked non-erasing morphisms.
Letu be an element of Eg, ). Since(u, u) € C(g, h), there exists a word’ such that

g1(u) =hi(u') =u.
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Conversely, ifg1(u’) = h1(u’) then also
gogi')=hohi().
Therefore botly; andh; are bijections betweef (g1, 21) andE(g, h). O
In the previous lemma the morphismag k1 have the properties assumed forz and
the construction can be iterated to obtain a sequence of pairs of morphisms. We formulate
the fact in the following lemma.
Lemma 26. Let go, ho: A* — A* be marked morphisms such that the rank of
Ed(go. ko) = {vo, wo}*

is two. Then the following statements hold.

(A) There exists a sequence of non-erasing marked morphign¥s; );cn such that for

eachi e N
Clgiv hi) = {(ei fi). (el 1)}
with
{e,» = gi+1(a), {fi = hi1(a),
e; = gi+1(b), [} =his1(b),
and

prefy (gi(a)) = prefy (hi(a)) = a,
prefy (gi (b)) = prefy(hi (b)) = b.

(B) Foranyi < j
E(gi,hi) =gi+108+20---0g;(E(gj hj)).

(C) There exists a number such thate,, = f, ¢, = f,,, ande; = f; =a, e, = f/ =b
forall i > m.

Proof. The items (A) and (B) follow from Lemma 25 by induction. For item (C) it is
enough to note that unless;| = | fi| = |le;| = | fi| = 1, the length of the word; w; is
strictly decreasing. O

The construction of the sequen@g, /;);cy is similar to an idea used in the proof that
Post Correspondence Problem is decidable in the binary case (see [2]). The sequence has
also the following interesting property.
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Lemma 27. Leti, j > 0and let
8i+j() =hiy;j(),
with u # v. Theni + j <m and
giogiyr10---ogtjm)=hjohjy10---0hiy;j(v)
if and only if j is even.
Proof. By induction, it is enough to show
8i o gi+1(u) # hi ohi11(v)
and
8i 0 8i+10 gi+2(u) =hj o hjy10hiy2(v).
By definition,g; (u") = h; (v') if and only if (u",v") € {(e;, f7), (e}, f))}*, i.e. if and only if
there exists a word) such that’ = g; 11(w), v' = h;+1(w). But we assume # v. On the
other hand, ifji = 2, putw = gj+2(1) = h;1+2(v).

Fork > m, we havee, = f, e, = f; and thusg; (u) = hx(v) if and only if u = v.
Thereforej + j must be less tham. O

Latter, we will need the following technical lemma.

Lemma?28. Letg, h: A* — A* be two marked morphisms. Letu’, v, v' € A* be words,
ands, r, ¢ be positive integers, such that

g(@*bu) =h(a’bu’), g(a"bv) = h(a9bv).
Thens =r =gq.

Proof. Recall that we assumg# h (for g = h only r = ¢ holds, as is easy to see).

Let ¢ and 4 be morphisms satisfying assumptions, but r = ¢ does not hold.
Suppose, moreover, that the lengttudbu is smallest possible. We show thdbu can be
shortened, and thus we obtain a contradiction.

We first claim thatg(a) andi(a) do not commute. Suppose for a while thata)| >
|h(a)| (similarly, if |g(a)] < |h(a)]). The claim follows fron: being marked and

prefy (h(b)) = pref,(h(a)~*g(a)’bu).

(Clearly,g(a) = h(a) impliesg = h.)
By Corollary 11,

g(@*bu Ana"bv) = h(a*bu’ A albv). 7
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1. If s #£r ands # ¢, then (7) yields

with i = min(s, ), j = min(s, ¢). Therefore, the wordg(a) andk(a) commute, a
contradiction.
2. Suppose next, by symmetsy=r ands # ¢. Putm = min(s, ¢). Equality (7) implies

g(a’bw) =h(a"), (8)

wherew =u A v.

The setC(g, h) contains elementé&®bu, a’*bu’) and (a*bw,a™), whence it is not
difficult to see that the rank df(g, i) is two. Lete, f, ¢/, f’ be words, anc1, k1
morphisms, defined as in Lemma 25.

Equality (8) implies that there is a positive integersuch thatf = a”. From this we
deducer ¢ a™ and thusge| > s. Sincea®bu’ anda?bv’ are elements of £, f}*, both
s andg are multiples ofp. Put

§1=

N | @

and define words; andv1 by

g1(uy) = a’bu, hi(u1) =a’bu’,

g1(v1) =a’bv, h1(vy) =a¥bv’.

Sincehi(a) = f = a”, the wordsi1 andv; can be factorized as

u1 =a*buy, v1 =a¥lbvy,
with uz, vo € A*. If s > ¢, from

hl(aslbvz) = hl(a“'rqlaqlbvz) =a*9albv = a*bv’
we deduce
go gl(aslbuz) =ho hl(aslbuz), go gl(a‘“bvz) =ho hl(aslbvz).

The same equalities are obtained in a similar way<ifg.

Inequalitys # g impliessy # g1, andle| > s yields|a*tbuy| < |a®bu|. This completes
the proof. O
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6. The (non-existence of a) counter-example

The consecutive proof of our main claim, Theorem 2, will be essentially made by
contradiction. We shall assume that there exist a counter-example to it and gradually show
that such an assumption is wrong. Actually, the first step in this direction has been already
made in Lemma 24, where we proved that a counter-example cannot consist of two marked
morphisms. (Note that our proof does not deal directly with the rank of equality set. It is
rather concentrated on the different first letter of generating elements.)

To enable an argument by induction, we can also assume that the counter-example is in
a sense of minimal length. This leads to the following definitions.

Definition 29. We say that a pair of morphisnig, /) is a counter-exampli

(a) (g, h) is a typical pair of morphisms.
(b) eqg, k) contains two distinct elemenis v such that pref(u) = pref; (v).

We say that a pair of morphisngg, ) is ashortest counter-exampikit satisfies the
following additional condition.

(c) Let(g’,n’") be a counter-example. Lét(d’ respectively) be the length of the shortest
element of eqg, 1) (eq(g’, h’) respectively). Thed < d’.

