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Abstract

The main goal of this contribution is to provide a simple method for constructing transversely isotropic polyconvex
functions suitable for the description of biological soft tissues. The advantage of our approach is that only a few param-
eters are necessary to approximate a variety of stress–strain curves and to satisfy the condition of a stress-free reference
configuration a priori in the framework of polyconvexity. The proposed polyconvex stored energies are embedded into
the concept of structural tensors and the representation theorems for isotropic tensor functions are utilized. As an
example, the medial layer of a human abdominal aorta is investigated, modeled by some of the proposed polyconvex
functions and compared with experimental data. Hereby, the economic fitting to experimental data, and hence the easy
handling of the functions is shown.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The understanding of living matter as a mechanical system requires appropriate mechanical tests and re-
lated efficient constitutive models. Several types of, e.g., soft biological tissues are frequently characterized as
fiber–reinforced composites, and the basic idea is to formulate constitutive models which incorporate some
histological information, i.e. the non-collagenous matrix, collagen fibers among others. The collagen fibers,
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e.g., induce the anisotropy in the mechanical response such that the overall response of arterial tissue is
orthotropic and is accounted for by the constitutive theory of fiber–reinforced solids. The anisotropy can
be represented via the introduction of a so-called structural tensor, which allows a coordinate-invariant for-
mulation of the constitutive equations. For an introduction to the concept of structural tensors, also denoted
as the concept of integrity bases, used for the construction of isotropic and anisotropic tensor functions, see,
e.g., Spencer (1971), Boehler (1987), Betten (1987) and Zheng and Spencer (1993a,b).

In the framework of computer simulations with Newton type methods the mathematical treatment of the
underlying boundary-value problems is based on the direct methods of the calculus of variations. In this
context the constitutive equations, represented by the stored-energy function, have not only to be able
to reflect the material properties, but should satisfy some generalized convexity conditions, too, in order
to obtain a physically reasonable and numerically stable material model.

The existence of minimizers of some variational principles in finite elasticity is based on the concept of
quasiconvexity, introduced by Morrey (1952). This inequality condition is rather complicated to handle
since it is an integral inequality. Thus, a more important concept for practical use is the notion of polycon-
vexity in the sense of Ball (1977a,b), in this context see also Marsden and Hughes (1983) and Ciarlet (1988).
For isotropic material response functions there exist some well-known models, e.g., the Ogden-, Mooney–
Rivlin- and Neo–Hooke-type models, which fall into this concept. It should be noted, that for isotropic
polyconvex functions of the Mooney–Rivlin-type a minimum number of four material parameters is
necessary in order to recover the classical Lamé constants of linear elasticity k and l, and to satisfy the
condition of a stress-free reference configuration, see Ciarlet (1988). For the application of the framework
of polyconvexity to nearly incompressible isotropic hyperelasticity see, e.g., Hartmann and Neff (2003),
where also the coercivity question is treated. We note that quasiconvexity together with coercivity is suffi-
cient for the existence of minimizers and that coercivity is practically only a condition on the isotropic part
of the stored energy. The extension of polyconvexity to anisotropy has been first given in Schröder and Neff
(2001). In Schröder and Neff (2003) the proof of polyconvexity of a variety of isotropic and transversely
isotropic functions is given. A polyconvex model, which is constructed in the abstract framework of these
functions, is proposed in Itskov and Aksel (2004) for the description of calendered rubber sheets showing
a marked anisotropy. The extension to polyconvex anisotropic stored-energy functions in terms of the right
symmetric stretch tensor is worked out in Steigmann (2003). It can be shown that polyconvexity of the stored
energy implies that the corresponding acoustic tensor is elliptic for all deformations, which means from the
physical point of view that only real wave speeds occur; then the material is said to be stable. For an illus-
tration of this implication in Schröder et al. (2004) a localization analysis is performed comparatively for
non-polyconvex functions and a polyconvex one. Therein it is shown that no problems with respect to mate-
rial stability occur when the polyconvex model is utilized. Note that the precise difference between the local
property of ellipticity and the non-local condition of quasiconvexity is still an active topic for research.

For stress analysis in biomechanics exponential-type laws are often used, see, e.g., Almeida and Spilker
(1998), Fung et al. (1979), Humphrey (2002), and the references therein. In Schröder et al. (2004) a poly-
convex model including the quadratic terms in the right Cauchy–Green tensor is adjusted to the media and
adventitia of an artery of a rabbit. A drawback of the two models in Schröder et al. (2004) and Itskov and
Aksel (2004) is the large number of material parameters necessary to represent the material behavior. A
materially stable constitutive model for the simulation of arterial walls has been developed in Holzapfel
et al. (2000) (with extensions to the inelastic domain Gasser and Holzapfel, 2002; Holzapfel et al., 2002),
where each layer of the artery is modeled as a fiber–reinforced material. In this model the convexity of
the transversely isotropic part can be obtained by an appropriate case distinction switching the function
off in the non-convex range. This idea of a switch motivates us to extend it to other polyconvex functions
with possibly less material parameters. This is the main effort of this work, to construct polyconvex func-
tions with less material parameters, which can easily be handled and which are able to represent the basic
characteristics of soft biological tissues.
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This paper is organized as follows: in Section 2 we briefly review some terminology in non-linear con-
tinuum mechanics. Section 3 gives an insight into the concept of structural tensors and the representation
theorems for isotropic tensor functions. In Section 4 generalized convexity conditions, especially the poly-
convexity condition, are recapitulated. Furthermore, a simple construction principle for polyconvex func-
tions and the proposed polyconvex stored energies governed by this principle are given. In Section 5
experimental data of the medial layer of a human abdominal aorta is represented by a set of proposed poly-
convex functions, in order to show its practical utility. Section 6 summarizes the results.
2. Continuum mechanical foundation

