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The real, interacting elementary particle always consists of a ‘bare’ particle and a cloud of virtual particles 
mediating a self-interaction and/or the bond inside a composite object. In this letter we discuss the 
question of spin content of the virtual cloud in two different cases: electron and quark. Further, the 
quark spin is discussed in the context of proton spin, which is generated by the interplay of quarks and 
virtual gluons. We present a general constraint on the gluon contribution and make a comparison with 
the experimental data.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In our recent paper [1] we studied the proton spin structure in leading order of the covariant approach assuming the gluon contribution 
to the proton spin can be neglected. However the question of the real role of gluons in generating the proton spin is still open. Actually 
some recent data obtained at RHIC and their analyses [2–6] can suggest a positive gluon contribution to the proton spin. The main aim of 
the present letter is to extend discussion from our previous study to the case of nonzero gluon contribution. We will show what constraint 
on the gluon contribution follows from the covariant approach.

Sec. 2 is devoted to a discussion about some general aspects of particle spin and its scale dependence. Two different examples are 
considered, electron and quark. The electron spin structure is also an interesting topic, see the recent study [7] and the previous papers 
[8,9]. Particularly important questions concern the spin of quarks inside the nucleon. In Sec. 3 the discussion about the proton spin, which 
is generated by the interplay of angular moments of quarks and gluons, continues in the context of recent experimental data.

In present calculations we use, as before, the rest frame of the composite system as a starting reference frame. This frame is suitable 
for the consistent composition of spins and OAMs of the constituents in the representation of spinor spherical harmonics. The resulting 
state serves as an input for construction of the covariant quantities, like the spin vector or the spin structure functions [1].

2. Spin of the particle in its scale dependent picture

In general, description of real interacting particles can be related to their ‘bare’ or ‘dressed’ form. In our present discussion we address 
the general questions:

a) How much do the virtual particles surrounding bare particle contribute to the spin of corresponding real, dressed particle?
b) How much do the virtual particles mediating bond of the constituents of a composite particle contribute to its spin?
In quantum mechanic the total angular momentum (AM) of any particle including composite ones is given by the sum of the orbital 

AM (OAM) and spin, J = L + S. The corresponding quantum numbers are discrete sets of integers or half-integers and in the relativistic 
case only total AM conserves, so only J and J z can be the good quantum numbers. We will illustrate the problem with two different 
examples, electron and quark.

2.1. Spin of electron

The electron, as a Dirac particle, in its rest frame has AM defined by its spin, s = 1/2. This value is the same for the dressed electron 
(as proved experimentally) and for the bare one (as defined by the QED Lagrangian). The dressed electron is a bare electron surrounded 
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Fig. 1. Scale dependent image of a real particle, see text.

by the virtual cloud of γ and e−e+ pairs, as symbolically sketched in Fig. 1 for different scales represented by the parameter Q 2. So the 
renormalization as a continuous change of the scale should not change the AM represented by the discrete numbers, J e(Q 2) = s = 1/2. 
But what about the projections J e

z(Q 2) + Jγz (Q 2) = ±1/2? Can the contribution of virtual cloud Jγz (Q 2) differ from zero and how much? 
In this letter we present a semiclassical estimate of the vector Jγ . The electromagnetic field, or its γ -quanta, is according to Maxwell 
equations created by the electric current. We consider the current generated by the electron states represented by the spinor spherical 
harmonics

| j, jz〉 = � jlp jz (r) = 1√
2ε

( √
ε + mRklp � jlp jz (ω)

−√
ε − mRkλp � jλp jz (ω)

)
, (1)

where ω represents the polar and azimuthal angles (θ, ϕ) of the space coordinates r with respect to the axis of quantization z, lp = j ±1/2, 
λp = 2 j − lp (lp defines the parity), energy ε = √

k2 + m2 and

� jlp jz (ω) =
⎛
⎝

√
j+ jz
2 j Ylp , jz−1/2 (ω)√

j− jz
2 j Ylp , jz+1/2 (ω)

⎞
⎠ ,

� jλp jz (ω) =
⎛
⎝ −

√
j− jz+1
2 j+2 Yλp , jz−1/2 (ω)√

j+ jz+1
2 j+2 Yλp , jz+1/2 (ω)

⎞
⎠ , (2)

where lp = j − 1/2 and λp = j + 1/2. The functions Yl,lz are usual spherical harmonics. The radial functions in the case of free electron 
read:

Rkl(r) =
√

2πk

r
Jl+1/2(kr),∫

r2 Rkl Rk′ldr = 2πδ(k − k′), (3)

where k = |k| and Jν(z) are Bessel functions of the first kind, otherwise (e.g. for electron in the hydrogen atom) the radial functions differ 
according to an external field. However, it is important that the information about the electron AM is completely absorbed in the angular 
terms and does not depend on the radial functions. The states | j, jz〉 are eigenstates of the total AM and have been discussed before [1]
in momentum representation, while in the present letter we deal with their coordinate representation corresponding to the rest frame of 
an composite system. The corresponding current reads

Iμ = (I0, I) = �
†
jlp jz

(r) γ 0γμ� jlp jz (r) (4)

and one can check that

I0 = hIρ j, jz (cos θ) , I = hIIρ j, jz (cos θ) r, (5)

where

hI = 1

2

((
1 + m

ε

)
R2

klp
+

(
1 − m

ε

)
R2

kλp

)
,

hII = − k

εr
Rklp Rkλp . (6)

A few examples of ρ j, jz are given in Table 1, where one can observe the following. The stationary current Iμ depends only on j and | jz|, 
therefore it does not involve any information on the direction of electron polarization. So, there is no reason to expect any correlation 
between electron polarization and polarization of the electromagnetic field generated by this current, or equivalently polarization of the 
statistical set of emitted and reabsorbed γ . In other words the average polarization of virtual cloud of γ and consequently also e−e+ pairs 
should be zero. The AM of the electromagnetic field is given by the relation

Jγ =
∫

r × (E × H)d3r, (7)
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Table 1
The examples of the angular distributions ρ j, jz . 
The common factor 1/4π is omitted.

j, jz ρ j, jz (ω)

1
2 ,± 1

2 1
3
2 ,± 3

2
3−3 cos 2θ

4
3
2 ,± 1

2
5+3 cos 2θ

4
5
2 ,± 5

2
45−60 cos 2θ+15 cos 4θ

64
5
2 ,± 3

2
57−12 cos 2θ−45 cos 4θ

64
5
2 ,± 1

2
45+36 cos 2θ+15 cos 4θ

32

Fig. 2. Scale dependent image of a valence quark, see text.

where E, H are the corresponding intensities of electric and magnetic field. Due to the symmetry of current (5) that generates these fields, 
the corresponding AM satisfies

Jγ = 0, (8)

the proof is given in Appendix. This relation follows only from the angular terms in the wave function (1) and does not depend on the 
radial ones. In other words, the relation (8) holds not only for a free electron, but also for an electron bound in the hydrogen atom. The 
result represents a mean value, which is not influenced by the fluctuations generated by single γ . So, this calculation suggests the integral 
AM of the cloud of virtual γ is zero despite the fact that AM of its source, the electron in a state (1), is not zero. While the free electron 
emits and reabsorbs virtual photons by itself, the electron bounded in hydrogen atom in addition exchanges (emits and absorbs) virtual 
photons with the proton. Since the AM of the electromagnetic field generated by the proton is zero as well, the total AM of hydrogen will 
be given only by AMs of the electron and proton, without contribution of the electromagnetic field generated by both the particles.

Similar arguments can be relevant also for atoms in general and perhaps for the nucleons bound in a nucleus. This would suggest the 
virtual particles mediating the binding of nucleons also do not contribute to the resulting spin of nucleus, which must be always integer 
or half-integer.

Our approach (A) has a common basis with the QED calculation (B) suggested in Ref. [7], since both the approaches follow from the 
general QED equations (1), (6) and (7) in the last reference. Despite that, there are some differences between them, the most apparent are 
as follows.

(A) The approach is semiclassical only and the AMs are directly related to the electron wavefunction ψ and the classical electromagnetic 
field Aμ generated by the electric current ψ̄γμψ . The preferred reference frame is the frame defined by the spinor spherical harmonics (1)
or the rest frame of the defined composite system (e.g. atom). This simplified treatment allows us to obtain the relation (8) but without a 
decomposition into the spin and OAM parts.

(B) The study is focused on the fundamental problem of the AM decomposition in quantum field theory and explicit calculation is 
performed for the QED. The preferred reference frame is the infinite momentum frame. The light-front formalism is adopted to achieve a 
compatibility with the standard formulation of the parton model. The result on the total boson (photon) AM seems be also rather small, 
Sb + Lb �O(e2).