We say that a pair of morphisnig, &) is simpleif g(e) = h(f) impliese = f.

The following lemma yields basic information about the structure of the equality set of
a counter-example.

Lemma 30. Let (g, h) be a counter-example. Thep is hon-empty and there exist non-
empty wordsr, v,, andy, such that

pref,(v,) =a, pref (vy) = b,

the wordsov,, o v, are the two shortest elementsesi g, #), and

g(o) = h(o)zp, 9
zrg(v) = h(vy), withl € A. (10)
8 o ’Z_hl v
h.
Moreover,
prefy (g(x)) # prefy (g(v)) = prefy (h(x)) = prefy (h(y)) (11)

holds, with{x, y} = {a, b} andy = pref; (o).
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Proof. If the wordsov, andov, are elements of &g, 1), then Egs. (9) and (10) follow
from Corollary 15.

Corollary 15 and Definition 29(b) imply that; is non-empty and prefu) =
prefy(v) for any two wordsu, v € Eq(g, 7). Therefore, suppose that v mentioned in
Definition 29(b) are the two shortest elements ofged). Putoc = u A v. Sinceu and
v are minimal, there exist non-empty words andv1 such thatou; = u, ocvy = v, and
prefy (u1) # pref; (v1). The choice oy, andvy is obvious.

Equality (11) follows, since is marked whilez is not. O

From Definition 19(c) and Egs. (9), (10) we deduce that
lo]a > 1, lvelp =1, withx € A. (12)

The following lemma shows the connection between a general counter-example and
marked morphisms.

Lemma 31. Let (g, h) be a counter-example. Thém, i) is a typical pair of morphisms,
Va0, vpo € Eq(g, hm),
and the rank oEq(g, im) is two.
Proof. The claim is a direct consequence of Lemmas 24 and B80.
6.1. The case, # ¢
In this subsection we shall assume thatis non-empty, i.eg is not marked. By

Lemma 23, the paith o 7, g o ) is typical. Sincez, # ¢, it is also a counter-example,
by Corollary 15. This implies that we can suppose

lzgl = lznl, (13)

because otherwise we considgro 7, g o ) instead of(g, h).
Let ¢ denote the maximal common suffix of two different elements ofgEl). Then
any solution of(g, i) looks like

e [ 1
h:

The mirror variant of (1) implies that, is a suffix of anyg(u), sufficiently long.
Especially

Zg € Suff(g(a)+), Zg € Suff(g(b)+). (24)
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Thus also
21 € Suff(zy). (15)
The following lemma is the first of several claims investigating the possible structure
of Zh-
Lemma 32. Let (g, h) be a counter-example such that # ¢. Let pref(c) = b. Then
g™,

Proof. Let b’ be the maximab-prefix of ¢ and letb* be the maximab-prefix of v,o.

From (14) and (15) we deduce that= sg(b)’ for some suffixs of g(b) andi € N. Thus
zng(b) = sg(b)' 1. Equalities (9) and (10) imply that(b) is a prefix ofz,g(b) and thus
s, g(b), andz, commute. Let

zp =1"M, g(b)=1"2,

with ¢ primitive andm1, m» € N. Then (10) yields that”1tkmz2 js the maximak-prefix
of zxg(vpo). Similarly from (9) follows that! "2 is the maximat-prefix of k(o vg).

1. Suppose that(b) = 12 for somems € N... Then, by (9), the worg (b)" - prefi(g(a))
is a prefix oft’3, a contradiction witty being marked.

2. This implies, by Periodicity Lemma, that the maximgdrefix of h(b)z, is shorter
than|h(b)z|. Hencer! ™2 is the maximat-prefix of any wordh(bu)zy,, u € A*.
Equality (10) now implies

m1+k-mo=1-mo.
Thus

mi=01—k -my and zz=g®)'* o

Next lemma is similar to Lemma 32.

Lemma 33. Let (g, h) be a counter-example such that # ¢. Let preflo) = a. Then
zneh@)™.

Proof. Equality (9) yieldsh(a) € pref(g(a)). Equality (10) implies thak(a)zy, is a prefix
of z,g(a) and thus,hi(a) = h(a)z,. Hence we have

zp =1", h(a) =1"?

for a primitive wordr and someny, mo € Ny.

Let a! be the maximak-prefix of o1, anda* be the maximak-prefix of v,o. Since
zn is the maximat-prefix of everyh(au)z;,, the wordr! 211 is the maximat-prefix of
g(ovp). The maximak-prefix of h(v,o) is tkmatm,
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1. First suppose that(a) = 13 for somems € N,. Sinceg is marked, the word*"3
is the maximak-prefix of g(v,0) andr¥3t1 js the maximak-prefix of zj, g (v,0).
Thus, by Eq. (10),

k-m3+mi=k-mo+maq, (16)

andmy = mg3, a contradiction tdg(a)| > |h(a)|.

2. From Egs. (14), (15) we deduce thas a suffix ofg(a). Sinceg(a) ¢ ¢+, the maximal
t-prefix of g(ovy), i.e. /™2™ s also the maximaid-prefix of g(a). Eq. (10) now
yields

k-mo4+mi=I[-mp+2-m and zhzh(a)kfl. O

Now we can complete the subsection by showing that i non-empty, therig, i) is
not a counter-example.

Lemma 34. Let (g, h) be a counter-example. Thep=¢.

Proof. 1. Suppose first prefo) = a andz, # ¢. By Lemma 33z, = h(a®), s € Ny. From
(9) and (10) we have

zn8(0) =h(a’o)zp, 288 (Va0) = h(ve0)zh.

Verify that morphismg:m, g satisfy the assumptions of Lemma 28, a contradiction.

2. Suppose prgfo) = b andz, # . Let! (k respectively) be the maximakprefix of
o (vpo respectively) and let, by the proof of Lemma 32,= g(»*), with s =1 — k. Put
o'=b"*c.Then

zng(0’) =h(b’c")zp, z2h8(Vpo) = h(Vpo)zp,

and Lemma 28, applied to morphistig o 7 andg o 7, again yields a contradiction. This
completes the proof. O

6.2. The case;, #¢

In this subsection we show that we can assume ¢, i.e. h is marked. First we give a
more precise description of possible counter-example structure.

