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Abstract

The lightness of a digraph is the minimum arc value, where the value of an arc is the maximum of the in-degrees of its
terminal vertices. We determine upper bounds for the lightness of simple digraphs with minimum in-degree at least 1 (resp., graphs
with minimum degree at least 2) and a given girth k, and without 4-cycles, which can be embedded in a surface S. (Graphs are
considered as digraphs each arc having a parallel arc of opposite direction.) In case k ≥ 5, these bounds are tight for surfaces
of nonnegative Euler characteristics. This generalizes results of He et al. [W. He, X. Hou, K.-W. Lih, J. Shao, W. Wang, X. Zhu,
Edge-partitions of planar graphs and their game coloring numbers, J. Graph Theory 41 (2002) 307–317] concerning the lightness of
planar graphs. From these bounds we obtain directly new bounds for the game colouring number, and thus for the game chromatic
number of (di)graphs with girth k and without 4-cycles embeddable in S. The game chromatic resp. game colouring number were
introduced by Bodlaender [H.L. Bodlaender, On the complexity of some coloring games, Int. J. Found. Comput. Sci. 2 (1991)
133–147] resp. Zhu [X. Zhu, The game coloring number of planar graphs, J. Combin. Theory B 75 (1999) 245–258] for graphs.
We generalize these notions to arbitrary digraphs. We prove that the game colouring number of a directed simple forest is at most 3.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Several graph parameters which result from the vertex-edge incidence structure have been widely discussed in
the literature, such as the maximum vertex degree, the minimum vertex degree, the Szekeres-Wilf number or the
maximum edge degree. Recently, in some publications in the field of graph colouring games [22,11], a new concept
has been proved of value, the concept of light edges. A light edge is an edge which has very few neighbours of each
of its two terminal vertices. He, Hou, Lih, Shao, Wang and Zhu [11] formalized this notion in the following way. For
a graph G, they defined a parameter M∗(G) which is the minimum of M(e) over all edges e of G, where M(e) is the
maximum of the degrees of the terminal vertices of e.

In the spirit of their ideas we define a more general parameter for directed graphs. For a digraph D = (V, E) and
an arc e = (v,w) ∈ E , let L+(e) = max{d+(v), d+(w)}, where d+(u) denotes the in-degree of vertex u. We call

L+(D) = min
e∈E

L+(e)
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positive lightness or simply lightness of D. The negative lightness L−(D) of D is defined in the same way by
considering the out-degrees instead of the in-degrees. It will be denoted by L(D) whenever L+(D) = L−(D).

For the following, all digraphs are assumed to have neither multiple arcs nor loops. However, pairs of antiparallel
arcs are allowed. We mainly consider two classes of digraphs, i.e. simple digraphs (without antiparallel arcs), and
graphs (where for each arc there is an antiparallel arc). In this way, for a graph G, L(G) is the same as the parameter
M∗(G) defined by He et al. [11].

The lightness of a digraph D seems to be closely related to another graph parameter, the weight w(D). It is defined
as the minimum arc weight, where the weight of an arc (v,w) is the sum d+(v)+ d+(w). Obviously,

1
2
w(D) ≤ L+(D) ≤ w(D)− δ+(D), (1)

where δ+(D) denotes the minimum in-degree of D. However, both estimations may be valid, see Section 7.
Determining the weight of certain kinds of planar graphs has been considered since some time. Let G3 be a 3-

connected planar graph, and G2 be a planar graph with minimum degree δ ≥ 2. By the righthand side of (1), a result
of Kotzig [14] concerning the weight of G3 implies L(G3) ≤ 10. Similarly, if G3 has no 4-cycles, then L(G3) ≤ 7,
and if G3 has girth 5, then L(G3) ≤ 5, both by a result of Borodin [5]. Planar graphs G2 with minimum degree 2
and without a certain kind of “alternating” even cycles have L(G2) ≤ 13 by another result of Borodin [4] together
with (1).

He et al. [11] consider the case of planar graphs with minimum degree δ ≥ 2 and without 4-cycles. They determined
upper bounds for the lightness of these graphs which depend on the (undirected) girth k, and which are best-possible
if k ≥ 5. Our main aim is to generalize these results to (planar) simple digraphs, and to graphs resp. simple digraphs
which are embeddable in other surfaces, with the same restrictions on minimum degree, cycles, and girth in the case
of graphs, resp., in the case of simple digraphs restricted to those with minimum in-degree δ+ ≥ 1, without 4-cycles,
and prescribed girth k. In Section 2 we determine upper bounds for the lightness of such simple digraphs embeddable
in a surface S, whereas Section 3 is devoted to the case of graphs in S. S may be either one of the orientable surfaces
Sγ , 0 ≤ γ ≤ 6, or one of the nonorientable surfaces Nγ , 1 ≤ γ ≤ 9, possibly even some other surface.

Whenever k ≥ 5, the bounds are tight for the surfaces of nonnegative Euler characteristics, i.e. for the sphere, the
torus, the projective plane and the Klein bottle, as shown in Section 5. In the case of other surfaces, the bounds depend
on a topological parameter which is not exactly known for any of these surfaces (except the double torus). It is the
minimum number of edges a graph can have which is embeddable in that surface but not embeddable in a surface of
lower genus resp. lower crosscapnumber. For the torus and the projective plane this parameter is 9 by the Kuratowski
theorem. It is 15 for the Klein bottle by [8,2] and 18 for the double torus by [17]. In general, the better the topological
parameter can be estimated, the better will be the bounds for lightness, and the more surfaces our results will apply to.

