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Abstract

The body defined by a finite collection of disks is a subset of the plane bounded by a tangent continuou
which we call the skin. We give analytic formulas for the area, the perimeter, the area derivative, and the p
derivative of the body. Given the filtrations of the Delaunay triangulation and the Voronoi diagram of the dis
formulas can be evaluated in time proportional to the number of disks.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we are concerned with a geometric design paradigm that uses weighted p
control planar geometric shapes with tangent continuous boundaries. Specifically, we give form
measuring the area, the perimeter, the area derivative, and the perimeter derivative of such shap

Motivation. The primary motivation for the work in this paper is the automated design of geom
shapes with variable connectivity. This is the central problem in topology optimization, which is a
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of research within mechanical engineering [1,2]. The shape is computed by iterative improvement within
a global design cycle. The main ingredients to the methods are

eration
flexible
through
nd size

in [10].
pheres.
hm for
are still
is paper

us curve
lly the
ions. We
pment of

t
t not
dy
ion
In other
he

d

rimeter
xclusion
ronoi

iangu-
kin into
rive an-
rivatives
• a data structure representing the geometric shape;
• a representation of the spatial domain that contains that shape;
• an objective function that drives the iterative improvement of the shape.

The main requirements for the shape data structure are flexibility and measurability. A single it
of the design cycle determines local changes to the shape, and the data structure ought to be
enough to implement the changes in shape and its topology. The local changes are computed
a stability analysis of the shape, which is based on local and global measurements of size a
derivatives.

A viable data structure for geometric shape is the skin and body representation introduced
In three dimensions, a skin is a tangent continuous surface defined by a finite collections of s
Its ability to smoothly deform from one shape to another has been studied in [7], and an algorit
constructing and maintaining a mesh representing the surface has been described in [5]. We
lacking a fast algorithm that measures the skin surface and the subset of space it bounds. Th
describes such an algorithm for the two-dimensional case, where the skin is a tangent continuo
defined by a finite collection of disks [8]. The problems in two and three dimensions are principa
same, except that there are more and mathematically more challenging cases in three dimens
thus believe that the results presented in this paper can be used as a blue-print for the develo
similar measuring algorithms in three dimensions.

Results. LetD be a finite collection of disks in the plane. The geometric shape defined byD is a subse
of the plane which we refer to as thebodyof D. Its boundary is a closed and tangent continuous bu
necessarily connected curve, which we refer to as theskinof D. The area and the perimeter of the bo
are continuous functionsA,P :R3n → R, wheren is the number of disks. The domain has dimens
3n because each disk has three degrees of freedom, two for its center and one for its radius.
words, each point, orstatein R

3n uniquely defines a collection ofn disks and thus a body and a skin. T
derivatives ofA andP at a statez ∈ R

3n are linear functions DAz,DPz :R3n → R. Being linear, they can
be written as scalar products, DAz(t)= a · t and DPz(t)= p · t, wheret ∈ R

3n is the variable vector an
aT,pT ∈ R

3n are the gradients of the two functions.
We give analytic formulas for computing the area, the perimeter, the area derivative, and the pe

derivative of a body. These formulas are based on the alpha shape theory and the inclusion-e
formulas introduced in [9]. Given the filtrations of the Delaunay triangulation and the dual Vo
diagram of the set of disks, these formulas can be evaluated in time O(n).

Outline. Section 2 presents geometric background, including the filtrations of the Delaunay tr
lation and the Voronoi diagram and the mixed complex, which decomposes the body and the s
simple pieces. Section 3 explains how the two filtrations and the mixed complex can be used to de
alytic formulas for the area and the perimeter of a body. Section 4 gives the area and perimeter de
by specifying their gradients. Section 5 concludes the paper.
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2. Geometric background

In this section, we introduce the Voronoi decomposition of a union of disks, the Delaunay
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decomposition of the union of orthogonal disks, and the mixed complex decomposition
interpolation of the two unions.

Voronoi decomposition. Let D be a collection of disksDi = (zi, ri), for 0� i � n− 1. The radiusri is
either a non-negative real or a non-negative multiple of the imaginary unit, i= √−1. Equivalently, the
square of the radius is a real number. We callDi imaginaryif r2

i < 0. Imaginary disks play an importa
role in our theory, in spite of the fact that they are ignored when we take the union,F = ⋃

D, which
is the portion ofR2 covered by non-imaginary disks. Thepower distanceof a pointx ∈ R

2 from Di is
πi(x)= ‖x − zi‖2 − r2

i . The pointx belongs toDi iff πi(x)� 0, and it belongs toF iff πj(x)� 0 for at
least onej . TheVoronoi polygonof Di is the set of points for whichDi minimizes the power distance,

νi =
{
x ∈ R

2 | πi(x)� πj(x),∀j
}
.

Assuming general position, eachVoronoi edgeis the intersection of two Voronoi polygons,νij = νi ∩ νj ,
and eachVoronoi vertexis the intersection of three,νijk = νi ∩ νj ∩ νk . The Voronoi diagramis the
collection of Voronoi polygons, edges and vertices. The Voronoi polygons cover all ofR

2 and they
decompose the union of disks into convex regions of the formνi ∩ F = νi ∩Di , as illustrated in Fig. 1
Thedual complexof this decomposition contains a simplex for each non-empty intersection of the c
regions. By assumption of general position we only have verticesσi = zi, edgesσij = zizj and triangles
σijk = zizj zk. An example is shown in Fig. 1. We writeσi � σij � σijk to express that the simplices
the left arefacesof the ones to their right. We may grow the disks continuously in a way such tha
Voronoi diagram does not change. To do this, we use a parameterα with α2 ∈ R, defineDi,α as the disk
with centerzi and radius(r2

i + α2)1/2, let Dα be the collection of disksDi,α , and defineFα = ⋃
Dα.

