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We say that a subset S of a topological space X is NZ-embeddedi (,%.P-embedded) in X if every 
map from S to ic (separable) nretrizable AE can be extendecl over X. Characterizations of M- and 
M’kembedding are grven and we prove that S is Illi-embedded (lU%embedded) in X ilFf (X, S) 
has the Homoiopy Extension Property with respect to every (separable) ANR space. 

AMS Subj. Cl&s.: 5JC4S, 54C55, 55D65 

Let S be a subset of a topological space X. We say that S is By-embedded in X 
(where y is an infinite cardinal number), if every continuous y-separable 
pseudometric on S extends to a COF sinuous pseudometric on X. It is known that X 
is y-collectionwise normal iff every closed subset is P-embedded in X, that 
P*o-embedding is equivalent to C-embedding and that S Es’ P7-embedded in X iff 
every continuous function from S to a complete y-separable metritiable AE 
extends to 1”2’. For information on these co&ebts see [3]. 

In this paper we define S to be 1W7-embedded @Cembedded) in X if every 
continuous function from S eta a y-separable metrizable (metrizable) AE ex~& t3 
a continuous function on X. (Throughout this paper an AE, AR, or ANR means an 
AE, AR, or ANR for metric spaces.) We give neceissary and sufficient condil:iuns 
for S to be A47-embedded in X (one: of which isolates what must be’ added to 
P-embedding to produce My-embedding). Several new ckmsses of spaces with 
various sublet:; possessing this) property are given. In particular it is shown that i% X 
is paracompact (and completely regular Tl), then alay closed, topologically corn- 
plete subset of X is M-embedded in X. Finally, we give two applicaitions. The first 
gives necessary and suficient conditions for a metrizable subset of a tspologica 
space to possess a certain lerty. The second involves a 
generalization of the Morita-- 
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In what follows, S will ale ays denote a subspace of a topological space X and y 
will denote an infinite cardinal number. No separation axioms are assumed unless 
stated. 

Tbecz-rem 1. The j%llo wing are eqkivalent : 
(1) S is Mv-elmbedded .In X. 
(2:. Every cominlL:ous juncdfsn from S to a y-separable metrizable convex 4dwet K 

of a iocz!!y convex topob$xd vector .cDaze ex8end;ls to X with values in K. 
o (3) Giveat a confinuous y -seprirable pseudometric d on S, there is a continuous 
ext,ension d * of d to X such that x E d “-closure of S implies the existence of x0 E S 
such that d “(x, x,) = 0. 

(4) Given a conGnuous y-separable pseudometric d on S, there exists a continuous 
extension d* of r! to X such that (S, d) is a retract (in the d “-topology) of the 
d*-closure of S. 

(5) S is Pv-embedded in X and given a condnuous y-separable pseudometric d on ; 
X, there exists a zero-sef (Z of X such that 

SCZC(xEX:3x&Ssuch thatd(x,xo)=O). 

(6) S is P y -embedded in X ar?d given a cnvrtinuous firmdon f from X into a 
l+separable metric space, there exists a zero -set Z of X such that S C Z C f -’ (j (S)). 

(7) Every continuous function from S to a y-separable normed iinear space extends 
ii0 x. 

Proof c clearly (S) and (6) are the most interesting characterizations as they show 
what must be added to P’-embedding to produce MY-embedding. (1) implies (2) is 
clear 3s any such K is a metrizable AE. To show that (2) implies (3), let d be a 
y-separable continuous pseudometric on S and define f from S into C*(S, @) by 
f(x) = dx - &, where a is a fixed point of S and dx (y ) = d(x, y ). Let L denote the 
convex hull of f(S). Then k is y-separable, hence f extends to f * on X with 
f*(X) CL.. l>efine d ,“(x, y j = 11 f*(x) - f*(y)& Then d * is a continuous pseudo- 
metric on X that exteqds d. Let x0 be in th4: d*-closure of S and let (x,) be a 
sequence in S ccnverging to x0 in the d*-topology. If 

f* (x0) = 2 ri f (y; j, 
i=l 

where ri > 0, Zy=, ri = 1 and yi E S9 then we have 

I r 
d(Xa, Z)- 2 rid(yi9 t) I 

i=l i 

converges to 0 as n -+ 00 for eai&l z E S. Let z = xm9 and let n, m 4 00. Gnce 
d (x,, x,,) converges to 0, we must fyi, x, ) converging ts;r 0 as 