Lemma 35. Let (g, h) be a counter-example.

(A) Let the rank ofEq(g, #) be two. Then there exist words ., i, € AT andt € A*
such that



22 S. Holub / Journal of Algebra 259 (2003) 1-42

eqg.h) ={ouat,ompt},  z2n8(a)zn =h(ia), pref(n.) =a,
g(o) =h(o)zn, z2ng(up)zn =h(up),  pref(up) =b,
g(v) = zph(v), suffy(ug) # suffy(up).

g.
b o 2 Hx o] T

(B) Letthe rank oEq(g, i) bew. Then there exist words u, p, T € At such that

eqig. h) =¢(pu)*pt =¢p(up)*t,
8(O)zn =h(%), g (W)zn =h(w),  pref(u) # pref (o),
g(p) =znh(p)zn,  zng(r) = h(1), suffy () # suffy(¢).

g.
h: é’ Zh p Zh H Zh P Zh T

Proof. This proofis in fact a refinement of the proof of Theorem 1(C) (we shall refer to it
as the Proof).

Since the rank of E@, /) is at least two, the rank of Eg, i) is two. Let eqg, him) =
{e, €'}, with pref;(e) # pref(¢)).

(A) Suppose that = eju, ¢’ = eju, and edg, h) = {ue1, uej} (cf. Proof 2.2.1). Lew be
the maximal common suffix af; ande;. Sincee; ande] are not a suffix one of the
other, the word is a proper suffix of botla; ande’, ande; = cv, e = c'v.

By Corollary 15, applied to morphisngsandi, we have

g) =zph(v).

Now it suffices to identifys with u, T with v, andu,, up, with ¢, ¢/, according to the
first letter.

(B) Suppose now that= eju, u is not a suffix ok’, and edg, 1) = ue™* e (cf. Proof2.2.2).
Let v be the maximal common suffix efande’. The wordv is a proper suffix of both
words and, by assumption, it is also a proper suffix dfetu = pv ande’ = gv.

The wordve is the maximal common suffix afe; andue’e1, and thus

g(ver) = zph(ver).
Now identify ¢ with p, p with v, u with ¢, andt with e;. O

Note that between Lemma 30 and Lemma 35 there exists the following correspondence.
In the case (A) of Lemma 35, the woedis the same as in Lemma 30, and

Vo = laT, Vp = [UpT.
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In the case (B) of Lemma 35,

O':{)O, {Va,Vb}:{T, ,leT}

The following lemma shows that we can suppose, without loss of generality,tiet
empty, i.e/ is marked.

Lemma 36. If there exists any shortest counter-example, then there exists also a shortest
counter-examplég, #) such that;;, = ¢.

Proof. Let (g1, k1) be a shortest counter-example. Suppgse# ¢ and defingg andi by
gy =g1(w),  h()=zph1()(zn)
It is not difficult to see that morphisii is well defined. The claim is now a consequence

of the characterization presented in Lemma 35. Let wogtds, 7, o, g, p, andu be as
in that lemma with respect to the pai, 71).

1. Ifrank of Eq g1, A1) is two then, by Lemma 35(A),

Ea(g, h) ={topa, Topp}.

g.
W to Zh = Zhy Zhy Hx

2. If, on the other hand, rank of gy, /1) is w then, by Lemma 35(B),

Ealg, h) ={pw, pts}.

8 8-
h: P =Zhy2hy # h: P =ZhyZhy 29

By Lemma 22, we can assume tliaf ) is typical. The words o andp are non-empty
and(g, h) is a counter-example witfy, = ¢. It is also a shortest counter-example, because
the length of words in g, #) has not changed.

In the previous lemma the equality set of morphiggn®nd /iy is possibly of infinite
rank. We have reduced that pair to a p@irk) with equality set generated by two words.
The claim that rank of E@1, k1) is notw is now reduced to the claim thatis empty.

6.3. The caserefi(c) =a

In this subsection we show that we can assume the waidrts with a letteb.
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First note that if botty andh are marked, then, by Lemma 15, the set&d) contains
an element: with suffi(u) = a. This implies, sincég(a)| > |h(a)|,

h(a) € Suff(g(a)). a7
The next lemma is a parallel to Lemma 33.

Lemma 37. Let (g, h) be a counter-example such that bgihand 4 are marked. Let
pref(c) =a. Thenz; € h(a)™.

Proof. The proof is identical to the proof of Lemma 33, with the only exception that
t € suff(g(a)) (in the beginning of part 2) is deduced from (17)a

We can now prove the claim of this subsection.

Lemma 38. Let (g, ) be a counter-example such that bathand 7 are marked. Then
prefi(o) #a.

Proof. Suppose prgfo) =a andz, =z, =¢. By Lemma 37z, = h(a®), s € N;. From
(9) and (10) we have

zn8(0) =h(a’ o)z, 218 (V40) = h(v40)zZp.

Verify that morphismd:y,, g satisfy the assumptions of Lemma 28; a contradictian.
The results of Sections 6.1-6.3 are summarized by the following lemma.

Lemma 39. If there exists a counter-example, then there exists a shortest counter-example
(g, h) such that

(A) g andh are markedi.e.z, = z; =€),
(B) pref,(u) =>b for eachu € eqg, h),
(C) g(b) andh(b) do not commute,

(D) suffi(o) =b.

Proof. (A) The claim follows from Lemmas 34 and 36.

(B) Follows directly from Lemma 38.

(C) Proof by contradiction. Letbe the common primitive root gf(b) andhi(b). Then
from |g(b)| < |h(b)| and from (9) we deduce that piéf) = pref,(g(a)), a contradiction
with g being marked.

(D) By Lemmas 23 and 31, the pair of morphist@shim) is typical. The set EG, im)
contains two distinct elemenigo = o9, andv,o = &, with a common prefixs and
distinct last letters. Thus prg&) = suffi (o) = b, by Lemma 38. O

To rule out the remaining possibility described in Lemma 39 we shall deal separately
with casedg(ba)| < |h(b)| and|g(ba)| > |h(b)].
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6.4. Relative position

In this section we define some important concepts.