The body of interest in the reference configuration is denoted by B � R3, parametrized in X, and the
current configuration by S � R3, parametrized in x. The non-linear deformation map ut : B!S at time
t 2 Rþ maps points X 2 B onto points x 2S. The deformation gradient F is defined by
FðXÞ :¼ rutðXÞ ð2:1Þ
with the Jacobian J(X): = detF(X) > 0. The index notation of F is F a
A :¼ oxa=oX A. The right Cauchy–Green

tensor is defined by
C :¼ FTF with CAB ¼ F a
AF b

Bgab; ð2:2Þ
where g denotes the covariant metric tensor in the current configuration. The standard covariant metric
tensors G and g within the Lagrange and Eulerian settings appear in the index representation GAB and
gab, respectively. Thus the contravariant metric tensors G�1 and g�1 have the index representation GAB

and gab, respectively. For the representations in Cartesian coordinates we arrive at the simple expressions
GAB = GAB = dAB for Lagrangian metric tensors and gab = gab = dab for the Eulerian metric tensors. For
the geometrical interpretations of the polynomial invariants in the following sections we often use expres-
sions based on the mappings of the infinitesimal line dX, area dA = NdA and volume elements dV. These
material quantities are mapped to their spatial counterparts dx, da = n da and dv via
dx ¼ F dX ; nda ¼ Cof ½F�N dA and dv ¼ det½F�dV . ð2:3Þ
Eq. (2.3)2 is the well-known Nanson�s formula. It should be mentioned that the argument (F,AdjF,detF),
with AdjF = (CofF)T, plays an important role in the definition of polyconvexity; this will be discussed in
detail in Section 4.

We consider hyperelastic materials which postulate the existence of a so-called stored-energy function w,
defined per unit reference volume. Reduced constitutive equations which satisfy a priori the principle of
material objectivity yield, e.g., the functional dependence w ¼ ŵðCÞ, see e.g., Truesdell and Noll (2004).
If we assume the stored-energy function to be a function of the right Cauchy–Green tensor, i.e. ŵðCÞ,
we obtain the second Piola–Kirchhoff stresses
S ¼ 2oCŵðCÞ. ð2:4Þ

The first Piola–Kirchhoff stress tensor, which plays an essential role in generalized convexity conditions is
given by P = FS. The (real) Cauchy stresses can be calculated by the transformation r = det[F]�1FSFT.

An important concept for the description of anisotropic materials is the principle of material symmetry.
Let us introduce a material symmetry group Gk with respect to a local reference configuration, which char-
acterizes the anisotropy class of the material. The elements of Gk are denoted by the unimodular tensors
iQji = 1, . . . ,n. The concept of material symmetry requires the constitutive equations to be invariant under
transformations with elements of the symmetry group, i.e.
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ŵðFQÞ ¼ ŵðFÞ 8Q 2 Gk;F. ð2:5Þ

Thus, superimposed rotations and reflections on the reference configuration with elements of the material
symmetry group do not influence the behavior of the anisotropic material. The symmetries impose several
restrictions on the form of the constitutive functions. In order to work out the explicit restrictions for the
individual symmetry groups, or more reasonably to point out general forms of the functions which satisfy
these restrictions, it is necessary to use representation theorems for anisotropic tensor functions. This allows
us to formulate the stored-energy function as an isotropic tensor function with respect to an extended ten-
sorial argument list.
3. Coordinate-invariant formulation

The main idea is the extension of Gk-invariant functions (2.5) into functions which are invariant under a
larger group, here the special orthogonal group. This implies that it is in principle possible to transform an
anisotropic constitutive function into an isotropic one through certain tensors called structural tensors,
which reflect the symmetry group of the considered material. The concept of structural tensors was first
introduced in an attractive way with important applications by Boehler in 1978–1979, although some sim-
ilar ideas might have been formulated earlier. Here we only consider anisotropic materials which can be
characterized by certain directions. That means that the anisotropy can be described by some unit vectors
a(a) and some second-order tensors M(a) defined in the reference configuration, in this context we refer to
Zheng and Boehler (1994). In the sequel, we restrict ourselves to the cases of transverse isotropy and to
materials which can be characterized by two non-orthogonal preferred directions. In these cases we are able
to express the material symmetry of the considered body by a set of second-order structural tensors. Let GM

be the invariance group of the structural tensors, i.e.
GM :¼ fQ 2 SOð3Þ;Q � n ¼ ng ð3:6Þ
with n: = {M(a)} and a = 1 for transversely isotropic and a = 1,2 for the second class. The transformations
iQji = 1, . . . ,n represent rotations and reflections with respect to preferred directions and planes. In the se-
quel, we skip the index (•)(a) if there is no danger of confusion. The last term in (3.6) characterizes the map-
ping n! Q * n: = {QTMQ}. If GM � GK , where GK is defined by (2.5), then the invariance group preserves
the characteristics of the anisotropic solid. Let us now assume the existence of a set of Gk-invariant struc-
tural tensors n. Now we can transform (2.5) into a function which is invariant under the special orthogonal
group. This leads to a scalar-valued isotropic tensor function in an extended argument list. That means
from the mechanical point of view that rotations superimposed onto the reference configuration with the
mappings X! QTX and n! Q * n for arbitrary rotations lead to the condition w ¼ ŵðF; nÞ ¼
ŵðFQ;Q � nÞ 8Q 2 SOð3Þ. Due to the concept of material frame indifference we arrive at a further reduc-
tion of the constitutive equation of the form
w ¼ ŵðC ; nÞ ¼ ŵðQTCQ;Q � nÞ 8Q 2 SOð3Þ; ð3:7Þ
which is the definition of an isotropic scalar-valued tensor function in the arguments (C,n).
For the construction of specific constitutive equations the invariants of the deformation tensor and of

the additional structural tensor are necessary. An irreducible polynomial basis consists of a collection of
members, where none of them can be expressed as a polynomial function of the others. Based on the Hilbert
theorem, cf. Gurevich (1964), there exists for a finite basis of tensors a finite integrity basis. Transverse isot-
ropy is characterized by one preferred unit direction a and the material symmetry group is defined by
Gti :¼ fI ; Qða; aÞj0 < a < 2pg; ð3:8Þ
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where Q(a,a) are all rotations about the a-axis. The structural tensor M whose invariance group preserves
the material symmetry group Gti is given by
M :¼ a� a. ð3:9Þ