If k = 3, our bound in the planar simple digraph case is four. We present an example of a planar simple digraph
with minimum in-degree one and without 4-cycles which has lightness three, thus nearly reaching our bound.

1.1. Digraph colouring games

Work on lightness was motivated by its applications concerning graph colouring games. The first version of these
games was introduced by Bodlaender [3]. As we are not only interested in graphs, we will generalize his game to
arbitrary digraphs in the following way.

Two players, Alice and Bob, are given an initially uncoloured digraph D and a number k of colours. During the
game, they alternately colour an uncoloured vertex with a colour not used before for any of its in-neighbours. w is an
in-neighbour of v if there is an arc (w, v). The game ends when no further move is possible. Alice wins if the graph
is completely coloured at the end, otherwise Bob wins. One may assume that Alice has the first move, and passing is
not permitted, as in Bodlaender’s game. We denote this game by [A,−]. Another version allows Bob to play first and
to miss one or several turns, which generalizes a game proposed in [1]. The game defined hereby is called [B, B].

For such a version g of the game, the smallest number k of colours for which Alice has a winning strategy for g
is called (directed) game chromatic number χg(D) of D for g. It is easy to see that χ[A,−](D) ≤ χ[B,B](D), as
for undirected graph colouring games [1]. Note that the colour classes created by the directed colouring game will
be acyclic, i.e. they do not induce directed cycles. Indeed, the concept of directed game chromatic number is a
combination of Bodlaender’s game chromatic number for undirected graphs [3] and the dichromatic number of a
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digraph which was introduced in 1982 by Neumann-Lara [19]. Since the directed game chromatic number of a graph
is its game chromatic number, in order to simplify notation we will omit “directed” even when talking about digraphs.

The directed game chromatic number is not related to the oriented game chromatic number introduced by Nešetřil
and Sopena [18]. This number is based on the same type of two-player game, however, the colouring created by the
players must be an oriented colouring. The colour classes in an oriented colouring of a digraph have to be independent
and must have the property, whenever there are two equally-coloured vertices v, w and arcs (v, x), (w, y), then x and
y have to be coloured distinctly. On the other hand, in a directed colouring defined by our game, the colour classes are
not necessarily independent.

Upper bounds for the game chromatic number of several classes of graphs have been achieved, e.g. by Faigle
et al. [7] who determined the bound four, which is best possible, for forests, or, in a series of papers, by Kierstead
and Trotter [13], by Dinski and Zhu [6], by Zhu [22], by Kierstead [12], and by Zhu [24] who reduced the
upper bound for planar graphs to the value 17. Improving a result of Zhu [23], Kierstead [12] has shown that
χg(G) ≤ b 1

4 (3
√

73+ 96γ + 41)c holds for graphs G embeddable in the orientable surface Sγ .
Often, upper bounds for the game chromatic number of graphs are not obtained directly, but by estimating the so-

called colouring number introduced by Zhu [22]. In the general case of digraphs we may define a similar parameter by
the following directed marking game. It is played by Alice and Bob, given a digraph D and a number k. Alternately,
the players choose a vertex which has k − 1 chosen in-neighbours at most. When no further move is possible, Alice
wins if every vertex has been chosen, otherwise Bob wins. Different versions of the game are denoted as before.
Note that, if Alice has a winning strategy for the directed marking game, she wins the corresponding version of the
colouring game with k colours, as well, by choosing the vertices to be coloured according to her winning strategy for
the directed marking game. For such a version g of the directed marking game, the smallest number k for which Alice
has a winning strategy is called (directed) game colouring number colg(D) of D. By the same reasons as before we
may omit “directed”. We remark the fundamental estimation

χg(D) ≤ colg(D). (2)

For undirected graphs, it was used by some authors [7,10] even before the work of Zhu [22].
By results of Zhu [22] and He et al. [11] upper bounds for the lightness imply upper bounds for the game colouring

number, and thus, for the game chromatic number. The upper bounds that we will obtain in Section 6 for the special
classes of graphs embeddable in a surface S with large girth are considerably better than the previously known upper
bounds for the game chromatic number of graphs embeddable in S without restriction to the girth.

In Section 6 we will see that our results concerning the lightness of classes of graphs lead to bounds for the game
colouring number of certain simple digraphs as well. We indicate and conjecture that these bounds may be even
tightened by using the idea of Section 7 and our main results concerning the lightness of classes of simple digraphs.

2. The structure of digraphs in surfaces

Every finite connected graph can be cellularly embedded in one of the nonorientable surfaces Nγ where γ ≥ 1
is the crosscapnumber and in one of the orientable surfaces Sγ where γ ≥ 0 is the genus of the surface, cf. [9].
Let N0 = S0. The genus (resp., crosscapnumber) of a graph G is the smallest γ ≥ 0 for which G embeds in Sγ
(resp., Nγ ). The Euler characteristic χ(S) of a surface S is defined by the invariant #V − #E + #F , where F denotes
the set of faces in a 2-cell embedding of a finite graph G = (V, E) in S. It is well known that χ(Sγ ) = 2 − 2γ ,
and χ(Nγ ) = 2 − γ . The surfaces of nonnegative Euler characteristic are the sphere S0, the torus S1, the projective
plane N1, and the Klein bottle N2.

