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Let U be a continuous representation of a Lie group G on a Banach space X and
a1 , ..., ad $ an algebraic basis of the Lie algebra g of G, i.e., the a1 , ..., ad $ together
with their multi-commutators span g. Let Ai=dU(ai) denote the infinitesimal
generator of the continuous one-parameter group t [ U(exp(&ta i)) and set A:=
Ai1

} } } A in
where :=(i1 , ..., in) with ij # [1, ..., d $]. We analyze properties of m th

order differential operators

dU(C)= :
:; |:| �m

c: A:

with coefficients c: # C.
If L denotes the left regular representation of G in L2(G) then dL(C) satisfies a

Ga# rding inequality on L2(G) if, and only if, the closure of each dU(C) generates a
holomorphic semigroup S on X, the action of Sz is determined by a smooth,
representation independent, kernel Kz which, together with its derivatives A:Kz ,
satisfies mth order Gaussian bounds and, if U is unitary, S is quasi-contractive in
an open representation independent subsector of the sector of holomorphy. Alter-
natively, dL(C) satisfies a Ga# rding inequality on L2(G) if, and only if, the closure
of dL(C) generates a holomorphic, quasi-contractive, semigroup satisfying bounds
&Ai St&2 � 2�ct&1�me|t for all t>0 and i # [1, ..., d $].

These results extend to operators for which the directions a1 , ..., ad $ are given
different weights. The unweighted Ga# rding inequality is a stability condition on the
principal part, i.e., the highest-order part, of dL(C) but in the weighted case the
condition is on the part of dL(C) with the highest weighted order. � 1998 Academic Press

1. INTRODUCTION

The theory of partial differential operators extends naturally from the
Euclidean space Rd to a general d-dimensional Lie group. The operators
are defined in any continuous Banach space representation U of G as
polynomials in the associated representatives of the Lie algebra g of G.
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Operators formed from the representatives of a vector space basis of g with
polynomials satisfying the strong ellipticity conditions of the Rd-theory are
called strongly elliptic. Langlands, in an unpublished thesis [Lan1] (see
also [Lan2]), proved that the closure of each strongly elliptic operator
H generates a holomorphic semigroup S with a smooth, fast decreasing,
representation-independent, integral kernel K. More recently Bratteli,
Goodman, Jo% rgensen, and Robinson [BGJR] proved that in each unitary
representation S is quasi-contractive and H satisfies a Ga# rding inequality,
i.e., a coercivity condition. Conversely a limiting argument of Folland
[Fol2] shows that the Ga# rding inequality for H in the left regular
representation of G on L2(G) implies strong ellipticity. Thus strong ellip-
ticity, or Rd-coercivity, is equivalent to G-coercivity for a partial differential
operator H expressed in terms of a vector space basis of g. These condi-
tions then imply that H is the pregenerator of a semigroup with good
boundedness and analyticity properties and a universal ``Gaussian'' kernel
(see, for example, [Rob]). One of our results is a converse of the last
conclusion: if H is the pregenerator of a quasi-contractive semigroup on
L2(G) with a good ``Gaussian'' kernel then H must be a G-coercive operator.
Hence one concludes that there is an equivalence between Rd-coercivity,
G-coercivity and good semi-group properties. Our main result establishes a
similar equivalence for weighted subelliptic operators.

We consider operators H which are polynomials in the representatives of
a (Lie)-algebraic basis of g with different weights assigned to each of the
directions in the basis. The order of H is defined as the weighted order of
the polynomial and the weighting is taken into account in the definition of
distance etc. Since there is no obvious direct definition of coercivity in
terms of the coefficients of the polynomial we introduce a notion of
(weighted) G-subcoercivity in terms of a weighted Ga# rding inequality. We
then establish that H is G-subcoercive if, and only if, it generates a holo-
morphic, quasi-contractive, semigroup on L2(G) with a universal ``Gaussian''
kernel. This equivalence encompasses all earlier known results and gives a
straightforward characterization of the ``heat'' semigroups on the Lie group G.
The proofs rely on a combination of earlier arguments and two new
techniques.

First, we introduce the notion of a reduced weighted algebraic basis. The
reduced algebraic basis is an algebraic subbasis of the original algebraic
basis in which certain ``over-weight'' directions have been eliminated. Our
strategy is to establish the main structural features for operators defined
with a reduced algebraic basis and then to lift the results to operators
expressed in terms of the original unreduced basis. If all weights are equal
to one, or if the weights satisfy the compatibility conditions used for
weighted strongly elliptic operators in [ElR5], then the reduction process
has no effect. It is, however, interesting to note that a weighted vector
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space basis of g usually yields a weighted algebraic basis after reduction.
Therefore subelliptic techniques automatically enter the analysis of weighted
strongly elliptic operators.

Secondly, we associate with each weighted algebraic basis of g a homo-
geneous (nilpotent) group G0 which serves as a local approximation of G.
The group G0 is uniquely determined by G and the weighted algebraic basis
by a canonical contraction of g. Since the work of Rothschild and Stein
[RoS] local nilpotent approximates have become a standard tool. Given
an algebraic basis of g with d $ elements and rank r the Rothschild�Stein
approximate G� of G is the nilpotent group with d $ generators which is free
of step r. This group was used in our earlier work on subelliptic operators
[ElR3, ElR6]. The disadvantage of the Rothschild�Stein approach is that
G� is usually of larger dimension than G. But the approximate G0 used in
the current analysis has the same dimension as G and this is advantageous
for the parametrix arguments used to lit results from G0 to G.