But this implies for each i that d(yi, x,,) ~on~eqgs to 0, hence d *(x0, yi) = 0. 

The implication (3) implies (4) is clear. To s ow that (4) implies (s), note that S is 
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P-embedded in X. Let d be a continuous y-separable psc:udometric on X and let 
e denote the restriction of H to S. By (la), there exists a continuous extension e * of e 
s~!ch that the e *-closure of S retracts onto (S, e). Let r denote a rekraction map and 
let f(x) be the (e * v d)-distance from x to S. Clearly S CZcf). Let f(x) := 0. This 
implies the existence of a sequencp (x,,) in S such that (x,) converges to A\: in both 
the e * and d tbpoldgies. Since r is an e * continuous function, we have that (x,) 
convlt=rges to r(x) in the e topology. We claim that d(x, r(x)) = 0. This follows from 
the inequalities: 

It is easy to see that (5) and (6) are equivalent. To show that (5) implies (l), let f 
be a continuous function from S into a metric space (M, m) of wleight d y that is an 
.AE. Define d (x, y ) = m (j(x), f(y)). Then d is a contiiluous y-separable 
pseudometric on S hence has an extension to a continuous y-separable pseudo- 
metric d* on X [3]. By (S), there is a continuous function g on X, such that 

S CZ(g) C{x E X: ax0 E S, such that d *(x, x,) = 0). 

Let d’ = d” v ?Pg where !& is the pseudometric on X defined by !,I$ (x, y) = 

f g(x) - g (y )I . Then d’ is a continuous pseudometric on X that extends d. M majr 
be considered a retraction of a convex subset of a Banach space ([‘7], p. 95, $4). By 
the Dugundji Extension Theorem ([34, p. 166) it is only necessary to extend f to the 
d ‘-closure of S. Let x be in the d ‘-closure of S. Then one readily checks that 
g(x) = 0, hence there exists x0 E S such that a *(x, x0) = O,, This implies that 
d’(x, x0) = 0, hence setting )(x) = f(leo) gives the desired extension. 

Clearly (I) implies (7). To sFow that (7) imglies (l), let f be a continuous function 
from S into a metrizable AE M of weight G y. By the Arens-Eells Embedding 
Theorem [S], M can be embedded as a closed subspace of a normed linear space 1,. 
Let L * denote the span of M in L. Then. L * is y-separable, and M is closed in 1. * 
(and hence a ret Tact of L *>I* This compleees \he proof. 

It can be shown that (5) with the addecl condition that d Itse bounded is equivaient 
to My-embedding. MY-embedding is also equivalent to requiring every contir.;uous 
function from S into a bounded convex subset K of a y-separable naetri.table 
topological vector space to extend to X with values in K. &moving ~11 cardinal&y 
references in the theorem produces characterizations of M-embeddirig. 

Corollary - 1. If S is a P-embedded zero-set of X, then S is My-embedded in X. 

Corollary 2. Ekery my-separable metrizubk AE is an AE for the class cq y- 
;collectionwise normal, perfectly normal spactfs. 

Corollary r2 was proven for collectionwist: norma!, perfectly normai spaces t y 
Pas::;nkov [In]; earlier N’ichael ([7], p. 63) proved that metrizable (sepalrab’k 

metrizable) AB’s are AE’s for the class %)f paracompact, perfectly normal (perfer;;!y 
normal) spaces. 
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3. Every Litk!eZiif zero-set S of a completely regular Tt space X is 
M-embedded in X. 