So both the approaches, adopting rather different formalism and correspondingly also some different assumptions, are not contradictory. 
From a phenomenological point of view, they are complementary.

2.2. Spin of quark

The situation with quarks inside a nucleon is more complicated. The quark at different scales is sketched in Fig. 1 (in which the bare 
electron surrounded by virtual cloud of γ and e−e+ pairs is now replaced by the bare quark with a cloud of virtual g and qq̄ pairs). The 
terminology is as follows:

i) The bare quark can be identified with the current quark, which can be described by the distribution functions qa(x) defined in the 
quark-parton model. They are related to the sets of quarks and antiquarks in the figure for Q 2 → ∞.

ii) The constituent quark can be identified with the dressed quark at a low Q 2 scale.
iii) The valence quark can be identified with the set of quarks, from which the cloud of virtual qq̄ pairs and gluons is separated off. In 

the figure the valence quarks are represented by the central spots. Strictly speaking, depending on the scale, valence and sea quarks may 
not be clearly distinguishable. In a short time interval �τ , a quark from the virtual qq̄ pair is indistinguishable from the source, valence 
quark, see Fig. 2. However, the usual definition in terms of the quark-parton model distributions

qa (x, Q 2) = qa(x, Q 2) − q̄a(x, Q 2) (9)
val
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is unambiguous. For quarks the parameter Q 2 represents the renormalization scale, but also the DIS parameter (−Q 2 = photon four-
momentum square) or equivalently a scale of the space–time domain inside which the photon absorption takes place [1].

Now, we can put the question b) for the quarks bound inside the proton: How much the field of virtual gluons generated by the 
valence quarks and the sea of virtual qq̄ pairs created by the gluons contribute to the proton spin? This question is being studied in the 
experiments, which measure contribution of the gluons and sea quarks to the proton spin. Available data from the experiments COMPASS 
[10] and HERMES [11] suggest rather small gluon contribution, in fact the data are consistent with zero within statistical errors. The very 
recent results of the RHIC experiments [2–6] suggest a positive gluon contribution which, however still cannot fully compensate for a 
small quark contribution to the proton spin.

These results can be interpreted in the framework of covariant approach presented in Ref. [1]. In the paper we studied the relativistic 
interplay between the quark spins and OAMs, which collectively contribute to the proton spin. The simplest scenario assuming

1) the quarks are in the state j = 1/2, see Eq. 113 [1],
2) mass of quarks can be neglected, 〈m/ε〉 → 0,
3) there is no gluon contribution, i.e. proton spin J = 1/2 is generated only by the AM of quarks, see Eq. 109 [1]

gave a prediction for the contribution of the quark spins in DIS region,

�� = 1

3
, (10)

while the “missing” part of the proton spin is fully compensated by the quark OAM. This prediction fits the data [12–14] surprisingly well.
However, in a more general case, if only condition 1) is assumed, then AM of each quark consists of the spin and OAM part

〈sz〉 = 1 + 2μ̃

3
jz, 〈lz〉 = 2 − 2μ̃

3
jz,

〈lz〉
〈sz〉 = 2 − 2μ̃

1 + 2μ̃
, (11)

where jz = ±1/2, see Eqs. (17), (22) in Ref. [1]. It is very important result, which easily follows from the algebra of spinor spherical 
harmonics representing the solutions of Dirac equation. The ratio μ̃ = 〈m/ε〉 here plays a crucial role, since it controls a “contraction” 
of the spin component, which is compensated by the OAM. It is a quantum mechanical effect of relativistic kinematics. Mathematically, 
a small μ̃ means the lower component of Dirac spinor is important. This is also the case in [15,16], where with some distinction of 
formalism and paradigm the authors come to similar results on the spin of quark bound in the proton. The effect is strongly correlated 
with the transversal motion of quarks inside the nucleon [17].

The relations (11) imply that the total AM of a composite system of quarks with j1 = j2 = j3 = . . . = 1/2 reads

J q = 〈Sz〉 + 〈Lz〉 , (12)

where the ratio of the total spin 〈Sz〉 and OAM 〈Lz〉 is the same as for the one-quark states above:

〈Lz〉
〈Sz〉 = 2 − 2μ̃

1 + 2μ̃
. (13)

Further, if the proton spin consists of the quark and gluon contributions, one can write

1

2
= J q + J g; J q = 1

2
�, J g = 1

2
(1 − �) . (14)