In the sequel we adopt the notation of [Rob] as modified in [ElR3] and
[AER]. Let G be a d-dimensional connected Lie group with Lie algebra g
and (X, G, U) a strongly, or weakly*, continuous representation of G on
the Banach space X by bounded operators g [ U(g). If ai # g then Ai

(=dU(ai)) will denote the generator of the one-parameter subgroup
t [ U(exp(&tai)) of the representation. Let a1 , ..., ad $ be an algebraic basis
of g, i.e., a set of linearly independent elements which together with their
multi-commutators span g, and w1 , ..., wd $ # [1, �) a d $-tuple of numbers
which we call weights. The group G can be equipped with a modulus | } |$
which is naturally determined by the algebraic basis a1 , ..., ad $ and the
weights w1 , ..., wd $ . The detailed definition of this modulus will be given in
Section 6. The modulus then determines a local ``dimension'' D$>0 of
the group such that c&1$D$�|B$$ |�c$D$ for some c>0 and all $ # (0, 1]
where |B$$ | denotes the volume of the ball B$$=[g # G: | g|$<$] with
respect to left invariant Haar measure dg.

Next for each n # N0 set

Jn(d $)= �
n

k=0

[1, ..., d $]k, J +
n (d $)= �

n

k=1

[1, ..., d $]k

and

J(d $)= .
�

n=0

Jn(d $), J+(d $)= .
�

n=1

J +
n (d $).

Then A:=Ai1
} } } Ain

for :=(i1 , ..., in), etc. Alternatively, we set a:=
ai1

} } } ain
in the universal enveloping algebra and write A:=dU(a:).
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The weighted length &:& of :=(i1 , ..., in) # J(d $) is defined by

&:&= :
n

k=1

wik

and the Euclidean length n is denoted by |:|.
If the algebraic basis is extended to a full vector space basis a1 , ..., ad and

n # N we define Xn=Xn(U)=�: # Jn(d ) D(A:) and introduce norms and
seminorms by

&x&n=&x&U, n= max
: # J(d )
|:| �n

&A:x&, Nn(x)=NU, n(x)= max
: # J(d )
|:|=n

&A:x&.

These spaces are independent of the choice of the full basis up to equiv-
alence of norms. Similarly, for n # R with n�0, we define the weighted
spaces

X$n=X$n(U)= ,

&:&�n
: # J(d $)

D(A:)

corresponding to the weighted algebraic basis. The associated norms and
seminorms are given by

&x&$n=&x&$U, n={ max
: # J(d $)
&:&�n

&A:x&

0

if there exists : # J(d $)
with &:&=n,

otherwise,

N$n(x)=N$U, n(x)={ max
: # J(d $)
&:&=0

&A:x&

0

if there exists : # J(d $)
with &:&=n,

otherwise.

The definition of &x&$n=0 in case n � [&:&: : # J(d $)] is to avoid complica-
tions in the proofs of some statements. In Section 11 we remove this part
of the definition.

Let X�=X�(U)=��
n=1 Xn . Since a1 , ..., ad $ is an algebraic basis one

also has X�=��
n=1 X$n . It then follows by the proof of Lemma 2.4 of

[ElR1] that the space X� is weakly, or weakly*, dense in X$n for all n�0.
If U is the left regular representation on Lp(G)=Lp(G; dg) we denote the
corresponding spaces by Lp; n , L$p; n , Lp; � and the norms and seminorms by
& }&p; n etc. Further we let L=LG denote the left regular representation of
G in L2(G; dg).

A function C: J(d $) � C such that C(:)=0 if &:&>m but C(:){0 for at
least one : # J(d $) with &:&=m is defined to be an m-th order form C.
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Here, and in the sequel, the order m is understood to be the weighted
order. We write c:=C(:).

The principal part P of the m th order form C is the m th order form given
by

P(:)={C(:)
0

if &:&=m,
if &:&<m,

and C is called homogeneous if C=P.
The formal adjoint C- of C is the function C-: Jm(d $) � C defined by

C-(:)=(&1) |:| C(:
*

),

where :
*

=(in , ..., i1) if :=(i1 , ..., in). The real and imaginary parts of C are
RC=2&1(C+C -) and IC=(2i)&1 (C&C -).

We consider the m th order operators

dU(C)= :
: # J(d $)

c:A:

with domain D(dU(C))=X$m associated with the form. If (F, G, U
*

) is
the dual representation of (X, G, U) then dU

*
(C-) with the domain

D(dU
*

(C-))=F$m is called the dual operator.
The m th order form C is defined to be a G-weighted subcoercive form if

m�wi # 2N for each i # [1, ..., d $] and the corresponding operator dLG(C)
satisfies a local Ga# rding inequality;

Re(., dLG(C) .)�+(N$2; m�2(.))2&& &.&2
2

for some +>0 and & # R, uniformly for all . # C �
c (V) where V is some

open neighbourhood of the identity e # G. For example, let c:, ; # C, with
:, ; # J(d $) and &:&=m�2=&;&, satisfy Re �:, ; c:, ;!:!;>0 for all non-
zero complex (!:). Then the operator H=�:, ; (&1) |:| c:, ;A:*A; satisfies
the Ga# rding inequality. This follows because

Re(., H.)=Re :
:, ;

c:, ;(A:., A;.)

�+ :
&:&=m�2

&A:.&2
2�+(N$2; m�2(.))2

where + is the strictly positive lowest eigenvalue of the real part of the
matrix (c:, ;).

Our main result establishes that subcoercivity gives an infinitesimal
characterization of generators of semigroups with kernels satisfying Gaussian
bounds.
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Theorem 1.1. Let C be an m-th order form and assume that the weights
wi satisfy m�wi # 2N. Then the following conditions are equivalent.

I. The form C is G-weighted subcoercive.

II. There are c, +>0 and an open neighbourhood V of the identity of
G such that

+=2wi &Ai .&2
2�=m Re(., dLG(C) .)+c &.&2

2

for all . # C �
c (V), all = # (0, 1] and all i # [1, ..., d $].