The integrity basis consists of the traces of products of powers of the argument tensors, the so-called prin-
cipal invariants and the mixed invariants. The principal invariants Ik ¼ Î kðCÞ; k ¼ 1; 2; 3 of a second-order
tensor C are defined as the coefficients of the characteristic polynomial
f ðkÞ ¼ det½k1� C � ¼
X3

k¼0

ð�1ÞkIkk
n�k; ð3:10Þ
with I0 = 1. The explicit expressions for the principle invariants of the considered second-order tensor are
given by
I1 :¼ trC ; I2 :¼ tr½CofC �; I3 :¼ det C . ð3:11Þ

These invariants can also be expressed in terms of the so-called basic invariants Ji, i = 1,2,3. They are de-
fined by the traces of powers of C, i.e.
J 1 :¼ trC ; J 2 :¼ tr½C2�; J 3 :¼ tr½C3�. ð3:12Þ

These quantities are related to the principal invariants by the simple algebraic expressions
J 1 :¼ I1; J 2 :¼ I2
1 � 2I2; J 3 :¼ I3

1 � 3I1I2 þ 3I3. ð3:13Þ

Let M be of rank one and let us assume the normalization condition kMk = 1, then the additional invar-
iants, the so-called mixed invariants, are
J 4 :¼ tr½CM �; J 5 :¼ tr½C2M �; ð3:14Þ

see, e.g., Spencer (1987) and the references therein. For the construction of constitutive equations it is nec-
essary to determine the minimal set of invariants from which all other invariants can be generated. Here we
focus on polynomial invariants. The integrity basis is defined by the set of polynomial invariants which al-
lows the construction of any polynomial invariant as a polynomial in members of the given set, see, e.g.,
Spencer (1971). The polynomial basis for the construction of a specific stored-energy function w is given by
P1 :¼ fI1; I2; I3; J 4; J 5g or P2 :¼ fJ 1; . . . ; J 5g. ð3:15Þ

The bases (3.15) are invariant under all transformations with elements of Gti. As a result the polynomial
functions in elements of the polynomial basis are also invariant under these transformations. For the
stored-energy function we assume the general form
w ¼ ŵðLijLi 2 PjÞ þ c for j ¼ 1 or j ¼ 2. ð3:16Þ
In order to satisfy the non-essential normalization condition w(1) = 0 we have introduced the constant
c 2 R.
4. Polyconvex stored-energy functions

4.1. Generalized convexity conditions

A very important semiconvexity condition is proposed by Morrey (1952): the quasiconvexity. This inte-
gral inequality condition implies that the state of minimum energy for a homogeneous body under homo-
geneous Dirichlet boundary conditions is itself homogeneous. If the stored energy is not quasiconvex, the
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initially homogeneous material body could break down in coexisting stable phases, see Krawietz (1986),
Ball and James (1992), Silhavý (1997), Müller (1999), and the references therein. Furthermore, the quas-
iconvexity inequality together with coercivity represents the sufficient condition for the existence of mini-
mizers. Since the quasiconvexity condition is an integral inequality and, therefore, a non-local condition,
it is rather complicated to check. A local, and hence a more tractable concept is the notion of polyconvexity
in the sense of Ball (1977a,b). For finite-valued, continuous functions we may recapitulate the important
implications, that polyconvexity implies quasiconvexity and this implies rank-one convexity. The converse
implications are not true, see, e.g., Dacorogna (1989) and Silhavý (1997). Considering smooth stored-
energy functions the (strict) rank-one convexity implies the (strict) Legendre–Hadamard condition. This
is a suitable condition in order to obtain physically reasonable material models, because hereby, the
existence of real wave speeds are guaranteed. In this context see also Schröder et al. (2004). Recapitulating,
a smooth polyconvex stored-energy function ensures automatically the fulfillment of the quasiconvexity-,
the rank-one convexity- and the Legendre–Hadamard condition, without obtaining the physical drawbacks
of the convexity condition.

Polyconvexity: F # W(F) is polyconvex if and only if there exists a function P : R3�3 � R3�3 � R 7! R (in
general non-unique) such that
W ðFÞ ¼ P ðF;Adj½F�; det½F�Þ

and the function R19 7!R, ðF;Adj½F�; det½F�Þ 7! P ðF;Adj½F�; det½F�Þ is convex for all points X 2 R3.

In the above definition and in the sequel we omit the X-dependence of the individual functions if there is
no danger of confusion. The adjugate of F is defined by Adj[F] = det[F]F�1 for all invertible F.

4.2. Stored-energy function for soft biological tissues

Generally, from the mechanical point of view, soft biological tissues may be characterized as an isotropic
non-collagenous matrix, the so-called ground substance, in which collagen fibers are embedded. While in,
e.g., ligaments or tendons the fibers are arranged mainly in one direction, the fibers in, e.g., arterial walls are
considered to be oriented in two directions helically wound along the arterial axis and symmetrically dis-
posed with respect to the axis. In this case the material behavior in fiber direction can be represented by
the superposition of two transversely isotropic models (for arguments see Holzapfel et al., 2000), and we
obtain for the general case a stored energy of the form
w ¼ wiso þ
Xn

a¼1

wti;ðaÞ.
Herein, wti,(a) denotes the transversely isotropic stored energy for one fiber family characterized by a(a).
Note that for tissues as, e.g., ligaments or tendons we set n = 1 and for, e.g., arterial walls n = 2. Since
the fibers themselves do not differ with their orientation, the material parameters in wti,(a) remain unaltered
for all fiber directions.