In Section 3 resp. this section we will generalize Theorems 2.1. and 2.2. in He et al. [11] which examine the
lightness of planar graphs to other surfaces resp. to digraphs embeddable in surfaces.

For surfaces of negative Euler characteristic, a crucial parameter in our considerations is the minimal edge number
of a graph with genus γ resp. crosscapnumber γ which we denote by M(S) where S = Sγ resp. S = Nγ . To
our knowledge, M(S) has been determined for the surfaces S of nonnegative Euler characteristics and the double
torus only: M(S1) = M(N1) = 9 by Kuratowski’s Theorem, M(N2) = 15 by results of Glover, Huneke and
Wang [8] and Archdeacon [2], and M(S2) = 18 by work of Myrvold [17]. Note that it is not even known whether
M(Sγ+1) = M(N2γ+1). The upper bounds for M(S) in Table 1 resp. Table 2 are given by examples of Km,n − Mk
the crosscapnumber resp. the genus of which are well-known [16,15]. (Mk denotes a set of k independent edges.)
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Table 1
Bounds for M (nonorientable case)

γ 1 2 3 4 5 6 7 8 9 10 11 12 . . .

M(Nγ ) ≥ 9 15 15 15 15 15 15 15 15 15 15 15
M(Nγ ) ≤ 9 15 19 23 25 29 33 35 39 41 45 47

Table 2
Bounds for M (orientable case)

γ 1 2 3 4 5 6 7 8 9 10 11 12 . . .

M(Sγ ) ≥ 9 18 19 20 21 22 23 24 25 26 27 28
M(Sγ ) ≤ 9 18 25 33 39 45 49 55 61 67 71 77

Let us fix some terms. All digraphs we consider will neither have multiple arcs, nor loops. Graphs are digraphs
where for each arc there is an opposite arc. A pair {(v,w), (w, v)} of opposite arcs will be called edge vw. Simple
digraphs do not have any pair of opposite arcs. For a digraph D = (V, E), let d(v) = d+(v) resp. d−(v) be the
number of in-arcs resp. out-arcs of vertex v, and

δ(D) = δ+(D) = min
v∈V

d+(v)

the minimum (in-)degree, and ∆+(D) = maxv∈V d+(v), and

L+(e) = max{d+(v), d+(w)}

if e = (v,w) is an arc, and

L(D) = L+(D) = min
e∈E

L+(e)

the (positive) lightness of D. Let

δ±(D) = min
v∈D

d+(v)+ d−(v).

The girth g(D) of D is the length of its shortest undirected cycle (or infinity if there is no cycle), where we allow
a cycle to pass only one arc of each pair of opposite arcs.

We further define for a nonnegative integer k and a surface S

FS(k) =
M(S)k + M(S)

(2χ(S)+ M(S)) k + 2χ(S)− 3M(S)
, HS =

5M(S)

10χ(S)+ M(S)
.

These parameters FS(k) and HS (whenever well defined and positive) will be main part of the upper bounds discussed
in Theorems 1–4. In order to simplify the notation we will write M resp. χ instead of M(S) resp. χ(S) when there is
only one surface S. Clearly, FS(k) is nonincreasing when k −→∞ for 2χ + M > 0 and k ≥ k0 >

3M−2χ
2χ+M .

Theorem 1. Let S be a surface of Euler characteristic χ(S) and D = (V, E) be a simple digraph embeddable in S
with δ+(D) ≥ 1 and g(D) ≥ k for odd k ≥ 5.

(a) If χ(S) > 0, then

L+(D) ≤

⌈
4

k − 3

⌉
.

(b) If χ(S) ≤ 0, and M(S)+ 2χ(S) > 0, and k > 3M(S)−2χ(S)
2χ(S)+M(S) , then

L+(D) ≤ bFS(k)c .
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Proof. Assume D = (V, E) is a counterexample. W.l.o.g. D is connected. So g(D) ≥ k for odd k ≥ 5 and
L+(D) ≥ c + 1 where

c =

⌈
4

k − 3

⌉
in case (a), resp., (3)

c = bFS(k)c in case (b), (4)

and there is a 2-cell embedding which embeds D in S. By deleting all vertices v with d+(v)+d−(v) = 1 successively
and subdividing each arc (v,w) with d+(v) ≥ c + 1 and d+(w) ≥ c + 1 once (and maintaining the orientation) we
obtain an auxiliary digraph D = (V , E). Let

Vi :=
{
v ∈ V | d+(v) = i

}
, i = 1, . . . , c

Vc+1 :=
{
v ∈ V | d+(v) ≥ c + 1

}
.

Further ni := #Vi , mi := #{(v,w) ∈ E | w ∈ Vi }, n := #V , m := #E . D is bipartite with Vc+1 forming one of the
partite sets. Thus g(D) ≥ k + 1 since k is odd. By the construction, L+(D) ≥ c + 1, δ+(D) ≥ 1, and

δ±(D) ≥ 2. (5)

Like D, D embeds in S, and for a fixed 2-cell embedding we have

f ≤
2

k + 1
m

where f denotes the number of faces of D.
Obviously,

c+1∑
i=1

mi = m. (6)

In view of (5), m1 ≤ mc+1, so that

− mc+1 ≤ −m1, m1 ≤
m

2
. (7)

Hence

n =

c+1∑
i=1

ni ≤ m1 +

c∑
i=2

mi

i
+

mc+1

c + 1

≤
m1

2
+

m1 + m2 + · · · + mc+1

2
+
−c + 1
2c + 2

mc+1

(6), (7)
≤

c + 2
2c + 2

m =
1
2

(
1+

1
c + 1

)
m.

