# An improved stability criterion for a class of neutral differential equations 

P.T. Nam ${ }^{\text {a }}$, V.N. Phat ${ }^{\text {b,* }}$<br>${ }^{\text {a }}$ Department of Mathematics, Quynhon University, 170 An Duong Vuong Road, Binhdinh, Viet Nam<br>${ }^{\mathrm{b}}$ Institute of Mathematics, 18 Hoang Quoc Viet Road, Hanoi, Viet Nam

## ARTICLE INFO

## Article history:

Received 16 October 2007
Accepted 27 November 2007

## Keywords:

Asymptotical stability
Neutral differential equation
Lyapunov function
Linear matrix inequality


#### Abstract

This work gives an improved criterion for asymptotical stability of a class of neutral differential equations. By introducing a new Lyapunov functional, we avoid the use of the stability assumption on the main operators and derive a novel stability criterion given in terms of a LMI, which is less restricted than that given by Park [J.H. Park, Delay-dependent criterion for asymptotic stability of a class of neutral equations, Appl. Math. Lett. 17 (2004) 1203-1206] and Sun et al. [Y.G. Sun, L. Wang, Note on asymptotic stability of a class of neutral differential equations, Appl. Math. Lett. 19 (2006) 949-953].


© 2008 Elsevier Ltd. All rights reserved.

## 1. Introduction

We are concerned with the asymptotic stability of the following neutral differential equation:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}[x(t)+p x(t-\tau)]=-a x(t)+b \tanh x(t-\sigma), \quad t \geq 0 \tag{1.1}
\end{equation*}
$$

where $a, \tau$ and $\sigma$ are positive constants, $\sigma \geq \tau, b, p$ are real numbers, $|p|<1$. For each solution $x(t)$ of Eq. (1.1), we assume the initial condition

$$
x(t)=\phi(t), \quad t \in[-\sigma, 0], \phi \in C([-\sigma, 0], R)
$$

Recently, the asymptotic stability of neutral differential equation (1.1) has been discussed in [1,4,5]. Using stability assumption on the operator

$$
\mathcal{D}\left(x_{t}\right)=x(t)+p x(t-\tau)+b \int_{t-\sigma}^{t} \tanh x(s) \mathrm{d} s
$$

Park in [4] has proposed a delay-dependent criterion on $\sigma$ for asymptotical stability of Eq. (1.1). Lately, constructing an improved Lyapunov function based on the operator

$$
\mathscr{D}^{*}\left(x_{t}\right)=x(t)+p x(t-\tau)+\alpha \int_{t-\tau}^{t} x(s) \mathrm{d} s+b \int_{t-\sigma}^{t} \tanh x(s) \mathrm{d} s
$$

Sun et al. in [4] have derived a less conservative stability criterion. However, this condition still depends on the stability of the operator $\mathscr{D}^{*}$. Our aim is to improve these criteria and to break away from some of the assumptions of previous papers. Compared with the results in [4,5], our result has the following advantages:

[^0]0893-9659/\$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2007.11.006

- First, we introduce a new Lyapunov functional and avoid the use of the stability assumption on the operator $\mathfrak{D}$ in [4] or $\mathscr{D}^{*}$ in [5]. Hence, our criterion will be less restricted than [4,5] (see Example 2).
- Second, using the operator

$$
\mathscr{D}_{1}\left(x_{t}\right)=x(t)+p x(t-\tau)+\alpha \int_{t-\tau}^{t} x(s) \mathrm{d} s+b \int_{t-\sigma}^{t-\tau} \tanh x(s) \mathrm{d} s,
$$

the obtained condition depends not only on $\tau$, but also on $\sigma-\tau$. Thus, our criterion is more effective than [5] (see Example 1).

## 2. Main result

Throughout this section, the symbol * represents the elements below the main diagonal of a symmetric matrix. Also, $X>Y$ means $X-Y$ is positive definite.