The α-complexKα of D is the dual complex ofDα . For sufficiently large negativeα2, all disks are
imaginary and theα-complex is empty. For sufficiently large positiveα2, every Voronoi polygon, edg
and vertex has non-empty intersection withFα , and theα-complex is the dual of the Voronoi diagram
which is referred to as theDelaunay triangulationK of D. Similar to the radii, the parameterα takes on
non-negative real values and non-negative real multiples of the imaginary unit. These values ar
ordered, and we have a nested sequence of alpha complexes,

∅ =Ki∞ ⊆Kα1 ⊆Kα2 ⊆K∞ =K,

Fig. 1. The Voronoi decomposition of a union of four disks drawn on top of its dual complex, which consists of four ve
six edges and one (dark shaded) triangle.
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for α2
1 � α2

2. Since the Delaunay triangulation is a finite set, there are only finitely many different alpha
complexes. We refer to the maximal nested sequence of pairwise different such complexes as thealpha
filtration of the Delaunay triangulation.
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Delaunay decomposition.Using D and its Voronoi diagram, we construct a second collectionU of
disksUι = (yι, sι). Specifically, for each Voronoi vertexνijk , we have a disk with centeryι = νijk and
square radiuss2

ι = πi(yι). By construction ofyι, the square radius is also equal toπj(yι) and toπk(yι).
With this choice of radius, we have‖yι − zi‖2 = s2

ι + r2
i , which is the condition forUι andDi to be

orthogonal. Similarly,Uι is orthogonal toDj and toDk . We refer to the collectionU of thus constructed
disks as theorthogonal dualof D.

The definition of orthogonal dual has a subtle but substantial flaw, which we remedy by compac
the Voronoi diagram and the Delaunay triangulation. In doing so, we reveal a fundamental sym
between the two. Specifically, we add a diskDn with centerzn at infinity and radiusrn = i∞ to D. The
effect of this addition can be visualized by drawing the Voronoi diagram and the Delaunay triangu
on the sphere. As illustrated in Fig. 2, the diagrams inR

2 can be obtained by stereographic project
from zn. We get a new Voronoi polygon whose vertices are all at infinity and can be interpreted
endpoints of the formerly unbounded Voronoi edges. We also getzn as a new Delaunay vertex, whic
is connected to the formerly extreme vertices ofK via new Delaunay edges. Furthermore, each
Voronoi vertexνijn is the center of an infinitely large diskUι that is orthogonal toDi andDj . This is a
half-plane whose bounding line passes throughzi andzj .

We now have complete symmetry between the two collection of disks. It is not difficult to se
the Voronoi polygon of the diskUι orthogonal toDi ,Dj andDk is the Delaunay triangleσijk . It follows
that the Voronoi diagram ofU is the Delaunay triangulation ofD, and symmetrically, the Delauna
triangulation ofU is the Voronoi diagram ofD. The Delaunay triangulationK of D thus decompose
the union of orthogonal disks,G = ⋃

U , into convex regions. We find that the dual complex ofU is
the collection of Voronoi vertices, edges and polygons that correspond to Delaunay simplices
intersection with the union is non-empty. We have verticesνijk , edgesνij and polygonsνi . We use
a parameterβ with β2 ∈ R to grow the orthogonal disks toUι,β = (yι, (s

2
ι + β2)1/2). Let Uβ be the

collection of disksUι,β , letGβ = ⋃
Uβ , and define theβ-complexVβ of U as the dual complex ofUβ .

Fig. 2. Sketch of the compactified Voronoi diagram with shaded vertices and the dual Delaunay triangulation with white
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For sufficiently large negativeβ2, we get the empty complex, and for sufficiently large positiveβ2, we
get the Voronoi diagramV of D. More generally, we have

∅ = V ⊆ V ⊆ V ⊆ V = V,
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1 � β2
2. The maximal subsequence of pairwise different such complexes is referred to as thbeta

filtration of the Voronoi diagram. Note that if we start withDα instead ofD then we get orthogonal disk
with the same centers but with different radii. Specifically, we getUβ with β = iα as the orthogonal dua
In other words, the two filtrations relate to each other via an anti-parallel correspondence in whKα

maps toViα and vice versa.

Skin and body. GivenD, the skin is a tangent continuous curve that differs from the boundaryF
in two respects. First, it shrinks every disk by a factor 1/

√
2, and second, it removes sharp corners

blending between adjacent disk boundaries. We use the vector space of quadratic functions to
describe this curve. Recall that the circle boundingDi is the zero-set of the corresponding power dista
function,π−1

i (0). An affine combination of theπi is a function

π(x)=
n∑
i=0

γiπi(x) with
n∑
i=0

γi = 1.

It is the power distance function of a new disk, which we denote

D =
n∑
i=0

γiDi

and refer to as anaffine combinationof the Di . The affine hull of D, affD, is the set of all affine
combinations. The affine combinationD is a convex combinationof theDi if γi � 0 for all i, and the
convex hullof D, convD, is the set of all convex combinations. The final step in the construction sh
all disks by a factor 1/

√
2 while keeping their centers fixed. We use the superscript to denote shri

and defineD1/2
i = (zi, ri/

√
2). The set of shrunken disks in the convex hulls is denoted as

(convD)1/2 = {
D1/2 |D ∈ convD

}
.

Thebodyof D is the union of shrunken convex combinations, and theskin is the boundary of that union

bodyD =
⋃
(convD)1/2, skinD = bd bodyD.

Fig. 3 illustrates these concepts. Recall that the orthogonal dualU of D is also a collection of disks
We refer to [10] for a proof that the skins of the two collections are the same and their bodi
complementary:

bodyD ∩ bodyU = skinD = skinU , (1)

bodyD ∪ bodyU = R
2. (2)

SinceUiα is the orthogonal dual ofDα , we also have skinDα = skinUiα for all α2 ∈ R.

Mixed complex decomposition.If D contains only one diskDi , then its skin is obviously a circle
namely the boundarySi of Bi =D

1/2
i . Elementary algebraic calculations show that the envelope o

shrunken affine hull of two disksDi andDj is a hyperbola whose asymptotes form a right angle.
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Fig. 3. The skin bounds the (shaded) body, which is the union of the shrunken convex combinations of the disks in Fi
portions of the mixed cells that decompose the body are shown together with the foci of their circles and hyperbolas.

denote the hyperbola bySij and the region bounded by the hyperbola byBij = ⋃
(aff {Di,Dj })1/2. We

use Property (1) to determine the skin of three disksDi , Dj andDk that form a hole, like the one i
Fig. 1. The three disks define a single non-imaginary orthogonal diskUι, and the skin locally aroun
the hole is the circle obtained by shrinkingUι. We denote this circle bySijk and the closed compleme
of the disk it bounds byBijk . We will see shortly that the entire skin and body can be decomposed
instances of these three cases.