In case (a), by (3), 1/(c + 1) ≤ (k − 3)/(k + 1), which implies

n − m + f ≤

(
k − 1
k + 1

− 1+
2

k + 1

)
= 0,

and contradicts χ ≥ 1.
In case (b), by the preconditions, FS(k) > 0. Then, by (4), 1/(c + 1) < 1/FS(k), hence

n − m + f <

(
1
2
+
(2χ + M)k + 2χ − 3M

2Mk + 2M
− 1+

2
k + 1

)
m

= χ
m

M
≤ χ.

The last estimation holds since χ ≤ 0, and 0 < M ≤ m as we may assume w.l.o.g. that D (and so D) does not embed
in a surface of lower genus resp. lower crosscapnumber than S. On the other hand this is a contradiction, because by
definition of Euler characteristics n − m + f ≥ χ . �



S.D. Andres / Discrete Mathematics 309 (2009) 3564–3579 3569

If we drop the prerequisite δ+(D) ≥ 1, it is easy to see that the parameter L+(D) is not bounded by any constant.
Think of a star, for example. The same problem occurs if we allow 4-cycles: for each n ≥ 1, there are planar bipartite
digraphs EK2,2n with δ+( EK2,2n) ≥ 1 but L+( EK2,2n) ≥ n. However, we may permit 3-cycles, as stated in the following
theorem.

Theorem 2. Let S be a surface of Euler characteristic χ(S) and D be a simple digraph embeddable in S with
δ+(D) ≥ 1 and g(D) ≥ 3 which does not contain any 4-cycles.

(a) If χ(S) > 0, then L+(D) ≤ 4.
(b) If χ(S) ≤ 0 and M(S) > −10χ(S), then L+(D) ≤ bHSc.

Proof. Assume the theorem is false. W.l.o.g. we may assume that there is a connected counterexample D = (V, E)

with δ±(D) ≥ 2 (cf. the proof of the preceding theorem). Let c = 4 in case (a), and c =
⌊

5M(S)
10χ(S)+M(S)

⌋
in case (b).

We define

Vc+1 := {v ∈ V | d+(v) ≥ c + 1},

T := {(v,w) ∈ E | v ∈ Vc+1 ∧ w ∈ Vc+1},

and Vi := {v ∈ V | δ+(v) = i} for 1 ≤ i ≤ c, Ei := {(v,w) ∈ E | w ∈ Vi } for 1 ≤ i ≤ c + 1. ni := #Vi , mi := #Ei ,
n := #V , m := #E , t := #T . Let fi be the number of i-faces, i.e. of faces bounded by exactly i arcs, and f the number
of faces. Since f4 = 0 we have

3 f3 + 5 f5 + 6 f6 + 7 f7 + · · · = 2m,

and further

f =
1
5
·

∑
i≥3

5 fi ≤
1
5

(
2 f3 +

∑
i≥3

i fi

)
=

2
5

m +
2
5

f3. (8)

As in the preceding proof we will also consider the digraph D = (V , E) obtained from D by subdividing each
arc from T once by maintaining the orientation. We define ni resp. mi by replacing V resp. E by V resp. E in the
definitions leading to ni resp. mi . Obviously, n1 = n1 + t , ni = ni for i ≥ 2, m = m + t . As above we state that

c+1∑
i=1

mi = m, (9)

−mc+1 ≤ −m1, (10)

from which

m1 ≤ m/2 (11)

follows.
Thus we conclude

n =

∑
ni =

∑
ni − t ≤

∑ mi

i
− t

≤
m1

2
+

m1 + m2 + · · · + mc+1

2
+

(
1

c + 1
−

1
2

)
mc+1 − t

(9)
=

m

2
+

m1

2
−

c − 1
2(c + 1)

mc+1 − t

(10), (11)
≤

c + 2
2(c + 1)

m − t =
1
2

(
1+

1
c + 1

)
m −

c

2(c + 1)
t. (12)

Note further that f3 ≤ t since every 3-face of D contains an arc from T and there are no adjacent 3-faces (otherwise
there would be a 4-cycle). Combining this with (8) and (12) yields in case (a)

n − m + f ≤
2
5
( f3 − t) ≤ 0
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since 1/(c + 1) = 1/5. In case (b), by the prerequisite HS > 0, therefore we have 1/(c + 1) < 1/HS . Furthermore,
c ≥ 4 because M > 0, which implies −c/(2c+ 2) ≤ −2/5. W.l.o.g. we may assume again that D does not embed in
a surface of lower genus resp. lower crosscapnumber, so M ≤ m. We conclude

n − m + f <

(
1
2
+

10χ + M

10M
− 1+

2
5

)
m +

2
5
( f3 − t) ≤ χ

m

M
≤ χ.

In both cases we obtain a contradiction against the definition of Euler characteristics. �

3. The structure of graphs in surfaces

The following theorem generalizes Theorem 2.1. in He et al. [11], which examines the lightness of planar graphs,
to graphs in arbitrary surfaces.

Theorem 3. Let S be a surface of Euler characteristic χ(S) and G = (V, E) be a graph embeddable in S with
δ(G) ≥ 2 and g(G) ≥ k for odd k ≥ 5.
(a) If χ(S) > 0, then

L(G) ≤

⌈
k + 5
k − 3

⌉
.