Before present the main result, we need the following technical lemmas.
Lemma 1 (Completing the Square). Assume that $S \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix. Then for every $Q \in \mathbb{R}^{n \times n}$,

$$
2\langle Q y, x\rangle \leq\left\langle Q S^{-1} Q^{T} x, x\right\rangle+\langle S y, y\rangle, \quad \forall x, y \in \mathbb{R}^{n} .
$$

Lemma 2 ([2]). For any symmetric positive definite matrix $M \in \mathbb{R}^{n \times n}$, scalar $\sigma \geq 0$ and vector function $w:[0, \sigma] \rightarrow \mathbb{R}^{n}$ such that the integrations concerned are well defined, then

$$
\left(\int_{0}^{\sigma} w(s) \mathrm{d} s\right)^{T} M\left(\int_{0}^{\sigma} w(s) \mathrm{d} s\right) \leq \sigma \int_{0}^{\sigma} w^{T}(s) M w(s) \mathrm{d} s
$$

For a real number $\alpha$, Eq. (1.1) can be rewritten as follows:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left[x(t)+p x(t-\tau)+\alpha \int_{t-\tau}^{t} x(s) \mathrm{d} s+b \int_{t-\sigma}^{t-\tau} \tanh x(s) \mathrm{d} s\right]=(\alpha-a) x(t)-\alpha x(t-\tau)+b \tanh x(t-\tau), \quad t \geq 0 \tag{2.1}
\end{equation*}
$$

Define the following operators:

$$
\mathscr{D}_{1}\left(x_{t}\right)=x(t)+p x(t-\tau)+\alpha \int_{t-\tau}^{t} x(s) \mathrm{d} s+b \int_{t-\sigma}^{t-\tau} \tanh x(s) \mathrm{d} s, \quad \mathscr{D}_{2}\left(x_{t}\right)=x(t)+p x(t-\tau) .
$$

Now, we have the following theorem.

Theorem 1. The zero solution of Eq. (1.1) is uniformly asymptotically stable if there exist a constant $\alpha$ with $0<|\alpha|<1$ and the positive scalars $\beta, \gamma, \eta, \theta$ such that the following linear matrix inequality holds:

$$
\Omega=\left(\begin{array}{ccccc}
\Omega_{11} & p(\alpha-a)-\alpha & b & \alpha-a & b(\alpha-a)  \tag{2.2}\\
\star & -\beta-2 p \alpha & p b & -\alpha & -b \alpha \\
\star & \star & \theta(\sigma-\tau)^{2}-\eta & b & b^{2} \\
\star & \star & \star & -\gamma & 0 \\
\star & \star & \star & \star & -\theta
\end{array}\right)<0
$$

where $\Omega_{11}=2(\alpha-a)+\beta+\gamma \tau^{2}+\eta$.
Proof. Since $\Omega<0$, there is a number $\delta>0$ such that

$$
\Omega_{1}=\left(\begin{array}{ccccc}
\Omega_{11} & p(\alpha-a)-\alpha & b & \alpha-a & b(\alpha-a)  \tag{2.3}\\
\star & -\beta-2 p \alpha & p b & -\alpha & -b \alpha \\
\star & \star & \theta(\sigma-\tau)^{2}-\eta+\delta & b & b^{2} \\
\star & \star & \star & -\gamma & 0 \\
\star & \star & \star & \star & -\theta
\end{array}\right)<0 .
$$

Consider the following Lyapunov functional:

$$
V=V_{1}+V_{2}+V_{3}+V_{4}+V_{5}+V_{6}+V_{7},
$$

where $V_{1}=\mathscr{D}_{1}^{T}\left(x_{t}\right) \mathcal{D}_{1}\left(x_{t}\right), V_{2}=\beta \int_{t-\tau}^{t} x^{2}(s) \mathrm{d} s, V_{3}=\gamma \tau \int_{t-\tau}^{t}(\tau-t+s)(\alpha x(s))^{2} \mathrm{~d} s, V_{4}=\theta(\sigma-\tau) \int_{t-\sigma}^{t-\tau}(s-t+\sigma) \tanh ^{2} x(s) \mathrm{d} s$, $V_{5}=\eta \int_{t-\tau}^{t} \tanh ^{2} x(s) \mathrm{ds}, V_{6}=\delta \int_{t-\sigma}^{t-\tau} \tanh ^{2} x(s) \mathrm{d} s V_{7}=\epsilon \mathscr{D}_{2}^{2}\left(x_{t}\right), \epsilon$ is a positive number that will be chosen later.