4.2.1. Isotropic polyconvex functions

Since we assume the ground substance in soft tissues to behave in an isotropic manner we require iso-
tropic functions for its description. One function, which satisfies the stress-free reference configuration a
priori, is given as
wiso
ðP1Þ ¼ c1

I1

I1=3
3

� 3

 !
; c1 > 0; ð4:17Þ
and similarly used in Weiss et al. (1996) and also in Holzapfel et al. (2000, 2004a). Another function for the
isotropic part of soft biological tissues is
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wiso
ðP2Þ ¼ c2

I2

I1=3
3

� 3

 !
; c2 > 0. ð4:18Þ
The difference between the latter two functions is the usage of I1 and I2 and therewith the use of terms in C
and in CofC, respectively. In the present work we are interested in satisfying the quasi-incompressibility
constraint not by special FE-approaches; thus, we need a function that penalizes volumetric deformations.
A suitable function for this purpose is given by
wiso
ðP3Þ ¼ e Ic

3 þ
1

Ic
3

� 2

� �
; e > 0; c > 1. ð4:19Þ
It is worth noting that all functions given in this section are polyconvex and lead to stresses which are zero
in the reference configuration.

4.2.2. Transversely isotropic polyconvex functions

Soft biological tissues are characterized by an exponential-type stress–strain behavior in the fiber direc-
tion. A model for the description of these materials, which also satisfies the stress-free reference configura-
tion, is proposed by Holzapfel et al. (2004a) (firstly in Holzapfel et al., 2000). The transversely isotropic
function appears as
wti;ðaÞ
ðHGOÞ ¼

k1

2k2
fexp½k2ðJ ðaÞ4 � 1Þ2� � 1g for J ðaÞ4 P 1;

0 for J ðaÞ4 < 1;

(
ð4:20Þ
where k1 P 0 is a stress-like material parameter and k2 > 0 is a dimensionless parameter. An appropriate
choice of k1 and k2 enables the histologically-based assumption that the collagen fibers do not influence
the mechanical response of the artery in the low pressure domain to be modeled (Roach and Burton,
1957). The proof of convexity of (4.20) with respect to F is, e.g., given in Schröder et al. (2004), see also
Appendix A. Due to the fact that J ðaÞ4 represents the square of the stretch in fiber direction a(a) the distinc-
tion of cases in (4.20) seems to be reasonable, because J ðaÞ4 < 1 characterizes the shortening of the fibers,
which is assumed to generate no stresses. Note that replacing J ðaÞ4 by its isochoric part J

ðaÞ
4 ¼ J ðaÞ4 =I1=3

3 leaves
(4.20) polyconvex provided that the case-distinction is adapted accordingly.

The structure of (4.20) motivates the construction of another convex stored-energy function of the form
wti;ðaÞ
ðP1Þ ¼

a1ðJ ðaÞ4 � 1Þa2 for J ðaÞ4 P 1;

0 for J ðaÞ4 < 1

(
ð4:21Þ
with a1 P 0 and a2 > 1. In Schröder and Neff (2003), Corollary B.7, it has been observed that if a function
P : Rn 7! R is convex and P(Z) P 0, then the function Z 2 Rn 7! ½P ðZÞ�p is also convex for p P 1. Since
ðJ ðaÞ4 � 1Þ is convex and positive for J ðaÞ4 P 1 the convexity of (4.21) is obvious; for the complete proof
of convexity see Appendix A. Note that the replacement of J ðaÞ4 by its isochoric part J

ðaÞ
4 is also possible

without violating the convexity condition. Additionally note that the natural state condition is satisfied.
As it has been observed more generally in Schröder and Neff (2003), Lemma B.9, a function Rn 7! R,

X 7! mðP ðX ÞÞ is convex, if the function P : Rn 7! R is convex and the function m : R 7! R is convex and
monotonically increasing. Reconsidering the last two stored-energy functions we notice that the functions
fit into the latter structure, i.e. exp[	 	 	] is monotonically increasing and convex and (	 	 	)p is convex and
monotonically increasing for positive arguments. This motivates the replacement of J ðaÞ4 in (4.20) and
(4.21) by an arbitrary polyconvex function provided that the case-distinction is adapted accordingly. For
this purpose the transversely isotropic functions already given in Schröder and Neff (2003)
ðJ ðaÞ4 Þ
2
;

J ðaÞ4

I1=3
3

;
ðJ ðaÞ4 Þ

2

I1=3
3

; ðKðaÞ2 Þ
2
;

KðaÞ2

I1=3
3

;
ðKðaÞ2 Þ

2

I2=3
3

ð4:22Þ
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(recall that KðaÞ2 :¼ tr½CDðaÞ� with D(a) = 1 �M(a)) may be used. The construction principle for polyconvex
functions which also satisfy the stress-free reference configuration can then be rephrased in words as the
following problem:

find an (inner) polyconvex function P(X) which is zero in the reference configuration and include this
function into any arbitrary convex and monotonically increasing function m by setting m = m(P(X)),

cf. Schröder and Neff (2003), Lemma B.9. Due to the fact that the functions given in (4.20) and (4.21) are
linear in C and possess, therefore, a relatively limited mapping range, the supply of quadratic terms in C
seems to be profitable. The probably most straightforward method is the substitution of J ðaÞ4 by J ðaÞ5 in
(4.20) or (4.21), but unfortunately such functions will not be polyconvex; cf. Merodio and Neff (submitted
for publication). In Schröder and Neff (2003) the two polyconvex functions
KðaÞ1 :¼ tr½Cof ½C �M ðaÞ� and KðaÞ3 :¼ tr½Cof ½C �DðaÞ� ð4:23Þ
(with D(a): = 1 �M(a)), which are quadratic in C, are given and their polyconvexity is shown (recall that