III. The closure of dLG(C) generates a holomorphic semigroup S on
L2(G) with the following properties.

i. The semigroup S is quasi-contractive in an open subsector of the
sector of holomorphy, i.e., there exists . # (0, ?�2] and |�0 such that
&Sz&�e| |z| for all z # 4(.)=[z # C"[0]: |arg z|<.].

ii. St L2(G)��d $
i=1 D(Ai) and there exist c>0 and |�0 such that

&AiSt &2 � 2�ct&wi �me|t

for all t>0 and i # [1, ..., d $].

IV. In each continuous representation (X, G, U) the closure of dU(C)
generates a continuous semigroup S with the following properties.

i. The semigroup S is holomorphic in a sector which contains an
open representation independent subsector 4(%C).

ii. If U is unitary then the semigroup S is quasi-contractive in each
subsector of 4(%C), i.e., for each . # (0, %C) there is an |�0 such that
&Sz&�e| |z| for all z # 4(.).

iii. The semigroup S has a representation independent, fast decreasing,
kernel K # L1; �(G) & C0; �(G) such that

A:Szx=|
G

dg(A:Kz)(g) U(g) x

for all : # J(d $), z # 4(%C) and x # X.

iv. For each . # (0, %C) and all : # J(d $) there exist b, c>0 and
|�0 such that

|(A:Kz)(g)|�c |z| &(D$+&:&�m)e| |z|e&b(( | g|$) m |z|&1)1�(m&1)

for all g # G and z # 4(.).

A crucial element in the proof is the local approximation of G by the
homogeneous (nilpotent) group G0 alluded to above. The group G0 is
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constructed, following an idea of Kashiwara and Vergne [KaV], through
exponentiation of a contraction of the Lie algebra g of G. This contraction
procedure was applied earlier to weighted operators on nilpotent Lie
groups by Nagel, Ricci, and Stein [NRS] to obtain asymptotic properties
of their fundamental solutions. More recently Hebisch [Heb2] applied
the procedure to general Lie groups, but for a special class of weighted
operators, to prove kernel bounds similar to these of Theorem 1.1, by using
quite different arguments.

The contraction mechanism provides a family of groups Gt , t # [0, 1],
which interpolate between G=G1 and G0 . One can use this interpolation
to establish that each G-weighted subcoercive form is automatically a
G0 -weighted subcoercive form. Then the implication I O IV in Theorem 1.1
is proved by applying the results of [AER] to C on the homogeneous
group G0 to obtain the implication for G0 and subsequently lifting the
result to G by parametrix arguments. The latter reasoning makes essential
use of the results of Helffer and Nourrigat [HeN] for homogeneous groups.

The proof of IV O III is straightforward. The L2 -bound on AiSt follows
from the corresponding kernel bound by a quadrature argument; one
deduces that &Ai Kt&1�c$t&wi �me|$t for some c$>0 and |$�0.

The circle of arguments used to prove I O IV allows one to establish the
equivalence of G0 -weighted subcoercivity and G-weighted subcoercivity.
This equivalence is one of the most important structural features of the
theory. It provides the starting point for the proof of III O I and II O I in
the theorem since it then suffices to prove that C is G0 -subcoercive. The
latter property follows by exploitation of the contraction mechanism and
the homogeneity of G0 .

The proof that I O II is straightforward. Since the Ai are group
generators one has the inequalities =2wi &Ai .&2

2�=m &Am�(2wi)
i .&2

2+c &.&2
2

for all . # (0, 1] (see [Rob], Lemma II.2.5).
A simple illustration of our results is given by the group SO(3) of

rotations in R3. If a1 , a2 , a3 is a basis of so(3) satisfying [a1 , a2]=a3 ,
[a2 , a3]=a1 and [a3 , a1]=a2 then a1 , a2 is an algebraic basis. If w1=3,
w2=2 then the operator

H=A4
1&A6

2&A2
1A3

2

has (weighted) order 12 and satisfies the Ga# rding inequality because a
straightforward calculation gives

Re(., H.)�2&1(&A2
1.&2

2+&A3
2.&2

2)�2&1(N$2; 6(.))2.

Hence H generates a holomorphic semigroup with a smooth kernel satisfying
Gaussian bounds in each continuous representation of the group.
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The paper is organized as follows. In Section 2 we introduce reduced
algebraic bases and all proofs in Sections 3�10 are carried out for such
bases. In Section 11 we remove this restriction on the bases. In Section 3
we introduce the contraction mechanism and give several uniform properties
for the right invariant vector fields on each of the interpolating groups Gt . In
Section 4 we analyze various structural properties of G-weighted subcoercive
forms and prove that they are automatically G0-weighted subcoercive forms.
In Section 5 we prove the implication I O IV in Theorem 1.1 for G0 and U
the left regular representation of G0 in L2(G0). In Section 6 we define
distances on G and Gt associated with the weighted algebraic basis and in
Section 7 the kernel on G0 of Section 5 is lifted to a ``kernel'' on G by a
parametrix argument which uses G0 as a local approximation of G. In
Section 8 we prove the implication I O IV in Theorem 1.1 for reduced
bases, but under the (weaker) assumption that C is merely a G0 -weighted
subcoercive form. Under the same conditions we prove regularity results in
Section 9. In Section 10 we prove that a form is a G-weighted subcoercive
form if, and only if, it is a G0 -weighted subcoercive form. Moreover, we
prove Theorem 1.1 for reduced bases and derive other equivalent character-
izations for G-weighted subcoercive forms. In the last section we extend the
results for reduced bases to general bases.

2. REDUCED BASES

Let g be a d-dimensional Lie algebra with Lie product [ } , } ]. We adopt
the multi-index notation introduced in Section 1. If :=(i1 , ..., in) with ij #
[1, ..., d $] is a multi-index of length |:|=n{0 and a1 , ..., ad $ # g we denote
the multi-commutator a[:] of order n by a[:]=[ai1

, [ } } } [ain&1
, ain

] } } } ]] # g

where a[(i)]=ai . Our principal interest is in algebraic bases a1 , ..., ad $ of g.
The smallest integer r for which the a1 , ..., ad $ together with all their multi-
commutators of order less than or equal to r span g is called the rank of
the algebraic basis.