Letu be an element of Hg, #) and letg,, = g(u) = h(u).

The position p in g = ¢, is given by the factorizatiog = g1¢g2 with |g1| = p. By
qli, j1, withi < j, we shall denote the factor gfspreading between positiohandj, i.e.

g =vqli, jIv, withjv|=i,  |vgli, jl| = .
Clearly,|qli, jll=j —i.

By “ith occurrence og(b) (h(b) respectively) ing” we mean the occurrence of the
factorg(b) (h(b) respectively) ing which is the image of théth occurrence of the lettér
in u by the morphisng (h respectively).

We define integers; € {0, 1,2,..., |ul},i =1,2,..., |ulp, as follows. Lew; andu; be
prefixes ofu such that

ui=u;b and |g(u;)|, =i.
Then
ci =gun)| - [e®)] =g (u})].

The integer; is thestarting positionof ith occurrence og(b) in ¢. Similarly, we define
the starting position afth occurrence ofi(b) in g by

d; = o] ~ )| = (7).

Note that
ciyr—ci = |g®| and dip1—d; > |h®)|.
foreachi =1,..., |ul, — 1. Note also that
qlci +[g®)|.cira] € g@* and q[di + |h(b)], dit1] € h(a)*,
foreachi=1,..., ulp — 1.

The relation between the occurrenceg @) andi(b) in g is given by the mappings
O=0,, V=, {1, ..., |ulp})—>{0,1,...,|ulp}
defined as follows:

. J, ifd;<ci <dj+|h®)|forsome 1< j < |ulp,
d>) = SN
0, otherwise
: J» ifdj <ci+1gb)| <dj+ |h(b)| for some 1< j < ulp,
v(i)= .
0, otherwise
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The value of® (i) is 0 if the ith occurrence ok (b) in g begins withini(a) in the
factorization ofg induced byh, and® (i) = j if the ith occurrence og(b) in ¢ begins
within the jth occurrence of(b) in g.

The map has similar values for the positions in which the occurrencegiof end.

The following lemma shows the way mappingsandy will be used.

Lemma 40. Let (g, ) be a typical pair of morphisms, and lete bA*b be an element of
Eacs. 1).

(A) Letanintegerj €{1,..., |ulp} be notin the range ob. Thenh(b) is either a factor
of g(a)™ or a prefix ofsg(a)™ for some proper suffix of g(b).

(B) Letanintegerj € {1,..., |u|p} be notin the range o¥. Thenh(b) is either a factor
of g(a)™ or a suffix ofg(a)* p for some proper prefip of g(b).

(C) Let

Rangéy) = Rangé®) = {1, ..., |u|p}.
Then
hb)=rig®)qi,  g(u})=h(u))ri,  gui)gi =h(u;), (18)

withi =1, ..., lulp, andr; € suff(g(a)™), g; € pref(g(a)™).

g(u;) g(b)
hw) |nioh)ia |

Proof. Putg = g(u) = h(u).
(A) Let j ¢ Rangé®). By assumption, we have (1) = 1 and @ (lulp) = |ulp.
Therefore, there exists an integesuch that

ci <dj <dj+|hb)| <ciza

This implies, looking at thejth occurrence ofa(b) in ¢, that h(b) is a factor of
qlci + 1, ¢i+1], which is a proper suffix 0§ (b)g(a)*. The claim follows.
(B) Similarly as (A).

(C) Clearly,

di <ci <ci+ |gb)| <di + |h(b)

: (19)

with i = 1. By assumption, within each occurrencé:gb) in ¢, some occurrences g{b)
start and some end. One can easily see, by induction, that occurreng@s aftarting
and ending within one occurrence bfb) coincide. Therefore, Eqg. (19) holds for each
i=1...,|ulp. Thush(b) =r;g(b)q; for somer;, q; € A*. From injectivity of @ we also
deduce that; is a suffix andy; a prefix ofg(a)™. O
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6.5. The cas¢g(ba)| < |h(D)|
First adopt the following definitions.
Convention 41.

e Henceforward, if we speak about a counter-example, we implicitly suppose that it has
properties described in Lemma 39.
e Leté denote the word vy, or oy, So that pref(§) = suffi(§) = b (see Lemma 39). In
the rest of this section variablés!, I’ will have the following meaning:
o bl is the maximab-prefix of o,
o bk is the maximab-prefix of vy,
o b!"isthe maximab-prefix of £ (i.e. the maximab-suffix of £).

Note that by (12), the word! (b* respectively) is the proper prefix af (vyo
respectively). Als@' is the proper suffix of . Sinceo is the common prefix of all elements
in Eq(g, h), the wordb! is also the maximab-prefix of £.

Lemma 42. Let (g, h) be a counter-example. Thexib)' is a proper prefix of:(b) and
g(b)! is a proper suffix oh(b).

Proof. By (9), the wordsh(b) and g(b)! are comparable. Sincg(b) is a suffix of
h(b), there exist a non-empty wond such thath(b) = ug(b). If h(b) were a prefix of
g(b)!, the wordsu andg(b) would commute, by Lemma 7(C). This is a contradiction to
Lemma 39(C). O

The proof of the second part of the statement is symmetric.
Lemma 43. Let (g, h) be a counter-example and lgt(ba)| < |h(b)|. Then
g(b'a) epref(n(p)) and g(ab") € suff(n(b)).

Proof. With g(£) = h(&), it is enough to proveg(b'a)| < |h(b)| and|g(abl/)| < |h(b)].
Consideration for the two cases is mirror symmetric.

Proceed by contradiction and suppogé’a)| > |h(b)|. Since|g(ba)| < |h(b)|,1 > 2
and the wordg (b'a) is a prefix ofi(b)g(b)' 1. By Lemma 42, there are words g1, and
r1 such that

gb)y=qir1,  hb)=g®)'u,  gla)=ug®b)q1,
with0<i <l - 2.
1. Suppose that'ab is a prefix ofo. Theng(b)ig1g(b) is a prefix of g(b)! and g1

commutes withg(b). This is a contradiction t@ being marked. Similarly ibab"
is a suffix of¢.
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2. Thusblaa is a prefix, andiab! is a suffix of.
2.1. First supposg (b'aa)| > |h(bb)|. Then

gb)=qora,  h(b)=gb) quugb) "¢,

where|qz| = |r1].

u gb)q1 u )
f—/—/—/—(—/‘ r—/‘_ e
2(b) | g(a) | s
h(b) \ h(b) |

Sincel —i — 1> 1 andg(b) is a suffix ofh(b), the wordgz commutes withg (b).
Thusr; = g2 and alsagy; commutes withg (b), a contradiction t¢ being marked.
Similarly we obtain contradiction i|fg(aab”)| > |h(bb)|.