(b) If χ(S) ≤ 0 and M(S)+ 2χ(S) > 0 and k > 3M(S)−2χ(S)
2χ(S)+M(S) , then

L(G) ≤ b2FS(k)c .

Proof. (a) has been proven by He et al. [11] for planar graphs. The same proof holds for graphs embeddable in the
projective plane. We are left to consider (b). Again we assume a connected graph G = (V, E) is a counterexample.
Hence g(G) ≥ k ≥ 5 for odd k and L(G) ≥ c + 1 where

c = b2FS(k)c , (13)

and there is a 2-cell embedding which embeds G in S. By subdividing each edge vw with d(v) ≥ c + 1 and
d(w) ≥ c + 1 once we obtain (as in the preceding proof) an auxiliary graph G = (V , E) with g(G) ≥ k + 1
(since k is odd), L(G) ≥ c + 1, and δ(G) ≥ 2. Again this construction produces a bipartite graph with partite sets

V1 :=
{
v ∈ V |d(v) ≤ c

}
, and

V2 :=
{
v ∈ V |d(v) ≥ c + 1

}
.

Further ni := #Vi , n := #V , m := #E . W.l.o.g. G does not embed in a surface of lower genus resp. lower
crosscapnumber than S. Since G is homeomorphic to G, G embeds in S, and for a fixed 2-cell embedding we have

f ≤
2

k + 1
m

where f denotes the number of faces of G. The number of vertices is bounded by

n = n1 + n2 ≤

(
1
2
+

1
c + 1

)
m,

cf. He et al. [11]. By the preconditions and by (13), 1/(c+ 1) < 1/ (2FS(k)). As in the proof of Theorem 1 we obtain
the contradiction n − m + f < χ . �

By the same refinement which extends the proof of Theorem 1 to a proof of Theorem 2 the proof of Theorem 3
may be modified to prove the following:

Theorem 4. Let S be a surface of Euler characteristic χ(S) and G be a graph embeddable in S with δ+(G) ≥ 2 and
g(G) ≥ 3 which does not contain any 4-cycles.
(a) If χ(S) > 0, then L(G) ≤ 9.
(b) If χ(S) ≤ 0 and M(S) > −10χ(S), then L(G) ≤ b2HSc.

The proof is left to the reader. Note that He et al. [11] achieved the tighter bound 8 for planar graphs using special
properties of cycles in planar embeddings.
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4. On the parameter M

In a series of papers Glover, Huneke, Wang [8], and Archdeacon [2] classified the irreducible graphs for the
projective plane, i.e. those graphs which cannot be embedded in the projective plane but every subgraph can (up
to homeomorphisms). From their results follows:

Theorem 5 (Glover, Huneke and Wang [8]; Archdeacon [2]). M(N2) = 15.

Corollary 6. M(Nγ ) ≥ 15 for γ ≥ 2.

Thus, we have M + 2χ ≥ 15+ 2χ > 0 for χ ≥ −7, i.e. Theorems 1(b) and 3(b) apply at least to the surfaces Nγ ,
2 ≤ γ ≤ 9. Probably they apply to much more surfaces since M(Nγ ) increases with γ , cf. Table 1 for the possible
ranges. Theorems 2(b) and 4(b) apply at least to the surfaces N2 and N3, since M ≥ 15 > −10χ then.

Myrvold [17] gives a classification of all irreducible graphs for the torus with at most 11 vertices. These graphs
have at least 18 edges.

Theorem 7 (Myrvold [17]). M(S2) = 18.

Lemma 8. For any orientable surface Sγ with γ ≥ 2, M(Sγ ) ≥ 16+ γ .

Proof. This is an obvious induction on γ . For γ = 2 the statement is true by Myrvold’s theorem [17]. Note that the
deletion of an edge in a graph reduces the genus by at most one, which implies the rest. �

By Lemma 8 Theorem 1(b) resp. Theorem 3(b) apply at least to the surfaces Sγ , 1 ≤ γ ≤ 6, since then
M + 2χ ≥ 20 − 3γ > 0. Theorems 2(b) and 4(b) apply at least to the torus. Again, for the orientable surfaces,
the parameter M will be probably greater, so that the bounds can be significantly tightened, cf. Table 2.

Without any further knowledge of M we already obtain the upper bounds for the lightness of graphs in surfaces
which are given in the Appendix. In order to obtain tighter bounds for the lightness resp. positive lightness of graphs
resp. digraphs in surfaces, a main subject of future research has to be finding better lower bounds for M(S).

5. Tightness of the bounds

There is a series of corollaries from Theorems 1 and 3. Note that, if χ = 0, the parameter M cancels out in the
expression FS(k).

Corollary 9. Let D resp. G be a simple digraph with δ+(D) ≥ 1 resp. a graph with δ(G) ≥ 2 embeddable in the
sphere or the projective plane. Then

(a) L(G) ≤ 5 if g(G) ≥ 5,
(b) L(G) ≤ 3 if g(G) ≥ 7,
(c) L(G) ≤ 2 if g(G) ≥ 11,
(a′) L+(D) ≤ 2 if g(D) ≥ 5,
(b′) L+(D) ≤ 1 if g(D) ≥ 7.