KðaÞ1 ¼ J ðaÞ5 � I1J ðaÞ4 þ I2 and KðaÞ3 ¼ I1J ðaÞ4 � J ðaÞ5 ). Hence, we are able to construct two more stored-energy
functions which satisfy the stress-free reference configuration a priori, i.e.
wti;ðaÞ
ðP2Þ ¼

a3

2a4
fexp½a4ðKðaÞ1 � 1Þ2� � 1g for KðaÞ1 P 1;

0 for KðaÞ1 < 1;

8<
:

wti;ðaÞ
ðP3Þ ¼

a5ðKðaÞ1 � 1Þa6 for KðaÞ1 P 1;

0 for KðaÞ1 < 1;

( ð4:24Þ
with a3 P 0, a4 > 0, a5 P 0 and a6 > 1. The first one (wti;ðaÞ
ðP2Þ ) represents a slight modification of the model of

Holzapfel et al. while the second one characterizes the substitution of J ðaÞ4 by KðaÞ1 in (4.21). The proof of
polyconvexity for (4.24) is straightforward, since a convex and monotonically increasing function of a poly-
convex argument is also polyconvex (Schröder and Neff, 2003), cf. Appendix A. After a short algebraic
transformation we obtain KðaÞ1 ¼ kCof ½F�aðaÞk2 and see that KðaÞ1 controls the change of area with a unit nor-
mal into the preferred direction.

In Fig. 1 the values of J4, K1, K2 and K3 are illustrated for an uniaxial tension test of an incompressible
material with preferred direction oriented parallelly to the stretch direction. We see, that for incompressible
materials J4 and K3 increase when the material is elongated in the direction a(a), and K1 and K2 increase if
the material is shortened. Therefore, any function containing K1 or K2 proposed in this section (e.g., the
function (4.24)) generates stresses only when the material is shortened in the preferred direction, which
is physically not meaningful since collagen fibers mainly support tensile stresses. Nevertheless, it might
be useful for some cases to activate stresses under such condition; then (4.24) may be utilized. Replacing
KðaÞ1 in (4.24) by one of the polyconvex functions given in Schröder and Neff (2003)(3.48), viz.,
ðKðaÞ1 Þ
2
; ðKðaÞ1 Þ

3
;

KðaÞ1

I1=3
3

;
ðKðaÞ1 Þ

2

I2=3
3

; ð4:25Þ
would provide further polyconvex functions, but their physical interpretation for soft biological tissues may
be difficult.

Two other polyconvex stored-energy functions are constructed by considering KðaÞ3 . Due to the fact that
KðaÞ3 ¼ 2 in the reference configuration, and in order to still satisfy the natural state condition a priori we
introduce



(a) (b)

Fig. 1. (a) Uniaxial unconstrained tension of an incompressible material with preferred direction oriented parallelly to the stretch
direction and (b) associated values of individual polyconvex functions J4, K1, K2 and K3 vs. stretch k1 = (l0 + Dl)/l0; l0 is the cube length
in 1-direction in the reference configuration and Dl denotes the difference between actual and reference length.
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wti;ðaÞ
ðP4Þ ¼

a7

2a8
fexp½a8ðKðaÞ3 � 2Þ2� � 1g for KðaÞ3 P 2;

0 for KðaÞ3 < 2;

(

wti;ðaÞ
ðP5Þ ¼

a9ðKðaÞ3 � 2Þa10 for KðaÞ3 P 2;

0 for KðaÞ3 < 2

( ð4:26Þ
with a7 P 0, a8 > 0, a9 P 0 and a10 > 1. These functions are also polyconvex, the proof of which is analo-
gous to (4.24). Generally, the values of KðaÞ3 increase when the material is elongated in the preferred
direction, see Fig. 1. Thus, (4.26) seem to be useful functions for soft biological tissues.

Other suitable polyconvex stored-energy functions, which also satisfy the stress-free reference configura-
tion may be constructed by including the polyconvex functions found in Schröder and Neff (2003)(3.53),
namely
ðKðaÞ3 Þ
2
;

KðaÞ3

I1=3
3

;
ðKðaÞ3 Þ

2

I1=3
3

; ð4:27Þ
into (4.26). Then we obtain, for example,
wti;ðaÞ
ðP6Þ ¼

a11

2a12
fexp½a12ððKðaÞ3 Þ

2 � 4Þ2� � 1g for KðaÞ3 P 2;

0 for KðaÞ3 < 2;

(

wti;ðaÞ
ðP7Þ ¼

a13ððKðaÞ3 Þ
2 � 4Þa14 for KðaÞ3 P 2;

0 for KðaÞ3 < 2;

(

wti;ðaÞ
ðP8Þ ¼

a15

2a16
exp a16

KðaÞ
3ð Þ2

I1=3
3

� 4

� �2
" #

� 1

( )
for

ðKðaÞ
3
Þ2

I1=3
3

P 4;

0 for
ðKðaÞ

3
Þ2

I1=3
3

< 4;

8>>><
>>>:

wti;ðaÞ
ðP9Þ ¼

a17
ðKðaÞ

3
Þ2

I1=3
3

� 4

� �a18

for
ðKðaÞ

3
Þ2

I1=3
3

P 4;

0 for
ðKðaÞ

3
Þ2

I1=3
3

< 4

8>><
>>:

ð4:28Þ
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with a11 P 0, a12 > 0, a13 P 0, a14 > 1, a15 P 0, a16 > 0, a17 P 0 and a18 > 1; recall that
KðaÞ1 ¼ J ðaÞ5 � I1J ðaÞ4 þ I2 and KðaÞ3 ¼ I1J ðaÞ4 � J ðaÞ5 .