We first take the derivative of $V^{*}=V_{1}+V_{2}+V_{3}+V_{4}+V_{5}+V_{6}$ along the solution of Eq. (1.1):

$$
\begin{aligned}
\frac{\mathrm{d} V^{*}}{\mathrm{~d} t}= & 2\left(x(t)+p x(t-\tau)+\alpha \int_{t-\tau}^{t} x(s) \mathrm{d} s+b \int_{t-\sigma}^{t} \tanh x(s) \mathrm{d} s\right)^{T}((\alpha-a) x(t)-\alpha x(t-\tau)+b \tanh x(t-\tau)) \\
& +\beta x^{2}(t)-\beta x^{2}(t-\tau)+\gamma \tau^{2} \alpha^{2} x^{2}(t)-\gamma \tau \int_{t-\tau}^{t}(\alpha x(s))^{2} \mathrm{~d} s+\theta(\sigma-\tau)^{2} \tanh ^{2} x(t-\tau) \\
& -\theta(\sigma-\tau) \int_{t-\sigma}^{t-\tau} \tanh ^{2} x(s) \mathrm{d} s+\eta \tanh ^{2} x(t)-\eta \tanh ^{2} x(t-\tau)+\delta \tanh ^{2} x(t-\tau)-\delta \tanh ^{2} x(t-\sigma)
\end{aligned}
$$

Using Lemma 2 and $\tanh ^{2} x(t) \leq x^{2}(t)$, we have

$$
\begin{aligned}
\frac{\mathrm{d} V^{*}}{\mathrm{~d} t} \leq & 2\left(x(t)+p x(t-\tau)+\alpha \int_{t-\tau}^{t} x(s) \mathrm{d} s+b \int_{t-\sigma}^{t} \tanh x(s) \mathrm{d} s\right)^{T}((\alpha-a) x(t)-\alpha x(t-\tau)+b \tanh x(t-\tau)) \\
& +\beta x^{2}(t)-\beta x^{2}(t-\tau)+\gamma \tau^{2} \alpha^{2} x^{2}(t)-\gamma\left(\int_{t-\tau}^{t} \alpha x(s) \mathrm{d} s\right)^{2}+\theta(\sigma-\tau)^{2} \tanh ^{2} x(t-\tau) \\
& -\theta\left(\int_{t-\sigma}^{t-\tau} \tanh x(s) \mathrm{d} s\right)^{2}+\eta x^{2}(t)-\eta \tanh ^{2} x(t-\tau)+\delta \tanh ^{2} x(t-\tau)-\delta \tanh ^{2} x(t-\sigma)
\end{aligned}
$$

Setting $\alpha \int_{t-\tau}^{t} x(s) \mathrm{d} s=u(t), \quad \int_{t-\sigma}^{t-\tau} \tanh x(s) \mathrm{d} s=v(t)$ and using $0<|\alpha|<1$, we have

$$
\begin{aligned}
\frac{\mathrm{d} v^{*}}{\mathrm{~d} t} \leq & {\left[2(\alpha-a)+\beta+\gamma \tau^{2}+\eta\right] x^{2}(t)+[2 \alpha+2 p(\alpha-a)] x(t) x(t-\tau) } \\
& +2 b x(t) \tanh x(t-\tau)+2(\alpha-a) x(t) u(t)+[2(\alpha-a) b] x(t) v(t)-\left(2 p \alpha+\beta^{2}\right) x^{2}(t-\tau) \\
& +2 p b x(t-\tau) \tanh x(t-\tau)-2 \alpha x(t-\tau) u(t)-2 \alpha b x(t-\tau) v(t)+\left[\theta(\sigma-\tau)^{2}-\eta+\delta\right] \tanh ^{2} x(t-\tau) \\
& -\delta \tanh ^{2} x(t-\sigma)+2 b \tanh x(t-\tau) u(t)+2 b^{2} \tanh x(t-\tau) v(t)-\gamma u^{2}(t)-\theta v^{2}(t) \\
\leq & \zeta^{T}(t) \Sigma \zeta(t),
\end{aligned}
$$

where

$$
\zeta(t)=\left(\begin{array}{c}
x(t) \\
x(t-\tau) \\
\tanh x(t-\tau) \\
u(t) \\
v(t) \\
\tanh x(t-\sigma)
\end{array}\right)
$$

$$
\Sigma=\left(\begin{array}{cccccc}
\Omega_{11} & p(\alpha-a) a p-\alpha & b & \alpha-a & b(\alpha-a) & 0 \\
\star & -\beta-2 p \alpha & p b & -\alpha & -b \alpha & 0 \\
\star & \star & \theta(\sigma-\tau)^{2}-\eta+\delta & b & b^{2} & 0 \\
\star & \star & \star & -\gamma & 0 & 0 \\
\star & \star & \star & \star & -\theta & 0 \\
\star & \star & \star & \star & \star & -\delta
\end{array}\right) .
$$