Corollary 9 is tight in the projective plane case: For (a) consider the complete graph K6 and subdivide each edge
once. By the result of Ringel and Youngs [20] K6, and thus the resulting graph, can be embedded in the projective
plane. It has girth six, minimum degree two, and lightness five. For (b) consider the graph depicted in Fig. 1(a). For
(a′) take the example from (a) and orient the edges in such a way that d+(v) ≥ 1 for every vertex v and every vertex
of degree five has in-degree at least two. The tightness in the undirected sphere case was already proved in [11], in the
directed sphere case (a′) edges are oriented suitably as above.

Corollary 10. Let D resp. G be a simple digraph with δ+(D) ≥ 1 resp. a graph with δ(G) ≥ 2 embeddable in the
torus or the Klein bottle. Then

(a) L(G) ≤ 6 if g(G) ≥ 5,
(b) L(G) ≤ 4 if g(G) ≥ 7,
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Fig. 1. (a) projective twisted dodecahedron. (b) Graph with torus-identification. (c) Digraph with Klein-bottle identification. (d) Double-twisted
doubleclock.

(c) L(G) ≤ 3 if g(G) ≥ 9,
(d) L(G) ≤ 2 if g(G) ≥ 13,
(a′) L+(D) ≤ 3 if g(D) ≥ 5,
(b′) L+(D) ≤ 2 if g(D) ≥ 7,
(c′) L+(D) ≤ 1 if g(D) ≥ 9.

Corollary 10 is tight in the torus case: For (a) consider the complete graph K7 and subdivide each edge once. The
resulting graph can be embedded in the torus and has girth six, minimum degree two, and lightness six. For (b) consider
the graph obtained from subdividing each edge once in either the complete bipartite graph K4,4 or the 4-dimensional
hypercube. Both examples have genus one, girth eight, minimum degree two and lightness four. Furthermore, (c) is
tight since the graph G of Fig. 1(b) with g(G) = 12, δ(G) = 2, and L(G) = 3 can be embedded in the torus. For (a′)
resp. (b′) we may take the same examples as for (a) resp. (b) and orientate the edges in such a way that the minimum
in-degree is one and the positive lightness three resp. two. Such orientations are easily found.

Corollary 10 is tight in the Klein bottle case: For (a) consider the graph G of Fig. 1(c) (without the orientation) with
g(G) = 6, δ(G) = 2, and L(G) = 6. An example for the tightness of (b) is obtained from K4,4 by subdividing each
edge once. This graph has crosscapnumber two, girth eight, minimum degree two, and lightness four. For (c) consider
the double-twisted doubleclock which is depicted in Fig. 1(d). For (a′) consider the digraph of Fig. 1(c) again, for (b′)
the subdivision of K4,4 with an obvious orientation.

We do not know whether the result of Theorem 2 is tight, not even in the case of planar digraphs, i.e. whether there
exists a planar digraph D with δ+(D) ≥ 1 and which does not contain 4-cycles; however, having L+(D) = 4. Fig. 2
depicts a planar digraph D obeying the preconditions of Theorem 2 with L+(D) = 3.

6. Application to graph colouring and ordering games

The application of our results to game colouring numbers is based on a simple but important observation of Zhu [22]
on edge partitions. Let G = (V, E), G1 = (V, E1) and G2 = (V, E2) be graphs with the same vertex set. G1|G2 is
an edge partition of G if E = E1∪̇E2.
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Fig. 2. The upper and the lower border of this illustration have to be glued together, so that a planar graph is obtained. (Imagine rolling the rectangle
on a cylinder.)

Observation 11 (Zhu [22]; Guan and Zhu [10]). If a graph G has an edge partition G1|G2, colg(G) ≤ colg(G1)+

∆(G2), for any version g of the marking game.

We may define an arc partition D1|D2 of a digraph D = (V, E) in line, i.e. if D1 = (V, E1), D2 = (V, E2), and
E = E1∪̇E2.

Observation 12. If a digraph D has an arc partition D1|D2,

colg(D) ≤ colg(D1)+∆+(D2),

for any version g of the directed marking game. �

A graph G is called i-hereditary if, for every subgraph H of G,

δ(H) ≤ 1 or L(H) ≤ i.

Let u(S, k) be an upper bound for the lightness of graphs embeddable in a surface S with girth at least k and
minimum degree at least 2. Possibly, u(S, k) = ∞. Since every subgraph of a graph G embeddable in S with girth at
least k embeds in S and has girth at least k, too, G is u(S, k)-hereditary.

He et al. proved the following:

Lemma 13 (He, Hou, Lih, Shao, Wang and Zhu [11]). If a graph G is i-hereditary, G has an edge partition G1|G2,
so that G1 is a forest and ∆(G2) ≤ i − 1.

By a result of Faigle et al. [7], the game colouring number of a forest is at most four, a statement which we can
combine with Observation 11 and Lemma 13 to obtain

Corollary 14. For a graph G embeddable in a surface S with girth at least k,

colg(G) ≤ u(S, k)+ 3,

for any version g of the marking game.
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In Table 5 resp. Table 6 these bounds which result from Theorem 3 and Corollary 14 are given explicitly for the
surfaces S j , 0 ≤ j ≤ 3, resp., N j , 1 ≤ j ≤ 8. For reasons of clarity and space, the bounds for N9 are omitted. By (2),
these numbers are bounds for the respective game chromatic numbers, too.

One method, to obtain bounds for the directed game colouring number, i.e. for the simple digraph case, is to use
Lemma 13 again in conjunction with Observation 12 and the following

Theorem 15. For an orientation EF of a forest F and any version g of the directed marking game,

colg( EF) ≤ col[B,B]( EF) ≤ 3.