Proof. By Corollary 7.2 [I], S is &embedded in X. e result follows from 

Corollary 1” 

L2t X be a com#etely regular T, space such that UX has non- 
measurable cardinal l men X is M-embedded in 0X. 

Proof. By ([3J, p. 187), X is P-embedded in uX. Let d be a continuous 
pseudome;& on uX. We claim that 

(x E UX : 3x0 E X such that d(x, x0) = 0) = uX. 

For x E OX, let f(y) = d(x, y). Since every zero-set in OX meets X, there exists 
x0 E X such that f (x0) = 0, i.e. d(x, x0) = 0. 

The next corollary will be important later in constructing P-embedded, non-M- 
embedded subspaces. 

Coroliary 5. If X contains a metric topology, then S is M -embedded in X ifl S is Q 
P-em bedded zero -set of X. 

Proposition 1. Let S be a P7 -embedded subset of X with the pq?erty that every 
continuous -J-separable pselddometric on S is majorired bj a complete continuous 
y-separable pseud6pnetric on S. Then S is M7-embedded in X. 

Proof. We will verify (5) of Theorem 1. Let d be a continuous y-separvable 
pseudometric on X and let e be a complet continuous y-separable pseudometric 
on S such that e Gad IS. Let es extension of e to X. Claim that 
f(x) = (d v e “)(x, S) satisfies the required condition. Suppose the cl v e * distance 
of x to § is 0. There exists a sequence (x,) in that converges with respect to 
d v e * to x. Since (x,,) is e-cauchy, there exists x0 S such thst (xn) conve 
in the e toplnlogy. Since e majorizes d 1 S, the sequence (x”) also converges to x0 in 
the d topology. ‘Then d(x, x0) s d (x, x,) -t d(x,, x0), which implies that d(x, x0) = 0. 

One obGous way to attelzpt to weaken the hypethesis of this result would be to 
require only that every complett continuous y-separable pseudometric on :ti 
extend to a continuous psevldcmetric on X. But in [15] we show that this is actually 
equivalent to P7-embedding. 

If S is a pseudo -c vtpact *-embedded subset of X, thc!n 
’ M-embedded in X. 

t is easy to see that every contin 
space’is complete and totally ounded. It is known ([3], p. 208) that C*-embedding 
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is equivalent to the extendability of every totally bounded continuous 
pseudometric. 

2. Any compact space is absolutely M-emkdded, i.e. every embedding 
letely regular T, space is an M-embedding. 

Proof. Since any compact space is absolutely C”-embedded, this follows frlom 
Corollary 1. 

Corollary 3. If S is a complete y-separabk metric space that is P’-embedded in. X, 
then S is M ‘-embedded in X. 

Proof. If (S, m) is a complete y-separc.ble metric space and if c! is a continul9us 
pseudometlic on S, then (1 v m is a complete y-separable psceudome tric 
majorizing d. 

Corollary 4. If S is a discrete P-embedded subspace, it is M-embedded. 

Corollary 5. If S is a paracompact, P-embeddC,d, topologically complete subset of a 

completely regular T, space X9 then S is M-embedded in X. 

Proof. 2. Frolik has shown that a completel:y regular ?J space S is paracompact 
and topologically complete iff there is a perfect map f from S onto a complete 
metric space (M, m). (For a proof, see for example [6], p. 73.) Defining e(x, y ) = 