With the use of Eqs. (12)–(14) one gets

〈Sz〉 + 〈Lz〉 = 〈Sz〉
(

1 + 2 − 2μ̃

1 + 2μ̃

)
= 1

2
�, � = 1 − 2 J g, (15)

which after replacing 〈Sz〉 = ��/2 gives

�� = 1

3

(
1 − 2 J g) (

1 + 2μ̃
)
. (16)

In a higher approximation, if we admit an admixture of the quark states with j ≥ 3/2, the relation is modified as

�� � 1

3

(
1 − 2 J g) (

1 + 2μ̃
)
. (17)

3. Discussion and conclusion

The relation (16) means the quark spin content depends on two parameters, the gluon contribution J g and the quark effective mass 
ratio μ̃, which affects proportion of the quark OAM. It follows from the algebra of spinor spherical harmonics and from general rules 
of AM composition in the system of quarks and gluons with the total spin J = 1/2. The dependence is demonstrated in Fig. 3. One can 
observe:

a) �� ≤ 1/3 corresponds to J g ≥ 0 for any 1 ≥ μ̃ ≥ 0. A special case �� = 1/3 and μ̃ → 0 implies J g → 0.
b) �� > 1/3, then the sign of J g depends on μ̃. Apparently, J g < 0 would imply J q > 1/2.
In this way the COMPASS and HERMES data [12–14] giving �� ≈ 1/3, can be compatible also with a positive gluon contribution J g

suggested by the recent data on RHIC. Note that positive J g correlates with a positive quark effective mass ratio μ̃. Can we somehow 
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Fig. 3. Dependence of �� on J g and μ̃. The dotted, full and dashed lines correspond to �� = 0.25,0.33 and 0.4 respectively.

estimate this parameter? In the proton rest frame a quark has momentum 〈k〉 = √
3/2 〈kT 〉 and there are independent ways to estimate it, 

for example:
1) If we take proton diameter dp = 0.84 fm, then the uncertainty relation gives for the corresponding momentum roughly k ≈ 230 MeV.
2) The analysis [18–21] of the data on the azimuthal asymmetry in semi-inclusive DIS suggest 〈kT 〉 ≈ 400–600 MeV.
3) The statistical approaches [22–24] suggest 〈k〉 ≈ 40 − 100 MeV and a similar value was obtained in Ref. [25] for valence quarks, see 

also discussion in Refs. [26,27].
Therefore, if one suppose the quark effective mass of the order MeV, then the parameter μ̃� 0.1, which gives a similar upper limit on 

the gluon contribution, J g � 0.1. Finally, the spin contribution of the sea quarks is known to be small or compatible with zero [14]. This 
can confirm the expectation that the sea quark contribution correlates with the gluon contribution.

In the present approach the quark effective mass ratio μ̃ and the gluon AM contribution J g are free, phenomenological parameters 
constrained by the relation (16). At the same time corresponding scale-dependent parameters, for example the quark effective masses, 
are (at least in principle) calculable in QCD [28]. However, due to nonperturbative aspect of related task, the real calculation can be 
extremely difficult. That is why our approach based on the covariant quark-parton model can be a useful supplement to the exact but 
more complicated theory of the nucleon spin structure based on pure QCD.

To conclude, interpretation of the available sets of experimental data in framework of the covariant approach suggests an important 
role of the quark OAM for the creation of the proton spin on the scale Q 2 defined by the data. The data of experiments COMPASS and 
HERMES on the quark and gluon contribution to the proton spin are fully compatible with our approach. At the same time, a limited 
positive gluon contribution does not contradict the covariant approach. However, the precise data on J g are still missing, so the existing 
experimental data do not disprove the hypothesis J g ≈ 0 based on the analogy with AM of virtual photons given by Eq. (8).
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Appendix A. Proof of the relation (8)

The current (5) generates the electric and magnetic field

E(r) =
∫

I0(r′) r − r′

|r − r′|3/2
d3r′, (A.1)

H(r) =
∫

I(r′)× r − r′

|r − r′|3/2
d3r′. (A.2)

If we define

WX (r) =
∫

hX (r′)ρ j, jz

(
cos θ ′) r′

|r − r′|3/2
d3r′,

S(r) =
∫

hI (r′)ρ j, jz

(
cos θ ′)

|r − r′|3/2
d3r′, (A.3)

where X = I, II, then with the use of (5), (6) we get:

E(r) = −WI (r) + S(r)r, H(r) = WII(r) × r. (A.4)