It is worth noting that each other monotonically increasing function, e.g., also cosh(	 	 	), etc., with po-
sitive and polyconvex arguments would lead to a polyconvex function, too. As an example, if the function
proposed by Rüter and Stein (2000) is embedded into the case distinction, i.e.
wti;ðaÞ
ðP10Þ ¼

a19½coshðJ ðaÞ4 � 1Þ � 1� for J ðaÞ4 P 1;

0 for J ðaÞ4 < 1;

(
ð4:29Þ
then this would be a polyconvex function. Of course, other polyconvex functions could be obtained by
replacing J ðaÞ4 with any other polyconvex function, as, e.g., (4.22), (4.23), (4.25), (4.27), provided that the
case distinction is adopted accordingly.
5. Adjustment for soft biological tissues

5.1. Experimental data of a human aortic layer

In order to give an example of handling the polyconvex functions provided in the last sections we adjust
some of these functions to a biological material. As an example, we consider an abdominal aorta from a
human cadaver (male, 40 years, primary disease: congestive cardiomyopathy), which has been excised dur-
ing autopsy within 24 h after death. The arterial wall was separated anatomically into the three layers, i.e.
intima, media and adventitia. In the present work we focus on the media (i.e. the middle layer of the artery),
which consists of smooth muscle cells, collagenous fibers, elastin in form of fenestrated elastic lamellae, and
ground substance. The structured arrangement of these constituents gives the media high strength, resil-
ience and the ability to resist loads in both the longitudinal and circumferential directions. Note that from
the mechanical perspective, the media is the most significant layer in a healthy artery. Hence, more detailed
investigations of medial layers may better explain their function on the basis of their structure and mechan-
ics, i.e. vital information for clinical treatments of artery diseases.

From the media, strip samples with axial and circumferential orientations were cut out so that two spec-
imens were obtained, as illustrated in Fig. 2 (for representative tissue samples see, for example, Fig. 4 in
Holzapfel et al., 2004b). Prior to testing, pre-conditioning was achieved by executing five loading and
unloading cycles at a constant crosshead speed of 1 mm/min for each test to obtain repeatable stress–strain
curves. Subsequently, the strips underwent uniaxial extension tests (loading and unloading) in 0.9% NaCl
solution at 37 �C with continuous recording of tensile force, strip width and gage length at a constant cross-
head speed of 1 mm/min. For details on the customized tensile testing machine the reader is referred to
Schulze-Bauer et al. (2002). The results of the experiment for the tension in circumferential and longitudinal
direction are illustrated in Fig. 2. Additional experimental data for uniaxial extension tests for the Intima
and Adventitia are given in Holzapfel (in press).

5.2. Representation of the arterial tissue

The non-collagenous matrix of the media is treated as an isotropic material, while the embedded collagen
fibers, which appear as two families arranged in symmetrical spirals, are treated by the proposed aniso-
tropic contributions, in particular by two superposed energies for the two fiber families (n = 2).

For the description of the stress–strain response, as illustrated in Fig. 2, we compare three polyconvex
models. The first one is the model of Holzapfel et al. (2000, 2004a), which is given by the polyconvex iso-
tropic part (4.17) and the convex transversely isotropic part (4.20). In the present work we incorporate the



Table 1
Material parameters of the model of Holzapfel et al. (2000)

c1 = l/2 (kPa) k1 (kPa) k2

10.2069 0.00170 882.847

The angle between the (mean) fiber direction and the circumferential direction in the media was predicted to be 43.39�. The fiber angle
acts here as a phenomenological parameter.

(a) (b)

Fig. 2. Cauchy stress r (kPa) vs. strain Dl/l0 of the (a) experimental tension tests (loading and unloading) of a circumferentially (1) and
longitudinally (2) oriented strip extracted from the media of a human abdominal aorta and (b) the considered associated reference
curves. l0 is the reference length of the strips while Dl is denoting the difference between actual and reference length.
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quasi-incompressibility through a special finite element approach. The material parameters for the best fit
to the experimental data are shown in Table 1.

For the response of the constitutive model of Holzapfel et al. see Fig. 3. Therein the Cauchy stresses are
depicted for the circumferentially and longitudinally oriented strips. As can be seen, the match is quite
good, even though the strong exponential character is underestimated. The (exponential) stiffening effect
at higher loads may be described with higher accuracy by introducing one additional dimensionless param-
eter ranging between zero and one, as recently proposed in Holzapfel et al. (2004c, in press). The additional
parameter is then a measure of anisotropy. For zero the function reduces to an isotropic (rubber-like) mod-
el, similar to that proposed in Demiray (1972), while for one the function reduces to the model proposed in
Holzapfel et al. (2000).

In order to analyze the accuracy of the matching of the experimental data by the model more precisely
the following relative error
r :¼ jr
exp � rmodj
jrexp

maxj
ð5:30Þ
is introduced. Herein, rexp and rmod denote the experimental stresses (as illustrated in Fig. 2b as the solid
lines) and the stresses computed by the constitutive model, respectively. Note that r should be as low as
possible and would become zero for a perfect matching. The benchmark of the adjustment for a complete
experiment can be accomplished by the definition of the quantity
�r :¼ 1

jrexp
maxj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ðrexp

i � rmod
i Þ2

r
; ð5:31Þ



(a) (b)

Fig. 3. Cauchy stress r (kPa) vs. strain Dl/l0 of the experiment and the constitutive model of Holzapfel et al. (2000): (a)
circumferentially and (b) longitudinally oriented strips. l0 is the reference length of the strip and Dl the change of length.
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wherein the total number of the experimental data-points i is denoted by n. In Fig. 4 the relative error is
shown for the two experiments and for the circumferentially oriented strip we obtain �r ¼ 0:081 and for
the longitudinally oriented strip we receive �r ¼ 0:064.