We also consider algebraic bases with weights w1 , ..., wd $ # [1, �)
assigned to the d $ directions. We call a1 , ..., ad $ a weighted algebraic basis.
The unweighted algebraic basis a1 , ..., ad $ can be considered as a weighted
algebraic basis with all wi=1.

Next we introduce a special class of weighted algebraic bases for which
the weights are minimal. One only has directions for which the weight is
not too large compared with the other directions and their weights. These
bases are used in the analysis of subcoercive operators but the key results
are independent of the special weightings.

A filtration for g is a family of vector subspace (g*)*�0 of g with the
following four properties. First g* �g+ if *�+, secondly g*=[0] if *<1,
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thirdly [g* , g+]�g*++ for all *, +[0, �) and fourthly g*=g for large *. If
a1 , ..., ad $ is a weighted algebraic basis, *�0 and we set

g*=span[a[:] : : # J(d $), 0<&:&�*]

then (g*)*�0 is a filtration, which we call the filtration corresponding to the
weighted algebraic basis. Note that it is possible that ai # g* for a *�0
with *<wi .

Next for a general filtration define

g*
�
= .

*$<*

g*$

for each *>0. Further let 1�*1<*2< } } } <*k be such that g*k
=g and

[*j : j # [1, ..., k]]=[*�0: g* {g*
�
].

We call *1 , ..., *k the weights of the filtration (g*)*�0 .
Note that in the sequel we sometimes set g(*++)&

=g*++ for clarity of
notation.

Algebraic bases a1 , ..., ad $ with weights w1 , ..., wd $ such that ai � gwi
for all

i # [1, ..., d $], where (g*)*�0 is the filtration corresponding to the weighted
algebraic basis, are called reduced weighted algebraic bases. The definition
of the reduced basis is such that the corresponding weights are minimal.

Proposition 2.1. Let a1 , ..., ad $ be an algebraic basis with weights
w1 , ..., wd $ and corresponding filtration (g*)*�0 . Then there exists a reduced
weighted algebraic basis b1 , ..., bd" with weights v1 , ..., vd" such that [b1 , ..., bd"]
�[a1 , ..., ad $] and vi=wj if bi=a j . Moreover, (g*)*�0 is the filtration
corresponding to b1 , ..., bd" . Explicitly, one can take the algebraic basis
b1 , ..., bd" to consist of precisely those ai with ai � gwi

.

Proof. After reordering one may assume w1�w2� } } } �wd $ . Now
suppose that aj # gwj

. Let i # [1, ..., d $&1] be such that w i<w j=wi+1 .

Then there exist cj: # R such that

aj= :

&:&<wi

: # J+(i)

cj:a[:] . (1)

Hence the subbasis obtained from a1 , ..., ad $ be removal of aj remains a
weighted algebraic basis with the same filtration (g*)*�0 as the original
weighted algebraic basis. Finite iteration of this process yields the desired
reduced weighted algebraic basis. K
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Note that the ai in the directions eliminated in this construction of a
reduced basis can be expressed in terms of the remaining directions by (1).
In Section 11 this is used to lift properties of the reduced algebraic basis to
the general algebraic basis.

Lemma 2.2. If a1 , ..., ad $ is a reduced weighted algebraic basis then there
is an extension to a (vector space) basis b11 , ..., b1d1

, ..., bk1 , ..., bkdk
for g with

the following properties. First b11 , ..., b1d1
, ..., bi1 , ..., bidi

is a basis for g*i
for

all i # [1, ..., k], where *1< } } } <*k are the weights for the filtration (g*)*�0 .
Secondly

[a1 , ..., ad $]�[bij : i # [1, ..., k], j # [1, ..., di]],

with wl=*i if al=bij . Thirdly the other b ij equal some commutator a[:]

with &:&=*i .
If bij is given the weight wij=*i one obtains an extension of the weighted

algebraic basis to a weighted vector space basis a1 , ..., ad $ , ..., ad such that a l

has the weight wl=*i if al=bij .

Example 2.3. Let a1 , ..., ad $ be an algebraic basis for g and set all
weights equal to one. Then a1 , ..., ad $ is a reduced (weighted) algebraic
basis for g. The operators we construct with respect to such a basis corre-
spond to the subcoercive and subelliptic operators studied in [ElR3] and
[ElR6] and if the basis is a vector space basis they correspond to the
strongly elliptic operators described in [Rob].

Example 2.4. Let g be the four-dimensional Lie algebra k3 with basis
a1 , ..., a4 and commutation relations [a4 , a3]=a2 and [a4 , a2]=a1 . Then
a1 , a3 , a4 is an algebraic basis. Assign weights w1=8, w3=3 and w4=2.
Then the corresponding filtration is given by g2=span a4 , g3=span[a3 , a4],
g5=span[a2 , a3 , a4] and g7=g. Therefore a1 , a2 , a4 is not a reduced
weighted algebraic basis since a1 # g7=g8

�
. If one deletes the direction a1

then a3 , a4 is a reduced weighted algebraic basis with the same filtration as
the weighted algebraic basis a1 , a3 , a4 .