In terms of spherical coordinates

r1 = r sin θ cosϕ, r2 = r sin θ sinϕ, r3 = r cos θ (A.5)
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we have

S(r) =
∫

hI (r′)ρ j, jz

(
cos θ ′)(

r2 + r′2 − 2rr′ (sin θ sin θ ′ cos (ϕ − ϕ′) + cos θ cos θ ′)
)3/2

r′2 sin θ ′dϕ′dθ ′dr′, (A.6)

WX (r) =
∫

hX (r′)ρ j, jz

(
cos θ ′) r′(

r2 + r′2 − 2rr′ (sin θ sin θ ′ cos (ϕ − ϕ′) + cos θ cos θ ′)
)3/2

r′2 sin θ ′dϕ′dθ ′dr′. (A.7)

Obviously S(r) does not depend on ϕ so we have

S(r) = S(r, θ). (A.8)

In the second integral, after substitution ψ = ϕ′ − ϕ we replace correspondingly in r′:

x′ = r′ sin θ ′ cosϕ′ → r′ sin θ ′ (cosψ cosϕ − sinψ sinϕ) , (A.9)

y′ = r′ sin θ ′ sinϕ′ → r′ sin θ ′ (cosψ sinϕ + sinψ cosϕ) (A.10)

and instead of (A.7) we obtain

W X
1 (r) =

∫
hX (r′)ρ j, jz

(
cos θ ′) r′ sin θ ′ (cosψ cosϕ − sinψ sinϕ)(

r2 + r′2 − 2rr′ (sin θ sin θ ′ cosψ + cos θ cos θ ′)
)3/2

r′2 sin θ ′dψdθ ′dr′, (A.11)

W X
2 (r) =

∫
hX (r′)ρ j, jz

(
cos θ ′) r′ sin θ ′ (cosψ sinϕ + sinψ cosϕ)(

r2 + r′2 − 2rr′ (sin θ sin θ ′ cosψ + cos θ cos θ ′)
)3/2

r′2 sin θ ′dψdθ ′dr′, (A.12)

W X
3 (r) =

∫
hX (r′)ρ j, jz

(
cos θ ′) r′ cos θ ′(

r2 + r′2 − 2rr′ (sin θ sin θ ′ cosψ + cos θ cos θ ′)
)3/2

r′2 sin θ ′dψdθ ′dr′. (A.13)

Since in general

π∫
−π

feven(ψ) sinψdψ = 0, (A.14)

where feven(ψ) = feven(−ψ), then the second term in (A.11), (A.12) vanishes and the expressions are simplified as

W X
1 (r) = W X (r, θ)r1, W X

2 (r) = W X (r, θ)r2, W X
3 (r) = W X

3 (r, θ), (A.15)

where

W X (r, θ) = 1

r sin θ

∫
hX (r′)ρ j, jz

(
cos θ ′) r′ sin θ ′ cosψ(

r2 + r′2 − 2rr′ (sin θ sin θ ′ cosψ + cos θ cos θ ′)
)3/2

r′2 sin θ ′dψdθ ′dr′, (A.16)

W X
3 (r, θ) =

∫
hX (r′)ρ j, jz

(
cos θ ′) r′ cos θ ′(

r2 + r′2 − 2rr′ (sin θ sin θ ′ cosψ + cos θ cos θ ′)
)3/2

r′2 sin θ ′dψdθ ′dr′. (A.17)

After inserting from (A.4) into (7) we integrate the AM density

jγ = r ×
((

−WI (r) + S(r)r
)

×
(

WII(r) × r
))

, (A.18)

which with the use of (A.8), (A.15) gives

jγ =
⎧⎨
⎩

(
W I W II

(
r2

1r2r3 + r3
2r3

) + W II W I
3r2r2

3 − W I W II
3

(
r2

1r2 + r3
2

) − W I
3W II

3 r2r3
)
,(−W I W II

(
r1r2

2r3 + r3
1r3

) − W II W I
3r1r2

3 + W I W II
3

(
r1r2

2 + r3
1

) + W I
3W II

3 r1r3
)
,

0

⎫⎬
⎭ + Sr2

⎧⎨
⎩

(−W IIr2r3 + W II
3 r2

)
,(

W IIr1r3 − W II
3 r1

)
,

0

⎫⎬
⎭ . (A.19)

These terms depend on ϕ only via coordinates r1 and r2 (A.5). Since each term involves just one odd power of r1 ∼ cosϕ or r2 ∼ sinϕ , 
the corresponding integral satisfies (8).
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