2.2. Suppose now

|g(blaa)| < |h@b)|,  |glaab)'| < |n D).

Put ® = @,. Since! > 2, the range of® does not contain somg e
{1,2,...,]€]»}. By Lemma 40, eitheh(b) is a factor ofg(a)™ or a prefix of
sg(a)™ for some proper suffix of g(b).
2.2.1. Supposg(b) is a prefix ofsg(a)™.
2.2.1.1. If|s| < |g(b)q1], thensg(a) is a factor ofg(a)*. This implies
that the words is a suffix g(a)™, a contradiction tog being
marked.
2.2.1.2. If, on the other hands| > |g(b)q1|, then clearlyi = 0 and
q1g(a) is a prefix ofsg(a). Let

qs =qir1=g(b).

Sincesg(a) is a prefix ofi(b), there is a prefixp of g(a) such
thatsp = g(b).

g(b) g(a)

‘ q Lo ‘ p

BRI

g(b)

Fromgs = sp follows the existence of a primitive wond= 1t
such thaty is non-empty,

s = (r1r2)"*1q, q = (r112)’*, p = (tat1)’?,
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with i1 € N, j1 € N,. Sinceq1g(a) is a prefix ofh(b), the word
q1p is a prefix ofg(b). From

gb) = (1) ey, p=(21)
we deducey; € (1112)*t1, andgqy is a suffix of g(b). This is a
contradiction tog being marked, since; is a suffix ofg(a).

2.2.2. Supposk(b) is a factor ofg(a)*. Lett, be the primitive root og(a), and
let v1 € suff(z,) andv; € pref(z,) be words such that

h(b) € (vlt:vz).

Since g(b)q1t, is a prefix of h(b), it is also a prefix ofvyr} and we
conclude that

g(b) q1 € vit?.

Therefore i (bb) is a prefix ofg(b)’tj. Similarly we deduce that(bb) is
a suffix of ;g (b)!". Hence, by primitivity oft,,

h(bbb) = g(b)'1" g (b)"

for somem € N,.. From

9

ltal + )] < [g(@)| + )] < |1 (b)
3-1h®)| =+ - [g®)| +m - |tal,

it is not difficult to deduce that either

A+ |g®)|>|g®)|+ |h®)| or m-|tal > |ta| + |h (D).

This implies, by Periodicity Lemma, that either gfb) or , commutes
with h(b). We thus obtain a contradiction to Lemma 39(C) or to

prefy (h (b)) # prefy(g(a)) (see Eq. (11)). O

Lemma 44. Let (g, h) be a counter-example such thgt(ba)| < |h(b)|. Let u be an
element oEq(g, ). Then

Rangeé®,) = Range¥,) ={1,2,..., [ulp}.
Proof. Suppose, for a contradiction, that<l;j < |u|p iS not in the range ofp,. By

Lemma 40, the word (b) is either a factor of(a)™ or a prefix ofsg(a)™ for some proper
suffix s of g(b).
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1. If h(b) is a factor ofg(a)™ then, by (9) and Lemma 43, the wogdb)’ g(a) is a factor
of g(a)*. This implies, by Lemma 7(A), that() is a suffix ofg(a)™, a contradiction
to g being marked.

2. Consider now the latter possibility. Letbe the word such thats = g(b). Observe
that

(rs) g(a) € pref(sg(a)*). (20)
Define s’ by ss’ = rs. By (20), the words’(rs)'~1g(a) is a prefix ofg(a)*. By
Lemma 7(C), the words/(rs)'~1 and g(a) commute. This is a contradiction @®

being marked, since (rs)' 1 is a suffix ofg(b)'.

We have proved Rang®,) = {1, 2, ..., |u|p}. The rest follows from mirror considera-
tions. O

Lemma 45. Let (g, h) be a counter-example such thgt(ba)| < |h(b)|. Letu = xqwx2,
with x1, x2 € A andu € AT, be an element adfq(g, ). Thenw € a*.

Proof. Inthis proofp; (s; respectively) will always denote a proper prefix (a proper suffix)
of g(a), andr;, g;, u;, u; are like in (18).
Lemmas 43 and 44 imply

h(b) = g(b)qa, h(b) =rng(b).
Supposéw|, > 1. Then
h(b) = r2g(b)q2.
1. First suppose that both andgz are non-empty. Then we have
h(b) = g(b)g(a)™ p1= s28(a)"?g(b) = s3g(a)"3g(b)g(a)™ pa,
with m1, mo, m3, mg € N. Since g(a)™3r is a factor ofsag(a)™2 for a non-empty

prefix r of g(b), Lemma 7(B) ang; being marked imply that:3 = 0. The mirrored
consideration yieldsi4 = 0.

Hencelh(b)| < |g(b)| + 2- |g(a)|, and thereforer; = m2 = 1. We can write

h(b) = g(b)g(a)p1, (21)
h(b) = s2g(a)g(b), (22)
h(b) = s3g(b)pa, (23)
gb) | g@ir|m
2| g@ | s
ss | g | pa
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where|s2| < |s3| and |p1| < |ps4l. From (21) and (23) we deduge, = p3p1 and

g(b)g(a) = s3g(b) p3, with pssz = g(a). Henceg(b) pss3 = s3g(b)p3, and words
g(b)p3 ands3 have a common primitive root, say Let ¢+ = t11> be a factorization
of ¢ such that

g(b) = (),  pa=tat1t)?,  s3=(1t2)’,

with i1, i2, j € N, j > 1. Then also

g(a) = pasz = (11)? 1o, g(b)g(a) = (1)t 2+t

g(a)g(b) = (rr) 12+ +1,
From (22) and (21) it follows thab (r211) is a prefix ofg(b)g(a) and thus
s2= ()%, h(b) =s2g(@)g(b) = (111)++2H3H
with i3 > 0. Equality (23) gives
pa= (ntp)2 st
and, sincep, is a prefix ofg(a), the wordst; andr commute. Therefore, alsg(a)

andg(b) commute; a contradiction.
2. If, on the other hand, either of or g2 is empty, then

g(ub) =h(ub) or guz)=h(uz).
This contradicts the minimality offwxz. O
Lemma 46. Let (g, h) be a counter-example. Thég(ba)| > |h(D)|.
Proof. Supposeég(ba)| < |h(b)|. By Lemma 39, (B) and (D),
pref (o) = suffi(o) = b.