N(X)7fiY))9 we see that e is a complete continuous pseudometric on S. If d is any 
continuous pseudometric on S, then e v d is complete. To see this, let (x,) be an 
e v d (:auchy sequence. Then (x,,) is e cauchy and hence converges in the e 
topology to x c- .:= S. We claim that there exists y E f.-” f(n) such that i;x,) converges 
to y in the d topology. This will complete th& p&of, since (x,) will also converge to 
this y in the e topology. Suppose such a y does not exist. Then for each y such that 
f(y) = f(n), there exists E (y) > 0 and N(y) such that (x,,),~~~(~) C 5” - S2 (y, E (y )). 
Since f-If(x) is compact, there exists {Yi ; i, . . ., rt} such that 

f-‘f(x)c ij S&w(yi))= G.‘ 
i=l 

Let N=ma’x{N(yi):i=l,...,n} andlet nNV3hen x,&G, hencef(x,)&A = 
M - f(S - G). But A is open in iW and contains f(x). Since (fix,)) cokrverges to 

’ f(x), this is a contradiction. 
H.L. Shapiro [4j have introduced the notion of a subspace S being 

strongly paracompact in X if every cover of S by sets open in X has a re:finement by 
sets open in X that is locally finit 3 in X. They show that if X is a normal T- r;~ace 
and S a subset of X, then S is strongly paracompact in X iff S is paracompact and 
P-embedded in X. Thus CorollaAT 5 can be restated. 
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Let X be Q normal T2 space and S a strongly paracompact tip.dogi- 

cd/y complete subspace. Then S is M-embedded in X. 

is a completely re T1 paracompact ace, then any closed 

topslogically complete subset is M-em ed in X. 

If S is a Lindeliif, topologically complete, C-embedded subset of a 
completely regular TI space X, then S is M-embedded in X. 

In [6], p. 74 it is shown that a completely regular T1 space S is LindeKjf and 
topslogically complete iti there exists a perfect map from X onto a corrplete 
separable metric space. Making the obvious modifications in the proof of Corollary 
q we see that every continuous separable pseudometric on S is majorized by a 
E;,mplete continuous separable pseudohaetric on S. By Corollary 7.1 of [l] S is 
P-embedded in X. It is easy to see that every continuous pseudometric on a 
Lindelof space is separable. The result now follows from Proposition 1. 

J.T. Lisica has shown that any AR is an AE for paracompact p-spaces (those 
spaces which adn?. it a perfect map to a metric space). (For a proof, see [ 141.) We give 
another proof here based on our theorem. 

Let X be a completely regular T, paracompact p-space. Then every 
closed subset of X is M-embedded in X. 

roof. Let S be a closed subset of a para(:ompact p-space X and let cp be a perfect 
map from X onto the metric space ( nti ). Since X is collectionwise normal S is 
P-embedded in X. Now let d be continuous pseudometric on X. Define 
e(x, y ) = m (cp (x), q (y )) and let f(x) bc .he e v d-distance from x to S. Clearly 
S C Z(f). Now let f(x) = 0. There exists a sequence (xn) in S converging to x in t 

e and d topologies. This implies (rp (x,)) converges to q(x) in M. But 1’p (S) is closed 
in M, hence cp (x) E ~0 (S). We claim t ere exists y E S flq -‘(q(x)) such that (x”) 
converges to y in the d topology. If we can show this, we will have d(x, y ) s 
d(x, x,) + d(x,, y) which will imply that d(x, y) = 0. The proof that such a y exists is 
similar to the proof in Corollary 5 so we omit it here. 

We will generalize an example due to ichael [IO] to produce several P- 
embedded, non-M-embedded Lsubspaces. Let (S, m) be a non-topologically coma 
plete metric space with completion (S *, m *). Let X &note its completion with the 
following topology: The basic open sets a 
(S”, m *) and P is any subset of X - S. 

ne can show that 
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The original example given by Michael involved taking S to be the rarionnls. One 
c8n also let be any normed linear space that is not a Banach space or any 
metrizable non-complete Abelian topological gr*o~p [8]. 

der of the paper deals with two applications of M-embedding. The 
rst concerns a simultaneous extension property. There ale many of thesc2 

properties; the one we will e considering is defned as foilows. Let S be a subspace 
of X and let C(S) denote the vector space of real-valued continuous functions on S, 
similarly with C(X). We say that fihere is a simultaneous linear extender from C(S) 
to C(X) if there is a linear function e from C(S) to C(X) assigning to each 
f E C(S) an extension of f to X in such a manner that e(f)(X) is contained in the 
convex hull of f(S). We say that (X9 S) has the Dugundji Extension Property if every 
continuous function from S into a convex subset Z of a locally convex topological 
vector space has an extension to X with values in 2. 

osition 3. If (X,S) has the Dugundji Extension Property, then there exists a 
simul?aneous linear extender from C(S) to C(X). 