Proof. The first estimation is obvious, cf. [1]. We are left to prove that Alice has a winning strategy for the directed
marking game on the digraph EF which guarantees that the players never create an unchosen vertex with more than
two incoming neighbours. A move of the game can be regarded as splitting a subtree of the forest into several subtrees
with the property that, initially, the chosen vertex belongs to each new subtree and is a leaf in those subtrees. If this
leaf has in-degree 1, it is erased in the respective subtree, because, for the rest of the game, it is no danger for its
neighbour. (Other vertices than the chosen one are not split in that move.) With respect to a certain situation of the
game, we call the subtrees independent subtrees.

Alice’s winning strategy consists in playing in such a way that after each of her moves each independent subtree
contains at most one chosen vertex. Therefore Bob always has a move as long as there is an unchosen vertex. Consider
the case that Bob has chosen a vertex. If, after his move, each independent subtree has at most one chosen vertex, Alice
may simply choose the neighbour of a chosen vertex in an independent subtree or any vertex in an independent subtree
with no chosen vertex. Otherwise, Bob has created at most one independent subtree with 2 chosen vertices v and w.
Then, in order to reinstall her strategy, Alice considers the path P from v to w and chooses a vertex with in-degree 2
(in P), which obviously exists. By induction, at the end of the game each independent subtree will consist of a single
vertex. �

Corollary 16. For a digraph D which is the orientation of a graph embeddable in a surface S with girth at least k,

colg(D) ≤ u(S, k)+ 2,

for any version g of the ordering game.

Proof. In Observation 12 we can estimate ∆+(D2) ≤ ∆(D2). �

Hence, by (2), χg(D) ≤ u(S, k) + 2. In general, these bounds can be found by decreasing by 1 the bounds in
Table 5 resp. Table 6. However, the argument does not apply to the bounds in brackets which result from [12,22,24].

7. Final remarks

In Section 6 we determined upper bounds for directed colouring numbers of a simple digraph by using our result
concerning the lightness of a graph. The conjecture that these bounds can be improved by applying the results
concerning the positive lightness of a simple digraph seems to suggest itself. A first step towards this conjecture
is the following theorem which makes use of a refined definition of i-hereditary. A digraph D is called i-+ hereditary
if, for every subgraph H of D, δ+(H) = 0 or L+(H) ≤ i .

Theorem 17. Let i ≥ 0. An i-+ hereditary digraph D has an arc partition D1|D2, so that D1 is acyclic, i.e. does not
contain a directed cycle, and ∆+(D2) ≤ i .

Proof. We proceed by induction on the number of arcs. If there is no arc the statement is trivial. If δ+(D) = 0, there
is an arc (v,w) with d+(v) = 0, and by induction hypothesis an arc partition D′1|D

′

2 of D′ = D − (v,w) exists
with the desired properties for D′. Set D2 = D′2 and D1 = D′1 + (v,w). D1 is acyclic since D′1 contains no directed
cycle and d+(v) = 0. On the other hand, in case δ+(D) > 0, there is an arc e = (v,w) with L+(e) ≤ i , and by
induction hypothesis an arc partition D′1|D

′

2 of D′ = D − e with the desired properties for D′. Let D2 = D′2 + e and
D1 = D′1. We have d+D2

(v) ≤ d+D(v) ≤ i , and d+D2
(w) ≤ i . So ∆+(D2) ≤ i . In both cases, D1|D2 is the required edge

partition. �
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Table 3
Upper bounds sk (γ ) for the lightness of graphs with girth at least k and without 4-cycles and minimum degree at least 2 in the orientable surface Sγ

k S
sk (0) sk (1) sk (2) sk (3) sk (4) sk (5)

3 (8) 10 ∞ ∞ ∞ ∞

5 (5) 6 18 ∞ ∞ ∞

7 (3) 4 7 25
9 3 5 11

11 (2) 4 8 30

13 2 6 17
15 3 13
17 5 11 126
19 10 52

21 9 35
23 4 8 28
25 23
27 7 21

29 19
31 17
33 16
35 6 15

37 2
39 14
43 13
47 12

51 3
57 11
61 5
71 10

105 9
253 8

The bounds in brackets were already obtained by He et al. [11].

In order to apply Observation 12, however, we have to determine the directed colouring number of acyclic digraphs
embeddable in a given surface with a given girth. Maybe, this problem is as difficult as the general (not necessarily
acyclic) case.
Lightness and weight. The relation (1) between lightness and weight of a digraph D motivates us to consider the
following residue parameters

R1(D) = 2L+(D)− w(D),

R2(D) = w(D)− L+(D)− δ+(D).