Lemma 45 applied tarv, implies o = b, a contradiction with|g(o)| = |h(o)zp| >
lh(o)|. O

6.6. The cas¢g(ba)| > |h(D)|

Recall Convention 41. Following two lemmas, a more complicated parallel of Lem-
ma 32, claim that in the given case the wax@) commutes with the word, g(b)*~!. The
two lemmas correspond to different signskof /.
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Lemma 47. Let (g, h) be a counter-example and let- /. Theni(b) commutes with the
word z;, g (b)*~.

g o) u
e ] 8@
_____ 2 h(b) | h(b) \
h(b)

Proof. The assumption implieg > 2. From (9), Lemmas 42 and 46 we deduce that
h(b) = g(b)'u for some prefix: of g(a). Since|h(b)| > |g(b)|, we have

|hB)* 2| > |zag (B h(b)].

Equality (10) now implies that the worg,g (b))~ g(b)'u = z,g(b)*'h(b) is a prefix of
h(b)* and thus,g(b)*~! commutes withh(b). O

Lemma 48. Let (g, h) be a counter-example and let [. Then
2 =sg(b)
for some word € A*, which commutes with(b).
Proof. Letu be a prefix ofg(a) such thatg (b)'u = h(b). Thus
lg®)ug®)~*| < |gb'a)]
and, by (9)ug(b)'* is a prefix ofg(a). From (10) we deduce
h(b)zn = zng (b)Y ug(b) . (24)

1. Firstsupposk;,| > |g(b)!~*|. Equality (24) yields;, = sg(b)!~* for somes € A* and
it reads

h(b)sg(b)' ™ = sg(0) Fg(b) ug(b) ™ = sh(b)g(b)'*.
Thus the word#% (b) ands commute and we are through.

Note that the previous considerations pass smoothly eves if. The casé = 1 (and
thusk = 1) deserves special attention.

s g+ u g(b)' =k
_____ —N——
_____ | g | g(a)
| o h(b) IR

h(b) n
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2. Suppose novzy,| < |g(b)! | and, consequently, < I, I > 2. Equality (24) implies
the existence of a non-empty wosde A* such thatsz, = g(b)'~* and h(b) =
Zhg(b)kus.

g(b)' =k u gk

__________ 5 | )" | 2(@)
h(b) s |

h(b)
Therefore,
sh(b) = szpg(b)us = g(b)! *g(b)*us = h(b)s.
Thus, the worddg:(b), s, and z,g(b)*u have the same primitive root, say From
sz = g(b)! 7%, we havelt| < |g(b)'¥|. Sinceg(b)! = szxg(b)* is a prefix ofT, by
Periodicity Lemma is the primitive root ofg (b), a contradiction to Lemma 39(C).O
A consequence of Lemmas 47 and 48 appears as two lemmas.
Lemma 49. Let (g, 1) be a counter-example such that: I. Then either
g (") = n(b*) (25)
or there exist words € AT andw € b such that
zrg(v) = h(w)zp. (26)
Proof. By Lemma 47, word# () andz;, g(b*~') have a common primitive root, saylLet
h(b) =", g (B*) =12

The word h(b)Fz;, = t**1z, is the maximals-prefix of h(vyo), and therefore also of
zng(vpo). Sinceb ! is a prefix ofv, o,

the word r**17%2z;, s the maximat-prefix of g(b~*Du,0). (27)
From (9) one can similarly deduce that
the word /%17, isthe maximat-prefix of g(ovy). (28)

1. First suppose - k1 — ko =1 - k1. Then one easily verifieg,g(b*—!) = h(b)*—D.
2. Supposetheh-ky — kp #1 - k1 and put

m=min{k - k1 — ko, 1 - k1}.
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From (27) and (28) we deduce, by Lemma 8, ttiaf;, = g(u) for someu € A™, and
zhg(bk*lu) = mtkag,
Then also
ang (4 1u) ) = dhalmtkD gy — ppyn ez,
and we are through. DO
If & <, the first possibility is excluded.
Lemma50. Let (g, h) be a counter-example such thak /. Then
zpg(v) = h(w)zp
for somev € AT andw € b™.
Proof. This proof is essentially the same as the proof of Lemma 49, (ith/) negative.
By Lemma 48, the word (b) commutes withs = z;,g(b)~¢~%). Let s be the primitive
word and
h(b) =k, s =1k,

Inequality k < I yields k - k1 — k2 < [ - k1. Verify that statements (27) and (28) hold.
Therefore, by Lemma 8, there is a waré A such thatg (u) = r**1*2z,  and

sg(u) ="z, = h(b)*zp.
Sincesg(b)! % = z;, is a prefix oft*1z;,, the wordb! ¥ is a prefix ofu. Thus we can write
2g(b"Pu) =)z O
6.7. Shortest counter-examples

In this subsection we shall exploit the fact the counter-example can be supposed to
be a shortest one. Obviously, if any counter-example exists, there is also a shortest one.
A contradiction will be obtained by showing that every counter-example can be shortened.

Next lemma deals with possibilities suggested by Lemmas 49 and 50.

Lemma5l. Let (g, k) be a shortest counter-example.

(A) If (e, f) € c(g, hm) then f ¢ b,
(B) If k > I andz,g(b*~") = h(b*~!), then the paiKg, &,,) is simple(i.e. g(e) = hy (f) =

e=f).
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Pr oof.