Example 2.5. Let a1 , ..., ad be a basis for g with weights w1 , ..., wd # N and
suppose that the structure constants ck

ij , defined by [ai , aj]=�d
k=1 ck

ijak , are
such that ck

ij {0 implies wi+wj&1�wk , i.e., one has

[ai , aj]= :

wk�wi+wj&1
k # [1, ..., d]

ck
ijak .
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Let *1< } } } <*k be such that [wi : i # [1, ..., d]]=[*j : j # [1, ..., k]] and
let (g*)*�0 be the filtration corresponding to the weighted basis a1 , ..., ad .
Then g*=[0] if *<*1 and g*1

=span[ai : i # [1, ..., d], wi=*1]. Suppose
that j # [1, ..., k&1] and g*j

=span[ai : i # [1, ..., d], wi�*j]. Further suppose
g* {g*j

for some * # (*j , *j+1). Let *=min[+ # (*j , *j+1): g+ {g*j
]. The

minimum exists since g is finite-dimensional. Then there are n # N, n�2 and
:=(i1 , ..., in) # J(d) such that &:&=* and a[:] # g*"g*j

. But by assumption

a[:] # span[a i : i # [1, ..., d], wi�*&(n&1)]�g*&(n&1) �g*j

since g+=g*j
for all + # (*j , *) . So g*=g*j

for all * # (*j , *j+1).
Therefore g*j+1

=span[ai : i # [1, ..., d], wi�* j+1]. It follows from the
above argument that a1 , ..., ad is a reduced weighted algebraic basis for g.
The operator which we construct with respect to such a basis are the
weighted strongly elliptic operators studied in detail in [ElR5].

Example 2.6. Let g be a homogeneous Lie algebra with respect to a
family of dilations (#t)t>0 and a1 , ..., ad $ an algebraic basis for g such that
#t(ai)=twi ai for some wi # [1, �) and all t>0. Then a1 , ..., ad $ is a
weighted algebraic basis with weights w1 , ..., wd $ . We describe the corre-
sponding filtration and show that a1 , ..., ad $ is a reduced weighted algebraic
basis.

Extend the algebraic basis to a vector space basis a1 , ..., ad $ , ..., ad such
that for each i # [d $+1, ..., d] there exists a wi # [1, �) such that #t(ai)=
twi a i for all t>0. For *>0 set g(*)=[a # g: #t(a)=t*a for all t>0]. Then
g(*)=span[ai ; i # [1, ..., d], wi=*] and g=�*>0 g(*). By definition of g*

one obtains the inclusions

g* �span[a # g: _+ # (0, *]\t>0[#t(a)=t+a]]� �
+�*

g(+).

Conversely, let i # [1, ..., d]. For all : # Jr(d $), with r the rank of the
algebraic basis, there exist c: # R such that ai=�: # Jr (d $) c:a[:] . Then by
scaling

ai= :

&:&=wi

: # Jr (d $)

c:a[:] # gwi
.

Therefore g(wi)�gwi
and hence g*=�+�* g(+) for all *>0. So g* {g*

�
if,

and only if, g(*){[0].
Now suppose ai # gwi

for some i # [1, ..., d $]. Then

ai # .
*<wi

g* � �
+<wi

g(+)
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which is a contradiction. Therefore a1 , ..., ad $ is a reduced weighted algebraic
basis for g.

Example 2.7. In this example we describe a general type of weighted
algebraic basis. Let a1 , ..., ad $ be indeterminates, w1 , ..., wd $�1 weights and
let *>max(w1 , ..., wd $). Let V=span[a1 , ..., ad $] and for t>0 define the
linear map #t : V � V such that #t(ai)=twiai . Let T=��

n=0 V �n be the
associative tensor algebra over V. We identify V with the subspace of
tensors of degree one of T. There exists a unique algebra homomorphism
#� t on T such that #� t(a)=#t(a) for all a # V. We will not distinguish between
#� t and #t and write #t . The associate tensor algebra T is a Lie algebra with
the usual commutation relations. Let G be the Lie subalgebra of T generated
by a1 , ..., ad $ . Then G is the free Lie algebra generated by a1 , ..., ad $ . The
restriction, again denoted by #t , of #t to G is a Lie algebra homomorphism.
Let I be the ideal in G spanned by all commutators a[:] with &:&>*. Note
that ai � I since *>wi . Then the nilpotent Lie algebra g with generators
a1 , ..., ad $ which is free of step * is equal to G�I. Since #t(I )�I, there exists
a unique Lie algebra homomorphism #� t : g � g such that #� t(a+I)=#t(a)+I
for all a # G. Again we write #t for #� t . One easily verifies that #st=#s b #t for all
s, t>0, so g equipped with the dilations #t , t>0, becomes a homogeneous Lie
algebra. Now it follows from Example 2.6 that a1 , ..., ad $ is a reduced weighted
algebraic basis for g.

We call g the weighted nilpotent Lie algebra with generators a1 , ..., ad $ and
weights w1 , ..., wd $ which is free of step *. The corresponding connected
simply connected Lie group G with Lie algebra g is called the weighted
nilpotent Lie group with generators a1 , ..., ad $ and weights w1 , ..., wd $ which is
free of step *. We denote g and G by g(d $, *, w1 , ..., wd $) and G(d $, *, w1 , ..., wd $).
These groups play a fundamental role in [NRS] and [ElR6], but are not
directly relevant to our considerations. We reconsider these groups in Section 11.

3. HOMOGENIZATION BY CONTRACTION

We construct from each reduced weighted algebraic basis a1 , ..., ad $ of the
Lie algebra g a family of Lie products [ } , } ]t , t>0, on g and then examine
the contraction of the Lie algebras (g, [ } , } ]t) as t � 0. This yields a
homogeneous Lie algebra (g, [ } , } ]0). The corresponding simply connected
homogeneous Lie group G0 subsequently plays a fundamental role in the
analysis of elliptic operators on the connected Lie group G corresponding
to g.

Let b11 , ..., b1d1
, ..., bk1 , ..., bkdk

be a basis for the filtration (g*)*�0 corre-
sponding to an extension of the reduced weighted algebraic basis described

99WEIGHTED SUBCOERCIVE OPERATORS



in Lemma 2.2. So [a1 , ..., ad $]�[bij : i # [1, ..., k], j # [1, ..., di]] and wl=
wij=*i if al=b ij , where *1< } } } <*k are the weights for the filtration.
Moreover, for all i and j there exists a multi-index :ij such that bij=a[:ij]

.
Following the ideas of Kashiwara and Vergne [KaV], Nagel, Ricci, and
Stein [NRS, Section 2], and Hebisch [Heb2, Lemma 4.1], we define the
linear bijection #t : g � g, for t>0, by #t(bij)=twij bij=t*i bij . Further we
define [ } , } ]t : g_g � g by

[a, b]t=#&1
t ([#t(a), #t(b)]).