Let ν∗ be a Voronoi polygon, edge or vertex and letσ∗ be the dual Delaunay vertex, edge
triangle. Their dimensions are supplementary, dimν∗ + dimσ∗ = 2. The correspondingmixed cell is
the Minkowski sum of scaled copies,µ∗ = 1

2ν∗ + 1
2σ∗, which is a convex polygon. Themixed complex

M of D consists of all mixed cells together with their edges and vertices. Any two mixed cells are
disjoint or intersect in a common edge or vertex, and together they coverR

2. As explained in [8,10], the
mixed cells decompose the skin into circle and hyperbola pieces. We have three types of mixe
distinguished by the number of indices, which is one more than the dimension of the corresp
Delaunay simplex,p = dimσ∗. Instances of all three cases can be seen in Fig. 3.

Casep= 0. The mixed cellµi = 1
2(νi + σi) is the translate of a scaled Voronoi polygon. Within

window provided byµi , the skin is a circle.
Casep= 1. The mixed cellµij = 1

2(νij + σij ) is the scaled Minkowski sum of a Voronoi edge and
dual Delaunay edge, which is a rectangle. Within the rectangular window, the skin is a hyp

Casep= 2. The mixed cellµijk = 1
2(νijk + σijk) is the translate of a scaled Delaunay triangle. Wit

the window provided byµijk , the skin is a circle.

In general, the skin within a mixed cell isµ∗ ∩skinD = µ∗ ∩S∗, and the body isµ∗ ∩bodyD = µ∗ ∩B∗.
Recall thatB∗ is the union of a family obtained by shrinking the disks in the affine hull of one, tw
three disks. The smallest disk in this family is significant in describingS∗ andB∗. We call the cente
and the square radius of that disk thefocusz∗ and theageg∗ of S∗ andB∗. In casep = 0, the focus
is the center ofDi and the age isgi = r2

i /2. In casep = 1, the focus is the apexzij of the hyperbola,
and a formula for the age will be given in Section 4. In casep = 2, the focus iszijk = yι and the age is
gijk = −s2

ι /2.
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3. Size

In this section, we study relations between the skin and the alpha and beta filtrations, and we use these
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relations to derive formulas for measuring the sizes of the skin, the body, and their decomposit
the mixed complex.

Results. We begin by stating the results. We consider four measures and express each by a sum
mixed cells. For eachµ∗, we consider the area of the body withinµ∗, the length of the skin withinµ∗,
the length of its boundary within the body, and the number of intersections of its boundary with th

A∗ = area(µ∗ ∩B∗), P∗ = length(µ∗ ∩ S∗),

L∗ = length(bdµ∗ ∩B∗), N∗ = card(bdµ∗ ∩ S∗).

The area and perimeter are important measures in their own right, and the length and cardinalit
decompositions are used in the formulas of the area and perimeter derivatives given in Section 4

Size Theorem. The area and perimeter of the body of a finite collection of disks, the total length
decomposition of the body, and the total number of points in the decomposition of the skin are

A=
∑
i

Ai +
∑
ij

Aij +
∑
ijk

Aijk, P =
∑
i

Pi +
∑
ij

Pij +
∑
ijk

Pijk,

L=
∑
ij

Lij , N =
∑
ij

Nij .

The sums forA andP range over all verticesσi, over all edgesσij , and over all trianglesσijk of
the Delaunay triangulation. Each line segment and each point in the decompositions of the bo
the skin belong to exactly two mixed cells. Exactly one of any such pair is a double-index mixe
which explains why the sums forL andN range only over this one type. In the remainder of this sect
we express all terms in the sums by formulas involving the the centers and radii of the given a
orthogonal disks. Formulas for theA∗ are given in Eqs. (3), (5) and (9), formulas for theP∗ are given in
Eqs. (4), (6) and (10), and formulas for theLij andNij are given in Eqs. (7) and (8).

Disks. A single-index mixed cellµi is obtained by shrinking the Voronoi polygonνi by a factor 1/2
towards the centerzi of the corresponding diskDi . Its intersection with the body isµi ∩Bi , and we recall
thatBi is obtained by shrinkingDi by a factor 1/

√
2 towards the same pointzi. We get the same by firs

growingDi toDi,ri = (zi,
√

2ri), then intersectingνi with Di,ri , and finally shrinking the intersection b
a factor 1/2. This is illustrated in Fig. 4. Recall thatAi andPi are the area of the body and the leng
of the skin, both clipped to withinµi . There is more than one way to compute the two, and we ch
to use inclusion-exclusion, as described in [9]. To explain this, we introduce thestar of zi in Kri , which
contains all simplices that containzi , and thelink, which contains all faces of simplices in the star t
do not containzi ,

Stri zi = {τ ∈Kri | zi � τ }, Lkri zi = {σ ∈Kri | zi �� σ � τ ∈ Stri zi}.
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Fig. 4. The light shaded intersection of the Voronoi polygon with the grown disk is similar to the dark shaded interse
the mixed cell with the shrunken disk.

We note that the(−1)-dimensional simplex,∅, is necessarily an element of the link. For each simp
σ ∈ Lkri zi , consider the piece of the circleCi,ri = bdDi,ri in the influence regions of the disksDj,ri that
spanσ ,

Cσi,ri = {x ∈ Ci,ri | πj(x)� πi(x),∀zj � σ }.
For example,C∅

i,ri
= Ci,ri , andC

{zj }
i,ri

is the arc on the other side of the line separatingνi andνj . Similarly,
letDσ

i,ri
be the piece of the diskDi,ri in the influence regions of theDj,ri , with zj � σ . Analytic formulas

for the length and area of these pieces are not difficult to compute. The portions insideνi can be written
as alternating sums of these pieces, and we get the area and the perimeter insideµi after appropriate
scaling:

Ai = 1

4

∑
σ

(−1)dimσ+1 area
(
Dσ
i,ri

)
, (3)

Pi = 1

2

∑
σ

(−1)dimσ+1 length
(
Cσi,ri

)
. (4)

Both sums range over all simplicesσ in the link of zi in Kri . We get the first terms in the expression
A andP in the Size Theorem by summing theAi andPi over all single-index mixed cellsµi .