Obviously, R1(D) = R2(D) = 0 for regular digraphs, i.e. digraphs where each vertex has the same in-degree. But
there are also nonregular digraphs with arbitrarily large maximum in-degree (or arbitrarily large clique number) ∆,
arbitrarily large minimum in-degree δ < ∆, and arbitrarily large connectivity κ < δ, with the same property. (E.g.
consider the graph built by Kδ+1 and K∆ which are glued together by a matching of cardinality κ as in Fig. 3.) A
general criterion to recognize those digraphs for which lightness and weight describes the same phenomenon is given
by the following:

Proposition 18. Let D = (V, E) be a digraph with E 6= ∅. Then the following statements are equivalent:

(i) R1(D) = R2(D) = 0
(ii) L+(D) = δ+(D)
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Table 4
Upper bounds nk (γ ) for the lightness of graphs with girth at least k and without 4-cycles and minimum degree at least 2 in the nonorientable
surface Nγ

k S
nk (1) nk (2) nk (3) nk (4) nk (5) nk (6) nk (7) nk (8)

3 9 10 30 ∞ ∞ ∞ ∞ ∞

5 5 6 10 30 ∞ ∞ ∞ ∞

7 3 4 5 8 20
9 3 4 6 10 30

11 2 3 5 7 15

13 2 4 6 11 42
15 5 9 24
17 3 8 18
19 7 15

21 2 4 13 110
23 6 12 60
25 11 43
27 10 35

29 30
31 5 9 26
33 24
35 22

37 8 21
39 20
41 3 19
43 18

45 17
49 7 16
53 15
61 2 4 14

71 13
85 6
87 12

121 11
221 10

Fig. 3. A nonregular graph for which (1) is trivial.

(iii) D contains an arc (v,w) with d+(v) = d+(w) = δ+(D)

(iv) w(D) = 2δ+(D).

Proof. The system (i) is equivalent to L+(D) = δ+(D) and w(D) = 2δ+(D), thus (ii) follows from (i). On the other
hand, one of the conditions (ii) and (iv) is redundant. Assume that w(D) = 2δ+(D). Then we have
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Table 5
Upper bounds sk (γ ) for the game colouring number of graphs embeddable in the orientable surface Sγ with girth at least k and without 4-cycles,
and the best-known upper bounds s(γ ) for the game colouring number of graphs embeddable in Sγ in general

k ≥ sk (0) sk (1) sk (2) sk (3) sk (4) sk (5)

3 (10)[21] (10)[21] (22)[12] (24)[12] (26)[12] (27)[12]

5 (8)[11] (8)[21] 21 (24)[12] (26)[12] (27)[12]

7 (6)[11] (6)[21] 10
9 8 14

11 (5)[11] (5)[21] 7 8

13 9 20
15 6 16
17 8 14
19 13

21 12
23 7 11
25 26
27 10 24

29 22
31 20
33 19
35 9 18

37 5
39 17
43 16
47 15

51 6
57 14
61 8
71 13

105 12
253 11

s(0) s(1) s(2) s(3) s(4) s(5)

(17)[24] (20)[12] (22)[12] (24)[12] (26)[12] (27)[12]

Previously known bounds are in brackets. The superscript numbers refer to the bibliography. For the given surfaces, our results do not provide
better bounds if the girth is augmented, without improving the lower bounds for M(S).

0 ≤ R1(D) = 2L+(D)− w(D) = 2L+(D)− 2δ+(D), and

0 ≤ R2(D) = w(D)− L+(D)− δ+(D) = δ+(D)− L+(D),

hence δ+(D) = L+(D). As a consequence, (iv) implies (i). Note that, if (iii) is not true, then, since E 6= ∅, each arc
e has at least one end vertex v with d+(v) > δ+(D), and L+(D) = mine L(e) > δ+(D). This proves the implication
(ii)⇒(iii). (iii)⇒(iv) follows from the definition of weight. �

Remark. In general, R1 and R2 may not be bounded, even when restricted to (undirected) trees. To see this, for given
integers n1 ≥ 1 and n2 ≥ 1, we construct a rooted tree T . Its root v has n1 + n2 descendants, each one of which has
n1+2n2 descendants again. To form the tree T(n1,n2) take T and a copy T ′ of T with root v′ and connect v and v′ by an
edge. One can easily check that L(T(n1,n2)) = n1+n2+1, andw(T(n1,n2)) = n1+2n2+2, therefore R1(T(n1,n2)) = n1,
and R2(T(n1,n2)) = n2. Here, the difference between the concepts of lightness and weight is expressed by different
light edges: vv′ is the only ‘light edge’ in the sense of lightness (since L(vv′) = L(T(n1,n2)),) whereas only every leaf
edge e is ‘light’ in the sense of weight (since w(e) = w(T(n1,n2)).) Fig. 4 depicts T(1,1).
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Table 6
Upper bounds nk (γ ) for the game colouring number of graphs embeddable in the nonorientable surface Nγ with girth at least k and without
4-cycles, and upper bounds n(γ ) for the game colouring number of graphs embeddable in Nγ

k ≥ nk (1) nk (2) nk (3) nk (4) nk (5) nk (6) nk (7) nk (8)

3 (10)[21] (10)[21] 33 ??? ??? ??? ??? ???

5 8 (8)[21] 13 33 ??? ??? ??? ???
7 6 (6)[21] 8 11 23 ??? ??? ???
9 7 9 13 33 ??? ???

11 5 (5)[21] 6 8 10 18 ??? ???

13 7 9 14 45 ???
15 8 12 27 ???
17 6 11 21 ???
19 10 18 ???

21 5 7 16 113
23 9 15 63
25 14 46
27 13 38

29 33
31 8 12 29
33 27
35 25

37 11 24
39 23
41 6 22
43 21

45 20
49 10 19
53 18
61 5 7 17

71 16
85 9
87 15

121 14

221 13

n(1) n(2) n(3) n(4) n(5) n(6) n(7) n(8)

(19)[22] ??? ??? ??? ??? ??? ??? ???

Previously known bounds are in brackets. The superscript numbers refer to the bibliography. For the entries with question marks, it is not known
whether bounds exist.

Fig. 4. The tree T(1,1).
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See Tables 3–6.
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