Then (g, [ } , } ]t) is a Lie algebra, which equals (g, [ } , } ]) if t=1, and the
limit [ } , } ]0 of the Lie brackets [ } , } ]t as t � 0 defines an algebraic
structure on g. The Lie algebra (g, [ } , } ]0) is the contraction of (g, [ } , } ] t)
in the sense of Saletan [Sal]. This contraction is uniquely determined by
the reduced weighted algebraic basis a1 , ..., ad $ .

Proposition 3.1. I. The limit [a, b]0=limta 0 [a, b]t exists for all a, b # g.

II. (g[ } , } ]0) is a homogeneous Lie algebra with dilations (#t) t>0 .

III. The homogeneous Lie algebra (g, [ } , } ]0) is uniquely determined,
up to isomorphism, by the filtration corresponding to the reduced weighted
algebraic basis.

IV. The a1 , ..., ad $ form an algebraic basis for the Lie algebra
(g, [ } , } ]t) for all t # [0, �) .

V. The reduced weighted algebraic basis a1 , ..., ad $ is a reduced
weighted algebraic basis for the Lie algebra (g, [ } , } ]t) for all t # [0, �).
Moreover, the filtrations with respect to the Lie algebras (g, [ } , } ]t) are
equal to the filtration (g*)*�0 as vector spaces.

VI. For all i1, j1 , i2, j2 one has [bi1 j1
, b i2 j2

] t&[bi1 j1
, bi2 j2

]0 # g (*i1
+*i2

)&

for all t>0.

This is an elaboration of the results of Nagel, Ricci, and Stein [NRS]
and Hebisch [Heb2]. The proof is a relatively straightforward extension of
these earlier arguments so we omit the details.

For t # [0, �) with t{1 let Gt be the connected, simply connected, Lie
group with the Lie algebra (g, [ } , } ]t). The group G0 is unique and is called
the homogeneous contraction of G. It is used as a ``local approximation''
of G in the subsequence analysis. The standard local approximation
G0=Rd has a simple characterization in terms of the conditions considered
in [ElR5].
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Proposition 3.2. The following conditions are equivalent.

I. G0=Rd,

II. d $=d and wi+wj&wk>0 whenever the structure constant ck
ij of

the basis a1 , ..., ad $ is non-zero.

Proof. I O II. Assume that d $<d then there exists l # [2, ..., k], to be
chosen minimal, such that gwl

{span[ai : i # [1, ..., d $], wi�wl]. Then
there are i, j # [1, ..., d $] such that wi+wj=wl and [ai , a j] # gwl

"gwl
. Since

[ai , aj]0=[ai , a j] mod gwl
this implies that [ai , aj]0 {0. Therefore d $=d.

But then [ai , aj]t=�d
k=1 twi+wj&wk ck

ijak and [ai , aj]0=0 if, and only if,
wi+wj&wk>0 for those k such that ck

ij {0.

II O I. Since

[ai , aj]= :

wk<wi+wj

k # [1, ..., d]

ck
ijak

it follows that [ai , aj]0=0. K

In the unweighted case, i.e., if wi=1, the proposition demonstrates
that G0=Rd if, and only if, one is dealing with a full vector space basis.
Thus the analysis of strict algebraic bases enforces the introduction of non-
commutative approximations G0 of G. One advantage of G0 as a local
approximant is that it has the same dimension as G.

In order to analyze G and G0 one needs information about the intermediate
groups Gt , t # (0, 1). We identify quantities associated with Gt by indices and
suffices t but in the case t=1 we often omit these indices or suffices.

Let expt : (g, [ } , } ]t) � Gt , t # [0, �) , denote the exponential map. We
use the map exp0 to lift the dilations #t on the Lie algebra (g, [ } , } ]0) to
dilations on G0 , which we also denote by #t . Note that for t>0 with t{1
the map #t : (g, [ } , } ]t) � (g, [ } , } ]) is a Lie algebra isomorphism which lifts
to a Lie group isomorphism from Gt onto the enveloping group of G. This
isomorphism frequently provides the necessary uniform estimates for t # (0, 1).
Complete the weighted algebraic basis a1 , ..., ad$ to a full vector space basis
a1 , ..., ad as in Lemma 2.2. Let (ck

ij) be the structure constants of (g, [ } , } ]) with
respect to the basis a1 , ..., ad . We may assume that ck

ij�d &3 for all i, j, k #
[1, ..., d] and we let & }& be the Euclidean norm with respect to the basis
a1 , ..., ad . Then &[a, b]&�&a& &b& for all a, b # g.

Lemma 3.3. I. There exists a u1 # (0, 1) such that expt is a diffeo-
morphism from [a # g: &a&<u1] onto an open neighbourhood of the identity
in Gt , uniformly for all t # [0, 1].
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II. There exists a u2 # (0, u1] such that the Campbell�Baker�Hausdorff
formula with respect to (g, [ } , } ]t) is absolutely convergent on [a # g: &a&<u2]2

uniformly for t # [0, 1].

III. There exists a u3 # (0, u2] such that expt a expt b # expt[c # g:
&c&<u1] uniformly for all a, b # [c # g: &c&<u3] and t # [0, 1].

IV. Setting a Vt b=logt(expt a expt b), where logt denotes the local
inverse of expt onto [a # g: &a&<u1], one has

a Vt b=#&1
t (#t(a) V1 #t(b))=#&1

t (#t(a) V #t(b))

for all t # (0, 1] and a, b # [c # g: &c&<u3].