Hyperbolas. A double-index mixed cellµij is obtained by shrinking the Minkowski sum of the tw
corresponding Voronoi and Delaunay edges by a factor 1/2 towards the focuszij of the corresponding
hyperbola. This focus is also the intersection point of the lines spanned by the edges,zij = affσij ∩affνij .
The points on the line of the Delaunay edge are centers of disks in the shrunken affine hull ofDi and
Dj . We translate and rotate the configuration such thatσij lies on the (horizontal)x1-axis andνij lies
on the (vertical)x2-axis of our Cartesian system, as drawn in Fig. 5. In this normalized form,zij lies
at the origin and the equation of the hyperbolaSij is −x2

1 + x2
2 = gij . We compute the length and th

area it bounds insideµij by integration. Assumingzij ∈ µij , we consider the upper right quadrant, wh
is a rectangle[0,w] × [0, h], with w = ‖zij − zj‖/2 andh = ‖zij − zijl‖/2. Assuminggij � 0, we get
x2 = (x2

1 + gij )
1/2 as a real valued function over the entire interval 0� x1 �w. Assumingh2 �w2 + gij ,

the area ofBij inside the upper right quadrant is
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Fig. 5. The hyperbola within the mixed cell is the envelope of the shrunken disks in the affine hull ofDi andDj .

Aur
ij =

w∫
x1=0

√
x2

1 + gij dx1 = 1

2

[
x1

√
x2

1 + gij + gij ln
(
x1 +

√
x2

1 + gij

)]w
0

= 1

2

(
wH + gij ln

w+H√
gij

)
, (5)

whereH = (w2 +gij )1/2 is the value ofx2 for x1 =w. The length of the hyperbola within the upper rig
quadrant ofµij is

P ur
ij =

w∫
x1=0

√
1+

(
dx2

dx1

)2

dx1 =
w∫

x1=0

√
2x2

1 + gij

x2
1 + gij

dx1 = √
gij

w/
√
gij∫

t=0

√
2t2 + 1

t2 + 1
dt, (6)

where we definet = x1/
√
gij to get the last line. The result is an example of an elliptic integral, whic

analytically not soluble [3], but for which fast numerical routines have been developed and are av
as part of public numerical software packages.

In the configuration drawn in Fig. 5, the total areaAij and perimeterPij can be obtained by adding th
portions in the four quadrants. Within each quadrant, the computations are symmetric, except for
modification necessary in the lower right quadrant, in which the hyperbola does not reach the rig
of the rectangle. We now give an analysis of all generic cases and show thatAij andPij are generally
sums of four terms each, although some of the terms can be negative. We distinguish config
by considering the age of the hyperbola and the signed distances of the focus from the four sid
positive age,Bij is connected and sandwiched between the upper and lower branches of the hyp
as in Fig. 5, while for negative age,Bij consists of two regions separated by the left and right bran
of the hyperbola. After a rigid motion that moves the focus to the origin and the Delaunay edge o
horizontal coordinate axis, the mixed cell is a rectangle[−wij ,wji] × [−hij , hji]. The lines spanned b
the four sides decompose the plane into nine regions, and we distinguish configurations depen
which of these regions contains the origin. In each case, we compute the area and perimeter by s
the portions inside four axis-aligned rectangular boxes, each one defined by the origin and on
four corners ofµij . To get the correct result, we take the measurements inside a box positive or n
depending on whether the two correspondingw- andh-values have the same or different signs. Wh
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we compute the area and perimeter inside a box, we distinguish between the case in which the defining
corner belongs to the body, and the complementary case in which it does not. Finally, we get theAij and
Pij by summing the results for the four quadrants. We get the second terms in the expressions forA and
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P in the Size Theorem by summing theAij andPij over all double-index mixed cellsµij .

Boundary of mixed cells. The computations ofLij andNij are similar. Consider the intersection of t
four sides ofµij with the body, or equivalently withBij , as illustrated in Fig. 6. Each side intersectsBij
in a line segment or the complement of a line segment, and we useWij ,Wji ,Hij andHji to denote their
lengths. Each intersection has zero, one or two endpoints in the interior of the corresponding sideµij ,
and we letEij , Eji , Fij andFji be these numbers. With this notation, we have

Lij =Wij +Wji +Hij +Hji, (7)

Nij =Eij +Eji + Fij + Fji . (8)

We computeLij andNij using the filtrations of the Delaunay triangulation and the Voronoi diagram
the reasoning illustrated in Fig. 4,Hij is half the length of the intersection between the Voronoi e
νij and the diskDi,ri . The length of this intersection can be computed by inclusion-exclusion bas
whether or notσij and the two trianglesσijk andσijl that share it belong toKri . Recall thatFij is the
number of endpoints of that intersection in the interior ofνij . This is also 2 minus the number of triangl
that shareσij and belong toKri . Similarly, we getHji andFji by switching i and j . Furthermore,
we getWij , Wji , Eij andEji the same way from the beta filtration, keeping in mind that it present
complement, so we perform complementary measurements. Finally, we getL andN in the Size Theorem
by summing theLij andNij over all double-index mixed cellsµij .

Disk complements. A triple-index mixed cellµijk is obtained by shrinking the Delaunay triangleσijk
by a factor 1/2 towards the centerzijk = yι of the corresponding orthogonal diskUι. Its intersection with
the body isµijk = Bijk , and we recall thatBijk is obtained by shrinkingUι by a factor 1/

√
2 towards

the same pointzijk and taking the complement. Similar to the single-index case, we get the same b

Fig. 6. Notation for the length of rectangle sides
clipped within the body and for the distances of the
focus from the four sides.