In the present paper we are concerned with the easy fitting of polyconvex stored energies to soft tissues.
For an example, we consider another polyconvex function, whose parameters can easily be adjusted. There-
fore, we do not use any optimization procedure for the adjustment here and obtain the material parameters
by �hand-fitting�. For the second polyconvex model we keep the isotropic part of the Holzapfel, Gasser and
Ogden-model and add the function (4.19) in order to consider the quasi-incompressibility constraint via a
penalty function. Then the isotropic part of the stored energy reads
Fig. 4.
(b) lon
wiso
ð1Þ ¼ c1

I1

I1=3
3

� 3

 !
þ e Ic

3 þ
1

Ic
3

� 2

� �
; c1 > 0; e > 0; c > 1. ð5:32Þ
The coercivity issue for this isotropic energy has been investigated in Hartmann and Neff (2003). For the
description of the material behavior in fiber direction we account for the transversely isotropic part given in
(4.21) and we obtain the complete anisotropic part
(a) (b)

Relative error r vs. strain Dl/l0 using the constitutive model of Holzapfel et al. (2000): (a) circumferentially ð�r ¼ 0:081Þ and
gitudinally oriented strips ð�r ¼ 0:064Þ.
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waniso
ð1Þ ¼

P2
a¼1

½a1ðJ ðaÞ4 � 1Þa2 � for J ð1Þ4 P 1 ^ J ð2Þ4 P 1;

a1ðJ ð1Þ4 � 1Þa2 for J ð1Þ4 P 1 ^ J ð2Þ4 < 1;

a1ðJ ð2Þ4 � 1Þa2 for J ð1Þ4 < 1 ^ J ð2Þ4 P 1;

0 for J ð1Þ4 < 1 ^ J ð2Þ4 < 1.

8>>>>>><
>>>>>>:

ð5:33Þ
In this model c1 scales the isotropic stress response which is seen in the nearly linear behavior of the curve
below Dl/l0 
 0.15 in Fig. 2. The parameters e and c control the volumetric deformation; this is important in
order to satisfy the quasi-incompressibility constraint. a2 accounts for the level of curvature in fiber direc-
tion and a1 scales this response.

The material parameters of the adjusted model w(1) are presented in Table 2 and the results are illustrated
in Fig. 5. As can be seen the stress–strain response for the two experiments is represented quite accurately,
even though the exponential character is also slightly underestimated.

In Fig. 6 the measure r is depicted and for the circumferentially and the longitudinally oriented strips we
obtain �r ¼ 0:059 and 0.037, respectively.

A drawback of the previous two models becomes obvious when the stress–strain response of the two
experiments is depicted in the same diagram. One of the main characteristics of the experimental data is
that the curves for the circumferentially and longitudinally oriented strip differ right from the beginning
for these particular strips investigated. In Fig. 7 we see that the two models are not able to represent this
behavior, because here, the curves start to differ at approximately Dl/l0 
 0.15.
2
ial parameters of the model w(1)

a) e (kPa) c a1 (kPa) a2

10.0 20.0 1014 20.0

gle between the (mean) fiber direction and the circumferential direction in the media was predicted to be 43.39�. The fiber angle
re as a phenomenological parameter.

(a) (b)

. Cauchy stress r (kPa) vs. strain Dl/l0 of the experiment and the constitutive model w(1): (a) circumferentially and
gitudinally oriented strips.



(a) (b)

Fig. 6. Relative error r vs. strain Dl/l0 using the constitutive model w(1): (a) circumferentially ð�r ¼ 0:059Þ and (b) longitudinally
oriented strips ð�r ¼ 0:037Þ.

(a) (b)

Fig. 7. Cauchy stress r (kPa) vs. strain Dl/l0 of the two experiments and the constitutive models (a) w(HGO) and (b) w(1).
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In order to overcome this deviation we additionally consider the transversely isotropic function given in
(4.26)2, and we obtain for two fiber families the case distinction
waniso
ð2Þ ¼

P2
a¼1

½a3ðKðaÞ3 � 2Þa4 � for Kð1Þ3 P 2 ^ Kð2Þ3 P 2;

a3ðKð1Þ3 � 2Þa4 for Kð1Þ3 P 2 ^ Kð2Þ3 < 2;

a3ðKð2Þ3 � 2Þa4 for Kð1Þ3 < 2 ^ Kð2Þ3 P 2;

0 for Kð1Þ3 < 2 ^ Kð2Þ3 < 2.

8>>>>>><
>>>>>>:

ð5:34Þ
Then the polyconvex model for the description of the medial layer of a human abdominal aorta reads
wð2Þ ¼ wiso
ð1Þ þ waniso

ð1Þ þ waniso
ð2Þ . ð5:35Þ
As before, waniso
ð1Þ describes the exponential-type behavior in the fiber direction, while waniso

ð2Þ takes care of the
different curves for the circumferentially and longitudinally oriented strips in the low load domain. In order
to show the easy handling the model is adjusted to the experimental data by �hand-fitting�. The chosen
parameters are summarized in Table 3.



Table 3
Material parameters of the model w(2)

c1 (kPa) e (kPa) c a1 (kPa) a2 a3 (kPa) a4

8.5 22.0 10.8 9 · 1014 20.5 17.0 1.8

The angle between the (mean) fiber direction and the circumferential direction in the media was predicted to be 43.39�. The fiber angle
acts here as a phenomenological parameter.

Fig. 8. Cauchy stress r (kPa) vs. strain Dl/l0 of the experiment ((1) circumferentially and (2) longitudinally oriented strip). The fit is
based on the constitutive model w(2).