V. There exists a u4 # (0, u3] such that expt a expt b # expt[c # g:
&c&<u3] uniformly for all a, b # W=[c # g: &c&<u4] and t # [0, 1].

The diffeomorphic property in Statement I is well-known for each expt

and it is not difficult to establish the uniformly of u1 in t.
For the proof of the second statement we need the following version of

a standard result.

Proposition 3.4 (Campbell�Baker�Hausdorff). Let G be a Lie group
with Lie algebra (g, [ } , } ]) and & }& a Euclidean norm on g such that &[a, b]&�
&a& &b& for all a, b # g. Then there exist M, s>0 and $ # (0, (2s)&1) and for
each : # J(2) with |:|{0 there is a c: # R with |c: |�Ms |:|, all independent
of G, g and & }&, such that exp b1 exp b2=exp c(b1 , b2) for all b1 , b2 # g with
&b1&, &b2 &<$ where

c(b1 , b1)= :

|:|{0
: # J(2)

c:b[:] .

In particular this series converges absolutely.

Proof. This follows from the discussion in [Hoc, pp. 111�112]. K

We continue with the proof of Lemma 3.3 The structure constants of the
Lie algebra (g, [ } , } ]t) with respect to the basis a1 , ..., ad are equal to
twi+wj&wk ck

ij , where (ck
ij) are the structure constants of (g, [ } , } ]) with

respect to the basis a1 , ..., ad . Since wk�wi+w j if ck
ij {0, they are also

bounded by d &3 if t # [0, 1]. So &[a, b]t &�&a& &b& for all a, b # g. Now
Statement II follows from Proposition 3.4.

If M, s, $, c: are as in Proposition 3.4 then

&c(b1 , b2)&� :

|:|{0
: # J(2)

Ms |:|(2&1$) |:| �$Ms(1&$s)&1
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for all b1 , b2 # g with &b1 &, &b2 &<2&1$. Therefore &c(b1 , b2)&<u1 if $ is
taken small enough. Finally, if b1 , b2 # g with &b1&, &b2 &<$ and t # (0, 1]
then

b1 Vt b2 = :

|:|{0
: # J(2)

c:b[:]t
= :

|:|{0
: # J(2)

c: #&1
t b$[:]

=#&1
t (b$1 V b$2)=#&1

t (#t(b1) V #t(b2)),

where b$1=#t(b1) and b$2=#t(b2). This completes the proof of Lemma 3.3.
K

Next we need information on the vector fields in the directions a1 , ..., ad

with respect to the left regular representation of Gt on C�(Gt). Let t # [0, 1].
For i # [1, ..., d] and . # C�(Gt) define Y (t)

i .: Gt � C by

(Y (t)
i .)(g)=

d
ds

.(expt(&sai) g) } s=0

.

Moreover, for g # Gt define R(t)(g): Gt � Gt by R(t)(g) h=hg. Further
introduce ?: g � Rd by ?(�d

j=1 ! jaj)=(!1 , ..., !d). Then

(Y (t)
i .)(g)=&R(t)(g)

*| e
exptV| 0 \ �

�? i }0+ (.),

where R(t)(g)
*| e

denotes the differential of R(t)(g) at the identity, etc. Next,
for all � # C �

c (W), where W is the uniform open neighbourhood intro-
duced in Lemma 3.3.V, define X (t)

i � # C �
c (W) by

(X (t)
i �)(a)=(Y (t)

i (� b logt))(expt a). (2)

Then exptV| a
(X (t)

i | a
)=Y (t)

i | expt a
for all a # W.

Fix a # W and set g=expt a. Let # be a C�-path from an open
neighbourhood of 0 # R to g such that #(0)=a. Since X (t)

1 | a
, ..., X (t)

d | a
span

the tangent space at a there exists c1 , ..., cd # R such that

#* (0)= :
d

i=1

ciX (t)
i | a

.

We calculate the constants c1 , ..., cd . Since exptV| a
#* (0)=�d

i=1 ci Y (t)
i | g

one
obtains

&logtV| e
R(t)(g&1)

*| g
exptV| a

#* (0)= :
d

i=1

ci
�

�?i }0 .
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Hence

ci =(&logtV| e
R(t)(g&1)

*| g
exptV| a

#* (0))(?i)

=&
d
ds

?i (#(s) Vt (&a)) } s=0

.

In particular,

#* (0)=& :
d

i=1

d
ds

?i (#(s) V0(&a)) } s=0

X (0)
i | a

.

Now let t # [0, 1], � # C �
c (W) and a # W. Then

(X (t)
i �)(a)=(Y (t)

i (� b logt))(expt a)

=
d
ds

�(&sa i Vt a) } s=0

=&#* (0) �, (3)

where #(s)=sai Vt a. So

(X (t)
i �)(a)= :

d

j=1

d
ds

? j (#(s) V0 (&a)) } s=0

X (0)
j | a

(�)

= :
d

j=1

d
ds

? j ((sai Vt a) V0(&a)) } s=0

X (0)
j | a

(�)

and hence

X (t)
i | a

= :
d

j=1

d
ds

? j ((sai Vt a) V0(&a)) } s=0

X (0)
j | a

.

Since the Campbell�Baker�Hausdorff formula converges absolutely on
the set [c # g: &c&<u2]2 in Lemma 3.3.II it follows that there exists
M, $>0 and for all n # N and =1 , ..., =n # [0, 1] there exists c=1, ..., =n

# R such
that |c=1, ..., =n

|�M$n and

d
ds

(sa i Vt a) V0 (&a) } s=0

=ai+ :
�

n=1

:
=1 , ..., =n # [0, 1]

c=1, ..., =n
(ad=1 ta) } } } (ad=nta)(ai) (4)

for all a # W and t # [0, 1] and such that this series converges absolutely,
uniformly for all a # W and t # [0, 1].
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These observations imply the following continuity property of the vector
fields.