Proof. Let L -be the locally convex topological vector space formed by taking a 
product of real lines, one fer each f E C(S), and let ~0 denote the cannonical 
mapping of S intc L. Let 2 denote the convex hull of cp (S) in L, and let 4 denote 
an extension of q I:O X with values in 2. Defining e(f) (~1 = 4 (x)~, one checks that 
all con,ditions are satisfied. 

It is clear that one could replace L with a product’of copies of any locally convex 
topological vector .space E and thus e set a simultaneous linear extender from 
C(S, E) to C(X, E). For further dtivelopment of this idea sc:e 1161: 

Let S be a me&able subspace of a topological rpace X. Then (X, S) 
has the Dugundji Extension Property iff S is M-embedded in X. 

lroof. Necessity follows from (2) of Theorem 1. To show sufficiency, let j’ be a 
continuous function from (S, m) into a convex subset 2 of a locally cclqvex 
topological vector space. Since S is M-embedded in X, there exists an extension 
m * of’ m to X such that x E m *-closure of S implies there exists x0 E S such that 
m *(x, x0) = 0. Defining f*(x) = f (x0) extends f to the m *-closure of S in X. The 
Dugundji Extension Theorem allows us to extend f* to all of X. 

This improves a result of D. Lutzer and H. Martin [9] in which they showed tha: 
if S is a closed, etrizable zero-set of a collectiotlwise normal space X, then there is 
a simultaneous linear extender from C(S) to C(X). .As an example of our 
result, there exists a simultaneous linear extender from C({s2} x [lo, o]) to 

C([O, Q] ( [R 4 )* 
:raliza*ion 

of 
of [12]) that S is P*-embejdded in X iff (X, S j has the HEP wirlr respect to every 
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complete ANR space with weight G y. We will show that S is My* embedded in X 
iff (X9 S) has the I-IEP with respect to every ANR space of weight 6 ye The 
following preliminary results are needed. 

Pmpositioa 5. Let Y be a compact T2 space of weight =G y. Then S is IF’- 
embedded in X if S hv Y is My-embedded in X X Y. 

Proof. If S is My-embedded in X, then S x Y is Py-embedded in 1X X Y by 
Corollary 3.4 of [2 . Let d be a bounded y-separable continuous pseudometric on 
XX Y and define d* on X by 

d*(xl, xz) = supbW1, y ), (a, y)): y E Y}- 

It can be shown that G* is y-separable by a method similar to that used in the proof 
of Theorem 3.3 of [2]. Then there exists a continuous function f on X, such that 

SCz(f)C{x EX:%ES, such that d*(x,xo)=O}. 

Definingg onXx Y by&y)= f(x), one checks that the necessary conditions in 
(5) of Theorem 1 are satisfied. 

To prove necessity, observe that by Corol!ary 3.4 of 121, S is PY-embedded in X. 
Let d be a bounded y-separable continuous pseudometric on X and define 
d* on Xx Y by d*((x~,y~),(x~,y~)) = d( x1,x2). There is a continuous f on X X Y 
with O+G 1 such that 

Sx YCqf)C{(x,y)EXx Y:3(x&yo)ES x Yf 

such that d *((x, y ), (x0, yO)) = 0). 

Defining g on X by g(x) = ir:f (f(x, y ): y E Y) one checks that g has the required 
properties. 