Fig. 7. The light shaded intersection of the
Delaunay triangle with the complement of
the grown orthogonal disk is similar to the
dark shaded intersection of the mixed cell
with the complement of the shrunken orthog-
onal disk.
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growingUι toUι,sι = (yι,
√

2sι), then intersectingσijk with Uι,sι , and finally shrinking the intersection by
a factor 1/2. This is illustrated in Fig. 7. We use again inclusion-exclusion to compute the lengthPijk of
the skin and the areaAijk of the body withinµijk . Consider the star and the link ofyι = νijk ,

noi

g
e

s
n
a

e
ertices
e

esent a
ently in

of

e the
Stsι yι = {υ ∈ Vsι | yι � υ}, Lksι yι = {ν ∈ Vsι | yι �� ν � υ ∈ Stsι yι}.
Note again that the empty Voronoi polygon,∅, is necessarily an element of the link. For each Voro
vertex, edge and polygonν ∈ Lksι yι, let Cνι,sι be the piece of the circleCι,sι = bdUι,sι in the influence
regions of the disksUκ,sι whose centers spanν. Similarly, letUν

ι,sι
be the piece of the diskUι,sι in the

influence regions of the disksUκ,sι with yκ � ν. The portions insideσijk can be written as alternatin
sums of these pieces, and we get the area and the perimeter insideµijk after scaling and taking th
complement:

Aijk = area(µijk)− 1

4

∑
ν

(−1)dimν+1 area
(
Uν
ι,sι

)
, (9)

Pijk = 1

2

∑
ν

(−1)dimν+1 length
(
Cνι,sι

)
. (10)

Both sums range over all Voronoi vertices and edgesν in the link of yι in Vsι . We note that these sum
can be simplified by replacing paths in the link by single edges. Specifically, each Voronoi polygoνi in
the star contributes an open path of edges and vertices to the link ofyι, and this path may be replaced by
single edge connecting the two ends. This replacement is akin to triangulatingνi in such a way that non
of the diagonals ends atyι. The replacement does not change the result of the sum because all v
on the path define bisectors that pass through the cornerzi of the Delaunay triangle. Finally, we get th
third terms in the expressions forA andP in the Size Theorem by summing theAijk andPijk over all
triple-index mixed cellsµijk .

4. Derivatives

In this section, we give a complete description of the area and perimeter derivatives of a body.

Results. We begin by stating the results. Since the complete statements are unwieldy, we pr
generic formulation of the derivatives that can be developed using substitutions given subsequ
this section.

Derivative Theorem. LetX be the area or perimeter function of the body defined by a collectionn
disks with statez ∈ R

3n. Its derivative isDXz(t)= x · t, where[
x3i+1

x3i+2

]T

= dXi
dzi

+
∑
j

dXij
dzi

+
∑
j,k

dXijk
dzi

, x3i+3 = dXi
dr2
i

+
∑
j

dXij
dr2
i

+
∑
j,k

dXijk
dr2
i

,

for all 0� i < n.

We write a for x if X = A is the area function, andp for x if X = P is the perimeter function. In
both cases, the sums in the theorem range over all verticesσj and all edgesσjk in the link of σi in the
Delaunay triangulation ofD. Some of the terms might be zero, and an efficient way to determin
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Fig. 8. The matrices are labeled by the equations that can be substituted to give the derivatives of the area and the
with respect tozi in the first and with respect tor2

i in the second row.

non-zero ones uses the alpha and beta filtrations, as described in Section 2. For each single, do
triple index∗, we get the derivatives by separating the contributions of sliding and aging,

dX∗
dzi

= dX∗
dz∗

dz∗
dzi

+ dX∗
dg∗

dg∗
dzi

,
dX∗
dr2
i

= dX∗
dz∗

dz∗
dr2
i

+ dX∗
dg∗

dg∗
dr2
i

.

The derivatives with respect tozi are given in Eqs. (14)–(19), and the ones with respect tor2
i are given in

Eqs. (20)–(25). The derivatives ofA∗ are given in Eqs. (26)–(31), and the derivatives ofP∗ are given in
Eqs. (32)–(37). As illustrated in Fig. 8, the terms in the above equations are matrices. In compu
formulas, we exploit the linearity of the derivative and consider each disk separately. We also dist
between the motion of a disk, which is caused by varying its center, and its growth, which is cau
increasing or decreasing its radius. As can be seen from the statement of the Derivative Theo
look at each mixed cell separately, and we determine how motion and growth affect the mixed ce
the skin and body within the cells. The change of the skin and body is the accumulation of the c
that happen within individual mixed cells. We begin with a detailed look at how a hyperbola depe
the two disks that define it.

Focus and age of a hyperbola.We express the focus and age of a hyperbola in terms of the cente
radii of the two defining disks,Di andDj . See Fig. 9 for the notation used for the computations. W
2rij be the distance between the intersection points of the two circles, which is imaginary if the di
disjoint. The square distances of the centers to the bisector are 4w2

ij = r2
i − r2

ij and 4w2
ji = r2

j − r2
ij . We

takewij andwji as positive or negative such thatζij = 2wij + 2wji is the Euclidean distance betweenzi
andzj . We haver2

i − r2
j = 4w2

ij − 4w2
ji = ζij (2wij − 2wji). From this, we get equations for the distan

betweenzi and the bisector, for the focus of the hyperbola, which iszi plus 2wij times the unit vecto
from zi to zj , and for the age, which isr2

ij /2:

2wij = 1

2

(
ζij + r2

i − r2
j

ζij

)
, (11)

zij = 1

2

(
(zi + zj )−

r2
i − r2

j

ζ 2
ij

(zi − zj )

)
, (12)

gij = 1

8

(
2
(
r2
i + r2

j

) − ζ 2
ij − (r2

i − r2
j )

2

ζ 2
ij

)
. (13)
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Fig. 9. Two disks define various lengths and
angles.

Fig. 10. The solid lines bound and decompose the
initial body. The dashed lines indicate how the body
and its decomposition change as a reaction to the
motion ofDi .

Let ϕij = arccos2wij
ri

be the angle atzi , as shown in Fig. 9. This is also the angle between the bise
and the tangent at the point where the bisector intersects the circle. It follows thatϕij + ϕji is the angle
between the two circles at each intersection point.

Propagation of motion. As illustrated in Fig. 10, the motion of a diskDi affects the body within al
mixed cells whose indices includei. No other foci and ages change, although the boundary betwee
first and second layers of mixed cells aroundµi slide. We may ignore the sliding of any edge in the mix
complex because, to a first order of approximation, the gain and loss on its two sides cancel eac
However, we cannot neglect the sliding and aging of the circles and hyperbolas within the mixe
We consider the three types of mixed cells in turn.