Using the condition (2.3), we have $\Sigma<0$ and

$$
\frac{\mathrm{d} V^{*}}{\mathrm{~d} t} \leq \zeta^{T}(t) \Sigma \zeta(t)<0
$$

Thus, there is a positive number $\lambda$ such that

$$
\frac{\mathrm{d} V^{*}}{\mathrm{~d} t} \leq-\lambda\left(\|x(t)\|^{2}+\|x(t-\tau)\|^{2}+\|\tanh x(t-\tau)\|^{2}+\|u(t)\|^{2}+\|v(t)\|^{2}+\|\tanh x(t-\sigma)\|^{2}\right)
$$

Now taking the derivative of $V_{7}$ and using Lemma 1, we have

$$
\begin{aligned}
\frac{\mathrm{d} V_{7}}{\mathrm{~d} t} & =2 \epsilon[x(t)+p x(t-\tau)][-a x(t)+b \tanh x(t-\sigma)] \\
& =-2 \epsilon a x^{2}(t)+2 \epsilon b x(t) \tanh x(t-\sigma)-2 \epsilon a p x(t) x(t-\tau)+2 \epsilon b p x(t-\tau) \tanh x(t-\sigma) \\
& \leq \epsilon\left(-2 a+|b|^{2}+|a p|^{2}\right) x^{2}(t)+\epsilon\left(1+|b p|^{2}\right) x^{2}(t-\tau)+2 \epsilon \tanh ^{2} x(t-\sigma)
\end{aligned}
$$

Choosing

$$
\epsilon=\left\{\begin{array}{l}
\frac{\lambda}{2} \min \left\{\frac{1}{1+|b p|^{2}}, \frac{1}{2}\right\}, \quad \text { if }-2 a+|b|^{2}+|a p|^{2} \leq 0 \\
\frac{\lambda}{2} \min \left\{\frac{1}{-2 a+|b|^{2}+|a p|^{2}}, \frac{1}{1+|b p|^{2}}, \frac{1}{2}\right\} \quad \text { if }-2 a+|b|^{2}+|a p|^{2}>0
\end{array}\right.
$$

we obtain that $\frac{\mathrm{d} V}{\mathrm{dt}}<-\frac{\lambda}{2}\|x(t)\|^{2}$. On the other hand, we have $V \geq \epsilon \mathscr{D}_{2}^{2} x(t)$ and $\mathscr{D}_{2} x(t)$ is stable due to $|p|<1$. Therefore, according to Theorem 8.1 in [3] (pp. 292-293), the zero solution of Eq. (1.1) is uniformly asymptotically stable. The proof of the theorem is completed.

Remark 1. Note that the stability criterion of (1.1) obtained in [5] is given as

$$
\left(\begin{array}{ccccc}
-2 a+2 \alpha+\beta+\gamma \tau^{2}+\eta & p(\alpha-a)-\alpha & b & \alpha-a & b(\alpha-a)  \tag{2.4}\\
\star & -\beta-2 p \alpha & p b & -\alpha & -b \alpha \\
\star & \star & \theta \sigma^{2}-\eta & b & b^{2} \\
\star & \star & \star & -\gamma & 0 \\
\star & \star & \star & \star & -\theta
\end{array}\right)<0 .
$$

To compare with the stability criterion obtained in [4], we consider the case $\alpha=0$. In this case, we have

$$
\mathscr{D}_{1}\left(x_{t}\right)=x(t)+p x(t-\tau)+b \int_{t-\sigma}^{t-\tau} \tanh x(s) \mathrm{d} s, \quad V_{3}=0
$$

By the same arguments used in the proof of Theorem 1 with the Lyapunov functional chosen as

$$
V=V_{1}+V_{2}+V_{4}+V_{5}+V_{6}+V_{7}
$$

we can derive the following stability criterion.
Corollary 1. The zero solution of Eq. (1.1) is uniformly asymptotically stable if there exist the positive scalars $\beta, \gamma, \theta, \eta$ such that the following linear matrix inequality holds:

$$
\bar{\Omega}=\left(\begin{array}{cccc}
-2 a+\beta+\eta & -a p & b & -a b  \tag{2.5}\\
\star & -\beta & p b & 0 \\
\star & \star & \theta(\sigma-\tau)^{2}-\eta & b^{2} \\
\star & \star & \star & -\theta
\end{array}\right)<0 .
$$