1. If the pair(g, i) is simple then both claims hold, as is easy to see.
2. By Lemma 31, we can assume that there exist werdsf ande’ # f’ such that

c(g. hm) = {(e. ). (', )}, (29)

with (e, f) # (¢', f').
Define marked morphismg, h1: A* — A* by

{gl(a)=e, {hl(a)=f,
g1b)y=¢, hi(b) = f'.

By Lemma 25, there are words v such that
g1(u) = hi(u) =v4o0, g1(v) = h1(v) = vpo.

Then

21(#1) = h1(it) = Va0 = Ty, g1(0) = h1(V) = 0po = 5 p,

andi, v are distinct elements of Egg, #1). The length ofiz and© is at least two,
becausg andh are not simple.

gogiw)—> | g0 5(0) ’_[<—§og_1(ﬁ)
Zh

hohi(u) — hva) i ko) <« hohy(it)

By Lemma 22, there exists a typical pair of morphisg@s #") such that
i, v € Eqg’, h') = Eq(g1, ha).
Since(g, h) is a shortest counter-example, from
lit] =lu| <lovel and [v]=]v] < |ovpl
we deduce prefir) # prefy(v). By construction ofgz and h1, either the words

hi(a) = f andh1(b) = f’ are comparable, Gf is a proper prefix of botff and .
2.1. Consider the first possibility. By (29) ,

g@=hm(f).  z()=hm(f).

and the pairge, f) and(¢’, f') are minimal elements df(g, im). Suppose, by
symmetry, thatf is a prefix of f/. Sinceg is marked, we conclude that algds
a prefix ofe’, a contradiction to minimality ofe’, 77).
2.2. Thuss is a proper prefix of botff and f’.
The claim (A) now follows fromo|, > 1.
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The assumptions of (B) imply, = b/, whence
h1(v) = bt

Putx = pref; (v). The present assumption (2.2) implies teas a prefix off (x).
Moreover,|v| > 2 and thus

hi(x~1o) e b™.
This yields that eitherf or f’ isin b, a contradictiontdo |, > 1. O
We are left with the final case, described in the following lemma.
Lemma52. Let (g, h) be a shortest counter-example. Then

(A) (g,hy)issimple,

(B) k>1,

(C) vp = b,

(D) Izl = lh(B)| — 1g(B) 72 > 1g(b)].

Proof. (B), (C). The possibilityk < [ is excluded by Lemmas 50 and 51(A). The
possibility (26) of Lemma 49 is also in contradiction with Lemma 51(A). Therefore, the
possibility (25) remains. The minimality efv;, yieldsv, = b*~/ andk > 1.

(A) Follows from Lemma 51(B).

(D) From the facts thag(b)' is a prefix ofa(b), g(b)! is a suffix ofi(b), and the words
h(b) andg(b) do not commute, we deduce, by Periodicity Lemma,

@)+ |2®)] > [2®)| + 2"
This implies the second inequality.
Note that the word: from Convention 41 is equal tob*~!. Moreover, suff(c) = b
and thud’ — 1> k — [ > 1. The first inequality now follows directly from
lznl = [h®* | = [g@)*!|. O
We present two more combinatorial lemmas.
Lemma 53. Let g, i be binary morphisms and let be an element dtq(g, /). Let
ub, vb € pref(w)

be words such that(u) is a proper prefix o (vb) andh(vb) is a proper prefix ofg (ub).
Then(g, k) is not a shortest counter-example.

sw [ s®) |
hwb) |




S. Holub / Journal of Algebra 259 (2003) 1-42 37

Proof. Suppose, for a contradiction, th@t, #) is a shortest counter-example. Létand
v’ be sufficiently long words, such that

gubu’) = h(vbv').

Let s1 be a proper suffix of (b) such that
g(u)s1=h(vb), (30)
and p1 be a proper prefix of;, such that
g(ub) = h(vb)p1.

Sinceg(b) is a prefix ofz;, and a suffix ofi(b), we obtain

g(b) = s1p1= p1s1,
and the wordg (b), s1, andp; have the same primitive root, sayThe maximal--suffix of
h(vb) is equal to the maximatsuffix of 1.(b), i.e. tog(b)!". By (30), the wordg(b)! is also

the maximal--suffix of g(«)s1. This is in contradiction witty andi being marked. O

Lemma 54. Let g and X be binary morphisms and let be an element dEq(g, /). Letn
be a positive integer and, v words such that

vb,uab"a € pref(w),

whereh (v) is a proper prefix o (ua) andg(uab™) is a proper prefix ofi(vb). Then(g, k)
is not a shortest counter-example.

g(u) ga) | gb)" g(a)
hw) | s hp) i o |

Proof. Proceed by contradiction, and suppose ftgat:) is a shortest counter-example.
Letu’, v’ be sufficiently long words such that

gwab"au’) = h(vbv').
The assumptions imply thgt)" is a proper factor ok (b),
sg(b"au’y = h(bv), (31)
and

h(b) =sg(b)"p. (32)



38 S. Holub / Journal of Algebra 259 (2003) 1-42

for a proper suffix and a proper prefip of g(a). From the facts thag andg are marked,
g(b)! € pref(h(b)), g(b)!" € suff(h(b)), Lemma 7, and Eq. (32) we deduce the following
inequalities:

sl > |g® Y, 1pl>|g® Y.