Casep = 0. The circle withinµi slides the same way the diskDi moves, and the age of the circ
remains constant. Hence

dzi
dzi

=
[

1 0
0 1

]
, (14)

dgi
dzi

= [ 0 0] . (15)

Case p = 1. The hyperbola withinµij both slides and ages. We compute the rates of t
changes in the orthonormal coordinate frame spanned byuij = (zi − zj )/‖zi − zj‖ and vij = (zijk −
zijl)/‖zijk − zijl‖, which is shown in Fig. 6. Assumingzj is the origin, we havezi = (ζij ,0) and
zij = (2wji,0) in this frame. The derivative of the focus with respect to the moving center is

dzij
dzi

=
[

dzji
dζij

,
dzji
dηij

]
·
[
uT
ij

vT
ij

]
, (16)

where

dzij
dζij

= d2wji
dζij

· uij =
(

1

2
+ r2

i − r2
j

ζ 2
ij

)
· uij , dzij

dηij
= 2wji

ζij
· vij =

(
1

2
− r2

i − r2
j

ζ 2
ij

)
· vij
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are obtained from Eq. (11), after switchingi andj . The matrix on the right in Eq. (16) transforms the
input vector into the coordinate frame spanned byuij andvij . The age of the hyperbola is insensitive to
sliding in thevij -direction, so we get the derivative of the age by differentiating Eq. (13) with respect

fined
,
n

to
right

tion
to ζij :

dgij
dzi

= 1

4

(
−ζij + (r2

i − r2
j )

2

ζ 3
ij

)
· uT

ij . (17)

Casep = 2. The circle withinµijk both slides and ages. The sliding is restricted to the bisector de
by Dj andDk. We may compute the new focuszijk by projecting the new focuszij onto that bisector
with the direction of the projection being orthogonal to the new edgeσij . We again separate the motio
of zi alonguij from that alongvij and writeηij for the coordinate ofzi along thevij -direction. We get

dzijk
dzi

=
[

dzijk
dζij

,
dzijk
dηij

]
·
[
uT
ij

vT
ij

]
, (18)

where

dzijk
dζij

= d2wji
dζij

· uij + tanψijk
d2wji
dζij

· vij =
(

1

2
+ r2

i − r2
j

ζ 2
ij

)
(uij + tanψijk · vij ),

dzijk
dηij

= −2hij
ζij

(uij + tanψijk · vij ),

ψijk is the angle fromσij to the bisector defined byDj andDk , and 2hij is the distance betweenzij and
zijk . The relation for the derivative with respect toηij is illustrated in Fig. 11. We may use Eq. (11)
express 2hij in terms of radii and distances defined by orthogonal disks. The first matrix on the
side of Eq. (18) has rank one becausezijk slides along a fixed line that is independent of the mo
of zi . To compute the rate of aging, we consider the diskUι = (yι, sι) orthogonal toDi , Dj andDk.
We have‖yι − zj‖2 = 4w2

jk + 4h2
jk , since 2wjk = ‖zj − zjk‖ and 2hjk = ‖zjk − yι‖ are the distance

Fig. 11. The motion ofzi normal to the edge
σij = zizj causes the focuszijk to slide along the
bisector defined byDj andDk .

Fig. 12. The solid lines bound and decompose the initial
body. The dashed lines indicate how the body and its
decomposition change as a reaction to the growth ofDi .
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components normal and parallel to the bisector defined byDj andDk , which containsyι = zijk . This
impliess2

ι = −r2
j + 4w2

jk + 4h2
jk. Since the derivative of the age is minus one half that ofs2

ι , and sincerj
andwjk remain constant, we have

l
e

ed
ain,

ting

e

dgijk
dzi

= −2hjk
d2hjk
dzi

. (19)

The motion ofDi pushesyι along the bisector, which implies that the rate at which 2hjk changes is equa
to the rate at whichyι slides. As illustrated in Fig. 11, that rate is 1/cosψijk times the rate at which th
projection ofyι slides alongσij . Using Eq. (18), we get

d2hjk
dzi

= 1

cosψijk

[
d2wji
dζij

,−2hij
ζij

]
·
[
uT
ij

vT
ij

]
.

Propagation of growth. We grow a diskDi by varying its square radius. Similar to motion, all mix
cells whose indices includei change and contribute to the derivative. This is illustrated in Fig. 12. Ag
we consider the three types of mixed cells in turn.

Casep = 0. The circle withinµi does not slide but it ages at the rate half the growth rate. Hence

dzi
dr2
i

=
[

0
0

]
, (20)

dgi
dr2
i

= 1/2. (21)

Casep = 1. The hyperbola withinµij both slides and ages. The first rate is obtained by differentia
Eq. (12), and the second by differentiating Eq. (13):

dzij
dr2
i

= − 1

2ζij
· uij , (22)

dgij
dr2
i

= 1

4

(
1− r2

i − r2
j

ζ 2
ij

)
. (23)

Casep = 2. The circle withinµijk both slides and ages. As before, we use the fact thatzijk is the
projection ofzij onto the bisector defined byDj andDk in a direction orthogonal toσij . Using Eq. (22),
we get

dzijk
dr2
i

= − 1

2ζij
· uij − tanψijk

2ζij
· vij . (24)

We compute the rate of aging by considering the diskUι = (yι, sι) orthogonal toDi , Dj andDk , as
before. We again haves2

ι = −r2
j + 4w2

jk + 4h2
jk . The growth ofDi pushesyι along the bisector, and th

derivative of 2hjk with respect tor2
i is the length of the derivative ofzijk with respect tor2

i , which is
given in (24). Finally, we use that the derivative of the age is minus one half that ofs2

ι . Sincerj andwjk
remain constant, the derivative of the age is therefore minus 2hjk times d2hjk/dr2

i , which is

dgijk
dr2
i

= −2hjk
1+ tan2ψijk

4ζ 2
ij

. (25)
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Elementary derivatives for area.As before, we consider the three types of mixed cells in turn.
Casep = 0. Within a mixed cellµi , the body is a disk and the skin is a circle. The boundary of

µi ∩ Bi consists of circular arcs and straight line segments. Using the notation of Section 3, the length∑
les they

te that
ing

hat of

of
perbola
e line

use this
observe

o
us 1
sitions.