6066 D. Balzani et al. / International Journal of Solids and Structures 43 (2006) 6052–6070
In Fig. 8 the response of the model w(2) is compared to the experimental data. First, we see that the expo-
nential character of the stress–strain behavior of the considered tissue is no longer underestimated and the
curve for the circumferentially oriented strip fits the experimental data very well. Secondly, ab initio the
deviating curves for the circumferentially and longitudinally oriented strips, as seen in the experiment,
may be described accurately. Only the curve (2) underestimates the stress response slightly for Dl/l0 > 0.27.

For the objective analysis of the adjustment accuracy the quantity r is depicted in Fig. 9 and for the cir-
cumferentially and longitudinally oriented strip we obtain �r ¼ 0:017 and 0.044, respectively.
(a) (b)

Fig. 9. Relative error r vs. strain Dl/l0 using the constitutive model w(2): (a) circumferentially ð�r ¼ 0:017Þ and (b) longitudinally
oriented strips ð�r ¼ 0:044Þ.
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Hereby, it is shown that polyconvex stored-energy functions can be utilized generally for the represen-
tation of soft biological tissues and its adjustment can be done in an easy way.
6. Conclusion

In this paper, we focussed on the construction of new polyconvex stored energies, which were able to
represent the characteristic material behavior of a particular soft biological tissue. Another main focus
has been on the simplicity of the proposed energies in order to obtain a set of polyconvex functions that
are easy to handle. The novel approach in this context was the formulation of a construction principle
for polyconvex functions which additionally satisfy the stress-free reference condition a priori. Then a vari-
ety of polyconvex functions has been proposed by means of the defined principle. The medial layer of one
human abdominal aorta has been extracted and analyzed as a representative collagenous soft biological tis-
sue. Herein, two test stripes were cut out and its stress–strain response was investigated. Then some of the
proposed polyconvex functions were �hand-fitted� to the experimental data and compared to a frequently
used model for soft tissues. Some remarks were given as to the way the functions may be chosen and
how the material parameters control the stress–strain response.
Appendix A. Proof of convexity

Convexity of (4.20). Neglecting the constant terms in (4.20), which do not contribute to the derivatives
of the energy, we show that for any p > 2
W tiðFÞ ¼ expðkFak2 � 1Þp for kFak2 P 1;

0 for kFak2
< 1

(

is convex with respect to F. For this purpose, we compute the piecewise second differential.
Since
DF ½expðkFak2 � 1Þp�.H ¼ expðkFak2 � 1Þp p kFak2 � 1
� �p�1

2hFa;Hai
� �

;

we obtain for the non-zero branch of Wti
D2
F W tiðFÞ.ðH ;HÞ ¼ expðkFak2 � 1Þp½pðkFak2 � 1Þp�12hFa;Hai�2

þ expðkFak2 � 1Þp2p½ðp � 1ÞðkFak2 � 1Þp�22hFa;Hai2 þ ðkFak2 � 1Þp�1hHa;Hai�.
This formula tends continuously to zero for kFak2! 1 and is positive for kFak2 P 1. Hence, the complete
second differential is always positive and continuous. By continuity, we obtain that Wti is convex for p = 2,
too. Furthermore, convexity of Wti implies Legendre–Hadamard ellipticity. It is clear that any additive
composition of Wti with an isotropic elliptic energy will also remain Legendre–Hadamard elliptic.

Convexity of (4.21). For proving convexity of (4.21) we compute the piecewise second differential of the
non-zero branch of (4.21), i.e. W ti

1 ðFÞ ¼ ðkFak2 � 1Þp. Since
DF ½W ti
1 �.H ¼ pðkFak2 � 1Þp�12hFa;Hai
we obtain
D2
F ½W ti

1 �.ðH ;HÞ ¼ 2p½ðp � 1ÞðkFak2 � 1Þp�22hFa;Hai2 þ ðkFak2 � 1Þp�1hHa;Hai�.
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For kFak2! 1 the second differential tends to zero and is positive for kFak2 > 1 and each p P 1, thus, the
function is convex with respect to F and therefore Legendre–Hadamard-elliptic.

Polyconvexity of (4.24)1, (4.26)1, (4.28)1 and (4.28)3. For the proof of polyconvexity we show that for
any p > 2 and constant c
W ti
2 ðKÞ ¼

exp K � cð Þp for K P c;

0 for K < c

	
ðA:36Þ
is monotonically increasing and convex with respect to K (in general K will be a polyconvex function). For
this purpose, we compute the first derivative of W ti

2

oK ½W ti
2 � ¼ exp½ðK � cÞp�½pðK � cÞp�1�
and see that W ti
2 is positive for K P c and therefore altogether monotonically increasing. In order to show

convexity we compute the second derivative of W ti
2

o2
KK ½W ti

2 � ¼ exp½ðK � cÞp�½pðK � cÞp�1�2 þ exp½ðK � cÞp�pðp � 1ÞðK � cÞp�2.
This formula tends continuously to zero for K! c and is positive for K P c. Hence, the second derivative is
always positive and continuous. By continuity, we obtain that W ti

2 is convex also for p = 2.
Polyconvexity of (4.24)2, (4.26)2, (4.28)2 and (4.28)4. For the proof of polyconvexity we show that for

any p > 1 and constant c
W ti
3 ðKÞ ¼

ðK � cÞp for K P c;

0 for K < c

	
ðA:37Þ
is monotonically increasing and convex with respect to K (in general K is a polyconvex function). For this
purpose, we compute the first derivative of W ti

3

oK ½W ti
3 � ¼ pðK � cÞp�1
and notice that W ti
3 is positive and therefore monotonically increasing for K P c. For showing convexity we

compute the second derivative
o2
KK ½W ti

3 � ¼ pðp � 1ÞðK � cÞp�2.
For K! c the second derivative tends to zero and is positive for K > c and each p > 1, thus, the function is
polyconvex, since K is polyconvex.
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Schröder, J., Neff, P., 2003. Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions.
International Journal of Solids and Structures 40, 401–445.
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