Thus, by Lemma 52(D),
sg()"| < lzal. (33)

Recall that|g(b)g(a)| > |h(b)|. Let w be the prefix ofg(b)g(a) of lengthh(b). From
(9) and from|g(b)!| < |zx| (see Lemma 52(D)) we deduce

g w e pref(h(b)zp). (34)
Since
sg(b"a) Prefh(b)zy,
the inequality (33) implies
sg(0)"tw € pref(h(b)zy). (35)
Lemma 7(D), (34) and (35) now yield thatb)'~1 is a suffix ofsg(b)"~1 andsg(b)" !
commutes withz(b). Hencen > [, because is a suffix ofg(a). Denote by the common
primitive root of 1(b) andsg(b)"~! and let
h(b) =k, sgb)" ! =rke, with k1 > ko > 0.
Equality (9) implies that
the maximak-prefix of g(ov,) = h(ov,) is rkitz,. (36)
Let ™ be the maximab-prefix of bv'. It follows from (31) that
the maximal--prefix of g(b'au’) is rk1m—*2z,. (37)
From (36) and (37) we deduce, by Lemma 8, that there is a wprdich that
gu) =r*3z,
with k3 =min{ky - I, k1 - m — k»}. Therefore,

Zhg(bk_lul) = h(b)k_lrk3zh = pk=Drkaths,
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and
zhg((bk*lul)kl) = h(b(k*l)'k#k?’)zm
in contradiction with Lemma 51(A). O
The whole section is concluded by the following lemma. It shows that the possibility
excluded by Lemma 54 has to take place in a shortest counter-example. That yields the

final contradiction.

Lemma 55. Let (g, h) be a shortest counter-example. Then there exist wotds andv,
and a positive integer such thatw is an element oéqg, #) and

vb, uab"a € prefleqg, b)),
whereh(v) is a proper prefix ok (ua) andg(uab™) is a proper prefix ol (vb).
Proof. Consider the wordv;,. Sincezy, is empty and since
suffy(vp) = suffy (b*~!) = b,
we conclude that
pref, (vy) = suffi(v,) = a. (38)
First we want to show that iy andw, are proper prefixes of;, then
glowi) # h(ocwy).
Suppose the contrary. The minimality®f, impliesw1 # w». From
zpg(w10) = h(w20)zh
we deduce thafg, /) is not simple, a contradiction to Lemma 52(A).
Putm = |v,|p. From|g(vy)| < |h(v,)| we deducen > 1. Define wordsy;, v;, i =
1,...,m,by
UiV =0V, pref; (vi) = b, lvilp=m —i+ L.
Inequalities
[g(ob)| = [h(ob)| and |g(@)]> |h(a)]
imply

|g(u1b)| > |h(u1b)

. |gumb)| < |R(umb)|.
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Letje{2,3,...,m} bethe smallest integer such that

|g(uj—1b)| > |h(u;j-1b)

, |g(ujb)| < ‘h(ujb)‘.
|g(u )| > |h(u;)|, sinceu; € u;_1ba™ and|g(a)| > |h(a)|. Thus
|h(uj)| <|g;)| < |gu;jb)| < |h(u;b)|. (39)

Let 5™t be the maximab-suffix of u; andb™2 be the maximab-prefix of v;. By
Lemma 53,

|8 (ub™?)| < [h(u;b)|.
If m1 > 0 then, again by Lemma 53,
|g(ub™" )| > |h(u))].

If m1 =0, then the last inequality is contained in (39). Put

-1
u=ujab™m , v=1uj, n=mi+my,

and verify that they satisfy the assumptions. This completes the proof.

We can summarize this section by proving Theorem 2 from the introduction.

Proof of Theorem 2. Let ¢ and i be distinct non-periodic binary morphisms. By
Lemma 22, we can assume tlat ) is typical (Definition 19).

For a contradiction suppose that(ggr) contains distinct worde and v such that
pref; (u) = pref (v), and suppose thafg, i) is shortest possible (Definition 29). The
present section shows that the assumption is contradictory.

To prove that e¢g, &) does not contain two distinct words andv” with suffy(u’) =
suffy(v'), consider mirror morphismgandiz. O

7. Test sets

In this section we show that each binary language has a test set of cardinality at most
two. We follow the exposition from [8], where a three element test set is constructed. Our
improvement is a direct consequence of Theorem 2.
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Test set of a language Cc X* is a subsetl’ of L such that the agreement of two
morphisms on the languade guarantees their agreement oin Formally, for any two
morphismsg andh defined onx*,

VueT) (gw)=hw) = (wveLl)(gw)=h)).

Let L C A* be a binary language. Thatio of a non-empty word: € L is denoted by
r(u) and defined by

_ lula

lulp

r(u)

If |ulp, =0, thenr(u) = co. A word u is said to beatio-primitive if no proper prefix ofu
has the same ratio as Note that each word has a unique factorization into ratio-primitive
words (or shortly, ratio-primitive factorization).

Theorem 56. Let L C A* be a language. Theh possesses a test set of cardinality at most
two.

Proof. Let g and. be binary morphisms. We can assufgé:)| # |h(a)| and|g(b)| #
|h(b)| (the discussion of the remaining cases is trivial).

Clearly, morphismg andk can agree on a word only if they agree lengthwise on it
and one easily sees that it is equivalent to

_ 1) =15

= @) = @)

This also implies that ifu = ujuz---u, is the ratio-primitive factorization ofi, then
gw) = h(u) if and only if g(u;) = h(u;), i =1,...,n. Therefore,g andh agree onL
if and only if they agree on languade consisting of all ratio-primitive words occurring
in ratio-primitive factorization of all elements ih. Moreover, any test set df, can be
transformed into a test set afof the same or smaller cardinality: it is enough to assign to
each word: € L, awordv € L such thai: is contained in the ratio-primitive factorization
of v.

The above considerations allow to restrict ourselves to languages consisting of ratio-
primitive words. The proof is based on the observation that in such a cgsendh agree
on L, each element of isin eqg, k).

1. If L contains at most two words, we are trivially through.
2. If L contains two words with different ratio, then only morphisgns 4 can agree on
L and the two words constitute a test set.
3. Suppose that cardinality df is at least three and all words have the same ratio. Let
T ={u,v} withu,v € L, u # v, and pref(u) = pref;(v). We claim thatT is a test set
of L.
3.1. If both morphisms are periodic, then any single word constitutes a test set.
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3.2. If just one morphism is periodic thenand . do not agree or., by Theorem
1(B), and any two words constitute a test set.

3.3. If both morphisms are non-periodic, they agreelojust in caseg = h, by
Theorem 2. Again by Theorem 2, the two wordsTirconstitute a test set, since
prefy(u) = prefy(v). O

Remark 57. The only known equality languages generated by two words are of the form
L ={a'b,ba'},

with i € N4 (see [6]). Some partial results of this paper indicate that no other such
languages exist. This suggests a direction of further research.
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