-

x

of that boundary isPi + j Hij , wherePi is the total length of the arcs, andHij is the length of the
shrunken Voronoi edgeνij clipped to withinBi . When we slide the center along a vectorti , then the area
of Bi within µi changes at a rate that depends on the lengths of the line segments and the ang
form with ti . Specifically, that rate is(dAi/dzi) · ti , with

dAi
dzi

=
∑
j

(
Hij · uT

ij

)
. (26)

Note that the area does not change ifBi contains the entire mixed cell. In this case, we have
∑
Hijuij = 0

by Minkowski’s theorem for convex polygons. To compute the rate of change while aging, we no
the area of the sector spanned byµi ∩ Si is the area of the entire disk times the fraction of the bound
circle insideµi , which is

√
giPi/2. With respect to age, the derivative of that sector is the same as t

µi ∩Bi , which is therefore

dAi
dgi

= Pi

4
√
gi
. (27)

Casep = 1. We consider the body within a mixed cellµij , as illustrated in Fig. 6. The boundary
µij ∩Bij consists of hyperbola arcs and straight line segments. When we slide the focus of the hy
along a vectortij , then the area withinµij changes at a rate that depends again on the lengths of th
segments and the angles they form withtij . Specifically, that rate is(dAij /dzij ) · tij , with

dAij
dzij

= (Hji −Hij ) · uT
ij + (Wji −Wij ) · vT

ij . (28)

Note that Eq. (28) can be decomposed into the terms contributed by each side of the rectangle. We
to compute the derivative in the somewhat more complicated case of aging the hyperbola. We first
that aging and scaling affect the hyperbola in the same way, that is,x2

1 − x2
2 + (gij + ε)= 0 defines the

same hyperbola as doesc2x2
1 −c2x2

2 +gij = 0 if c= √
gij /(gij + ε). The only difference between the tw

transformations is that aging does not affect the mixed cell while scaling does. The new area is th/c2

times the old area minus what we lose by moving the sides of the mixed cell back to the original po
Ignoring higher-order terms, that loss is(1

c
− 1)Yij , whereYij = Hijwij +Hjiwji +Wijhij +Wjihji.

We have 1
c2 = 1 + ε/gij and, again ignoring higher-order terms,1

c
− 1 = ε/2gij . To a first order

of approximation, the area difference is thereforeε
gij
Aij − ε

2gij
Yij . We get the derivative by dividing

by ε:

dAij
dgij

= Aij − Yij /2

gij
. (29)

We note that forgij , the hyperbola degenerates to a pair of lines. In this case,Aij is the area of the double
cone clipped to within the mixed cell. The four rectangles, whose signed areas add up toYij cover twice
as much area, which impliesAij − Yij /2= 0.

Casep = 2. The derivatives for triple-index mixed cellsµijk are similar to the ones for single-inde
mixed cells. Assuming the sequenceijk enumerates the vertices in a clockwise order,Wij , Wjk and
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Wki are the lengths of the three edges clipped to withinBijk . By translating Eqs. (26) and (27) to the
triple-index case, we get

∑

skin

ute the

te
form

us

ds

ulating
or
e

dAijk
dzijk

=
ab

(
Wab · vT

ab

)
, (30)

dAijk
dgijk

= Pijk

4
√
gijk

, (31)

where the first sum ranges over allab ∈ {ij, jk, ki}.

Elementary derivatives for perimeter.All perimeter derivatives depend on the angles at which the
meets the edges of the mixed complex. We see in Fig. 9 that the circle bounding the diskDi meets the
Voronoi edgeνij at an angleϕij = arccos(2wij /ri). After shrinkingνi by a factor 1/2 toµi and the circle
by a factor 1/

√
2 toSi , the angle becomesδij = arccos(

√
2wij /ri). Symmetrically, we letθij be the angle

at which the circleSijk meets the shrunken Delaunay edgeσij that is an edge of the mixed cellµijk . Since
the skin is tangent continuous, the hyperbolaSij meets the same edges at supplementary anglesπ − δij
andπ − θij , on the respective other sides. All angles are measured outside the body. We comp
derivatives by considering the three types of mixed cells in turn.

Casep = 0. Locally withinµi , the skin is the same as the circleSi , which intersects each edge ofµi
in zero, one or two points. When we slide the center along the vectorti , the perimeter changes at a ra
that depends on the angles at whichSi meets the boundary, and on the angles the boundary edges
with ti . Specifically, that rate is(dPi/dzi) · ti , with

dPi
dzi

=
∑
j

(
Eij

sinδij
· uT

ij

)
. (32)

Similarly, the rate of aging depends on the angles at whichSi meets the boundary ofµi , but it also
depends on the perimeter withinµi , which isPi . The contribution of each intersection point is min
one over the sine of the angle times the derivative of the radius. Sinceri = √

2gi , that derivative is
dri/dgi = 1/

√
2gi . This implies

dPi
dgi

= Pi

2gi
−

∑
j

Eij√
2gi sinδij

. (33)

Casep = 1. The hyperbolaSij intersects the left, right, lower and upper sides of the mixed cellµij in
Eij ,Eji , Fij andFji points. The corresponding angles areπ − δij , π − δji , π − θij andπ − θji . When we
slide the focus of the hyperbola along a vectortij , the perimeter withinµij changes at a rate that depen
on these angles and on the angles the sides form withtij . Specifically, the rate is(dPij /dzij ) · tij , with

dPij
dzij

=
(
Eji

sinδji
− Eij

sinδij

)
· uT

ij +
(
Fji

sinθji
− Fij

sinθij

)
· vT

ij . (34)

To compute the derivative of the perimeter with respect to aging, we use again the idea of sim
aging by scaling and shrinking. To increase the age togij + ε, we scale the hyperbola by a fact
1
c

= √
1+ ε/gij . This increases the perimeter to1

c
Pij . To correct for the scaling of the mixed cell, w
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move the four sides back to their original positions. In doing this, we lose some of the perimeter. To first
order, that loss is(1

c
− 1)Zij , with

the

e

ex

s. (32)
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constant
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p. Even
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rent
Zij = Eijwij

sinδij
+ Ejiwji

sinδji
+ Fijhij

sinθij
+ Fjihji

sinθji
.

To first order, 1/c is equal to 1+ ε/2gij . The difference between the perimeter before and after
transformation is therefore approximatelyε2gij

(Pij −Zij ). We get the derivative by dividing byε, which
gives

dPij
dgij

= Pij −Zij

2gij
. (35)

We note that forgij = 0, all angles areπ/2 or 3π/2. Therefore,Zij is the perimeter of the double-con
clipped to within the mixed cell, which impliesPij −Zij = 0.