Remark 2. In [1], the delay-independent sufficient condition for the stability of the Eq. (1.1) is

$$
\begin{equation*}
1+\frac{p a^{2}+b^{2}}{2(1-p b)}-a<0 \quad \text { and } \quad p b<1 \tag{2.6}
\end{equation*}
$$

To show the advantages of our criterion, we consider the following examples:
Example 1. Consider the following equation:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}[x(t)+0.6 x(t-0.15)]=-0.6 x(t)+0.493 \tanh x(t-0.3) \tag{2.7}
\end{equation*}
$$

By solving the LMI (2.2) with respect to $\alpha, \beta, \gamma, \theta, \eta$, we obtain its solution:

$$
\beta=1.3947, \quad \gamma=9.0979, \quad \theta=4.4533, \quad \eta=0.7499, \quad \alpha=-0.8718
$$

which implies the asymptotical stability of Eq. (2.7). However, the LMI (2.4) is infeasible, that is the criterion of [5] cannot be applied. Moreover, the criterion obtained in [1] cannot be applied since the inequality (2.6) does not hold. This shows that our criterion is more effective than that obtained in [1,5].

Example 2. Consider the following equation:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}[x(t)-0.7 x(t-9.9)]=-0.6 x(t)-0.3 \tanh x(t-10) \tag{2.8}
\end{equation*}
$$

By solving the LMI (2.5) with respect to $\beta, \gamma, \theta, \eta$, we obtain its solution:

$$
\beta=0.3923, \quad \gamma=6.1108, \quad \theta=4.9347, \quad \eta=0.2840
$$

which implies the asymptotical stability of Eq. (2.8). However, the criterion obtained in [4] cannot be applied since the operator $\mathscr{D}$ used in [4] is unstable. Indeed, we consider the equation $\mathscr{D} x_{t}=0$ with initial condition

$$
x(s)=c=\text { constant }>0, \quad s \in[-10,0]
$$

If $c \geqslant 1$ then $\tanh (x(s))>\frac{1}{2}, \quad \forall s \in[-10,0]$ and hence $x(t) \geqslant 0.7 c+1.5>1, \forall t \in(0,10]$. Similarly, we also have $x(t) \geqslant$ $1, \forall t \in(10,20]$. Continuing the progress, we will have $x(t) \geqslant 1, \forall t \in(0,+\infty)$. If $0<c<1$ then $\tanh (x(s))>\frac{x(s)}{2}=\frac{c}{2}$ and hence $x(t) \geqslant 0.7 c+1.5 c, \forall t \in(0,10]$. Similarly, we also have $x(t) \geqslant 0.7 c+2 \times 1.5 c, \forall t \in(10,20]$. Since $c>0$, there is a natural number $n_{0} \in N$ such that $0.7 c+\left(n_{0}-1\right) \times 1.5 c>1$. Then, we will have $x(t) \geqslant 0.7 c+n_{0} \times 1.5 c>1, \forall t \in\left(10 n_{0}, 10\left(n_{0}+1\right)\right]$. Similarly to above, we have $x(t) \geqslant 1, \forall t \in\left[10 n_{0},+\infty\right)$. Thus, the operator $\mathcal{D}$ is unstable.

## Acknowledgement

This work was supported by the National Basic Program in Natural Sciences.

## References

[1] R.P. Agarwal, S.R. Grace, Asymptotic stability of certain neutral differential equations, Math. Comput. Modelling 31 (2000) 9-15.
[2] K. Gu, An integral inequality in the stability problem of time-delay system, in: 39th IEEE Conference on Decision and Control, Sydney, Australia, 2000, pp. 2805-2810.
[3] J. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
[4] J.H. Park, Delay-dependent criterion for asymptotic stability of a class of neutral equations, Appl. Math. Lett. 17 (2004) 1203-1206.
[5] Y.G. Sun, L. Wang, Note on asymptotic stability of a class of neutral differential equations, Appl. Math. Lett. 19 (2006) 949-953.


[^0]:    * Corresponding author.

    E-mail address: vnphat@math.ac.vn (V.N. Phat).