Proposition 6. Let A and B be MY-embedded subsets of X. Then A 
W-embedded if A U B is PY-embedded in X if A U B is 6:“.embedded 

t 

UB is 
in X. 

Proof. It is only necessary to show that if A U B is C*-embedded in X, then it is 
My -eynbedded in X. By Theorem 2.9 of [ 121 we have that .A U% is P”-embedded 
in X. Let d be a continuous y-separable pseudometric on X. There e&t continuous 
functions fl and f2 on X, with 0 sjrl, f2 G 1, such that 

ACZ(fi)C{x EX:%oEA, such &at d(x,xo)=O} 
and 

B C Z(jJ C{x E X: 3.x, E &‘, such that Ca(x, x0) = 0). 

Then the function i”t A f2 has the desired properties, 

Cordary . Let A be MY-embeddek in X and B a Py -embedded zero i:et; of X. Then 
A UB is My-embedded in .--. 
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This follows from Corollary 1 of Theorem 1, Theorem 2.10 of [K!], and 
Proposition 6. 

Theuwenn 2. Ttze following are equivalent : 

(1) S is W-embedded in X. 
(2) (X x (0)) U (S X I) is W-embedded iyl X x I. 
(3) (X, S) has the HEP with respect to every ANR space of weight =G y. 

roof. To prove that (1) implies (2) observe that S X H is A&embedded in X i( I, 
by Proposition 5. Clearly, X x (0) is My-embedded in X x 1. Hence (2) will follow if 
we can show that (X x (0)) U (S x I) is P7-embedded in X x I. But this follows 
from Theorem 3.7 [ 121, (1) implies (3). To show that (2) implies (3) we will simply 
observe that the proof of (3) implies (4) of Theorem 3.7 [ 121 outlined in Remark 3.8 
goes through, where the only change necessary is to assume that Y is an ANR of 
WC ight G y and 2 is the convex hull of Y in Z. To show that (3) implies (1) observe 
that by Theorem 3.7 [ 121 again we have that S is P7-embedded in X. Let cl be a 
continuous y-separable pseudometric on X. Define d * on X x I by 

d “((xl, tl), (~2, t,)) = d(xl, xz) v 1 tk -- tzl* 

Then d * is a continuous y-separable pseudometric on X x I. Clearly, (3) implies 
that (X, S) has the HEP with respect to every AR space of weight e y which 
implies (X, S) has the HEP with respect to every AE space of weight s y. This in 
turn implies tha’: I(X x (0)) U (S x I) is My-embedded in X x I. Hence there exists a 
continuous function f on X )< I with 0 G f G 1 such that 

U (S X I) such thiat cl *((x, t), (x0, to)) = 0). 

Define g on X by g(x) = sup{f (x, t): t E I}. It is easy to check that g has the 
properties required in (5) of Theorem I. 

Observe that Theorem 2 is not the complete analogue of l’vIorita and Hoshina’s 
Theorem 3.7 [12]. The following c+ r =%tion remains: If X’ is a topological space, Y a 
compact Tz space and B a closed subset of Y, is X x B necessarily M-embedded in 
IY X Y? We coujecture that the answer is no,’ 

Setting y = No in Theorem 2, we obtain: 

Corollary 1. S is M*o-embedded in X ijf [X, S) has the HEP with respect to every 
separable ANR space. 

Corollary 2. § is M-embedded in X if (X, 5;) has the HEP with respect to etlery 
ANR space. 

’ R. Levy, M.D. Rice and the author have shown: If X in a T3; space, then X is compact ii? whenever 

X is embedded in 2 and Y is any space, then X x Y lis M-embedded :n 2 x I’. 
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Let us Imake the finaIl observation that Theorem 2 is a special cap9 of. a them-em of 
Morita’s (Theorem 6 [ 1 I] ): If S is a P y -embedded ztxo-set of a topological space X, 
then (XV S) has the HEP with respect to every AIVR space of weight G y. 
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