Casep= 2. The derivatives for triple-index mixed cellsµijk are similar to the ones for the single-ind
mixed cells. Assuming again thatijk enumerates the vertices of the triangle in a clockwise order,Fij ,
Fjk , andFki are the numbers of points at which the skin meets the three edges. By translating Eq
and (33) to the triple-index case, we get

dPijk
dzijk

=
∑
ab

(
Fab

sinθab
· vT

ab

)
, (36)

dPijk
dgijk

= Pijk

2gijk
−

∑
ab

Fab√
2gijk sinθab

, (37)

where both sums range over allab ∈ {ij, jk, ki}.

Continuity. We study the continuity by inspecting Eqs. (14)–(37), which flesh out the Deriv
Theorem. Both the area and the perimeter derivatives are continuous almost everywhere a
measure-zero subsets ofR

3n at which they are discontinuous. These subsets are smaller than th
for the area and perimeter derivatives of a union of disks, which are studied in [6]. Furthe
the discontinuities are milder for the body than they are for the union. This is not surprising
the difference between the two are the blending regions, which are added to the body to so
transitions caused by the motion or growth of the input disks. There are potential discontinuitie
when two disk centers approach each other, when the skin meets an edge of the mixed c
tangentially, and when the age of a circle or hyperbola vanishes. We discuss the three c
turn.

Caseζij → 0. Of the twelve equations, Eqs. (14)–(25), eight have the distance between two cen
the denominator. Some of these occurrences are harmless because the numerators are
zero or because the body has an empty intersection with the corresponding mixed
Some occurrences, however, seem to remain and may cause the derivatives to blow u
if they do not blow up, the unit vectorsuij and vij exhibit locally discontinuous behavio
and may lead to different limits if the points of discontinuity are approached from diffe
directions.
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Casesinδij ,sinθij → 0. The six equations (32)–(37) have the sine of the angle formed by a Delaunay
and a Voronoi edge in the denominator. Although the corresponding quotients blow up when this
angle goes to zero or toπ , the quotients cancel each other and do not cause any discontinuities
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r or not
ses. In
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in the perimeter derivative. To see this, we note that sinδij or sinθij vanish only ifSi or Sijk
touches an edge of the mixed complex tangentially. When the circle grows further, the
the other side of that edge gets replaced by a piece of a hyperbola. That piece corre
to a blowing up quotient in the derivative ofPij that cancels the one in the derivative ofPi
or Pijk .

Caseg∗ → 0. Each of the six equations (27), (29), (31), (33), (35) and (37) either has
√
g∗ or g∗ in the

denominator. The numerators vanish at the same time, leading to undefined quotients0
0. Some

of these quotients have finite limits, but some blow up. The quotients in Eqs. (33) and (37
up the fastest, but even their speed is only proportional to one over

√
g∗. If we differentiate with

respect to the radius rather than the age, we get another factor dr2
i /dri = 2ri , which off-sets

the explosive growth in all six cases. It follows that doing so eliminates the age as a sou
discontinuities.

In summary, the subset ofR
3n where the area and perimeter derivatives are discontinuous has dime

3n− 1, but if we differentiate with respect to radii instead of square radii, the dimension of that su
at most 3n− 3.

5. Discussion

This paper presents analytic formulas for the area, the perimeter, the area derivative, and the p
derivative of the body defined by a finite collection of disks in the plane. Given the filtrations o
Delaunay triangulation and of the Voronoi diagram, these formulas can be evaluated in time prop
to the number of disks. However, the formulas are fairly involved, and it would be worthwhile to do
check them, possibly experimentally by comparing the derivatives with changes computed by eva
the area and perimeter formulas.

Although this paper completely settles the question it studies, there is much further work stil
done. The generalization of the formulas from two to three dimensions is perhaps the most import
step. It would also be interesting to analyze the second derivatives, which could be useful in acce
the global design cycle of topology optimization. Finally, we note that three-dimensional bodi
natural representations of molecular conformations. It would thus be interesting to see whethe
the formulas developed in this paper are useful in the simulation of dynamic molecular proces
this context, we mention the weighted area derivative of a union of balls, which is used to estim
hydrophobic effect in implicit representations of the solvent [4]. That derivative has discontinuities
a measure-zero subset of the state space. We expect that the derivative of the area of a skin su
fewer and milder discontinuities, which is an advantage in large scale simulations.

Appendix A

Table A.1 provides a list of notation used in this paper.
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Table A.1
Notation for geometric concepts, functions, variables

D,F = ⋃
D collection, union of disks α,Di,α,Dα growth parameter, disk, collection⋃

(2001)

04.
utational
U,G= U collection, union of disks β,Ui,β ,Uβ growth parameter, disk, collection
Di = (zi , ri ) disk with center and radius Fα = ⋃

Dα union of grown disks
Uι = (yι, sι) orthogonal disk Gβ = ⋃

Uβ union of grown disks
Ci,Cι circle boundingDi,Uι Kα,Vβ α-complex,β-complex
πi,πι power distance fromDi,Uι Ai,Aij ,Aijk area within mixed cell

νi , νij , νijk Voronoi polygon, edge, vertex Pi,Pij ,Pijk perimeter within mixed cell
σi , σij , σijk Delaunay vertex, edge, triangle Lij ,Wij ,Hij clipped total length, width, height
µi,µij ,µijk mixed cell Nij ,Eij ,Fij number of intersections with skin
hij , hji heights of quadrant δij , θij angles at the intersection points
wij ,wji widths of quadrant ψijk angle fromσij to νjk
uij , vij orthonormal coordinate frame z, t ∈ R

3n state, state velocity vector
ζij , ηij coordinates in theuij vij -frame x,a,p ∈ R

3n gradient ofX,A,P
Si , Sij , Sijk circle, hyperbola, circle A :R3n → R area function
Bi,Bij ,Bijk region bounded bySi, Sij , Sijk P :R3n → R perimeter function
zi , zij , zijk focus ofSi , Sij , Sijk DAz area derivative at statez
gi , gij , gijk age ofSi , Sij , Sijk DPz perimeter derivative at statez
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