Lemma 3.5. For each m # N, i1 , ..., im # [1, ..., d] and � # C �
c (W) one

has

lim
t � 0

X (t)
i1

} } } X (t)
im

�=X (0)
i1

} } } X (0)
im

�

uniformly on W.

Next for all � # C �
c (g) and t>0 define �t # C �

c (g) by

�t(a)=tD$�2�(#t(a))

where D$=�d
i=1 wi .

Lemma 3.6. If t # (0, 1], � # C �
c (#t(W)) and i # [1, ..., d] then X (t)

i �t=
twi (X i�)t , where Xi=X (1)

i .

Proof. The proof follows from Lemma 3.3.IV and (3). K

Corollary 3.7. For each m # N, i1 , ..., im # [1, ..., d] and � # C �
c (g)

one has

(X (0)
i1

} } } X (0)
im

�)(a)= lim
t � 0

tD$�2 twi1
+ } } } +wim (Xi1

} } } Xim
�t&1)(#t(a))

uniformly for a # g.

Proof. This result is a consequence of Lemmas 3.5 and 3.6 if supp ��W
and it follows for general � by scaling. K

Finally it is necessary to examine the left regular representation of the
groups Gt on the L2 -spaces, L2(Gt), with respect to a suitably normalized
Haar measure. It follows from [Var, Theorem 2.14.3 and Exercise 2.26(d)],
that there exists a unique Haar measure \t on Gt such that

|
Gt

d\t(g) �(logt g)=|
W

da _t(a) �(a)=|
g

da _t(a) �(a) (5)

for all � # Cc(W), where

_t(a)= }det :
�

n=0

(&1)n

(n+1)!
(adt a)n } (6)

for all a # W and t # [0, 1]. In particular this fixes a Haar measure on G=G1 .
Then _0(a)=1 since (g, [ } , } ]0) is nilpotent.
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Lemma 3.8. If t # (0, 1] and ., � # C �
c (#t(W)) then

|
g

da _t(a) .t(a) �t(a)=|
g

da _(a) .(a) �(a)

where _=_1 .

Proof. It follows from the identity adt a=#&1
t (ad #t(a)) #t that _t(a)=

_(#t(a)) for all a # W. The lemma follows by a change of variables. K

Example 3.9. Let g be a homogeneous Lie algebra with respect to a
family of dilations (#t)t>0 and a1 , ..., ad $ an algebraic basis such that
#t(ai)=twiai for some wi # [1, �). Then [a, b]t=[a, b] for all t>0 and
hence also for t=0. Thus all the Lie algebras coincide.

Lemma 3.10. Let a1 , ..., ad $ be an algebraic basis of rank r of a Lie
algebra g and set all weights equal to one as in Example 2.3. Then (g, [ } , } ]0)
is a homogeneous nilpotent Lie algebra of rank r.

Proof. Since all weights are equal to one, it follows that gi is the span
of all commutators of a1 , ..., ad $ of (unweighted) order less than or equal to
i. Because the rank of the algebraic basis a1 , ..., ad $ in (g, [ } ; } ]) equals r
there is a multi-index : with &:&=|:|=r such that a[:] � gr&1=gr

�
. Then

a[:]0
=a[:] mod gr

�
{0 and hence a[:]0

{0. So the rank of the nilpotent Lie
algebra (g, [ } ; } ]0) is at least r. Here a[:]0

is the multi-commutator with
respect to [ } ; } ]0 .

Conversely, the rank of the algebraic basis a1 , ..., ad $ in (g, [ } ; } ]0) is at
most r by Proposition 3.1.V and the equality gr=g.

Next suppose that the rank of the Lie algebra is larger than r. Then there
is an n>r together with b1, ..., bn # g such that [b1 , [ } } } [bn � 1 , bn]0 } } } ]0]0 {0.
Expressing the bi as linear combinations of a vector space basis a1 , ..., ad $ , ..., ad

of g one deduces that there exists an : # J(d) with |:|=n such that a[:]0
{0. But

we have chosen the additional elements ad $+1 , ..., ad such that the basis, up
to reordering, is the basis of Lemma 2.2. This implies, by the Jacobi identity,
that there exists an : # J(d $) with |:|>r such that a[:]0

{0. Since the rank of
a1 , ..., ad $ is at most r one then has a[:]0

=�; # Jr
+(d $) c;a[;]0

, with c; # R. It
follows by scaling that the left hand side equals zero and hence n�r. K

In general the rank of the nilpotent algebra (g, [ } , } ]0) is larger than the
rank of the algebraic basis a1 , ..., ad $ . Moreover, the rank of the algebraic
basis a1 , ..., ad $ in (g, [ } , } ]0) is larger than the rank of the algebraic basis
in (g, [ } , } ]).
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4. WEIGHTED SUBCOERCIVE FORMS: PART I

Let G be connected Lie group with Lie algebra g and a1 , ..., ad $ a
weighted algebraic basis with weights w1 , ..., wd $ # [1, �) having a common
multiple, i.e., �d $

i=1 wiN{<. Set

w=min[x # [1, �): x # wi N for all i # [1, ..., d $]].

We adopt the definitions and notation introduced in Section 1.
Let C: J(d $) � C be an m th order form with m # 2wN. We called C a

G-weighted subcoercive form, with respect to the weighted algebraic basis
a1 , ..., ad $ of g, if

Re(., dLG(C) .)�+(N$2; m�2(.))2&& &.&2
2 (7)

for some +>0 and & # R, uniformly for all . # C �
c (V) where V is some

open neighbourhood of the identity e # G. (The condition m # 2wN ensures
there exist : # J(d $) with &:&=m�2.) The least upper bound +C, G of the +
for which (7) is satisfied is called the elliptic constant.

The mth order operators dU(C) associated with the G-weighted subcoercive
forms C, a general representation (X, G, U) of G and a weighted algebraic
basis a1 , ..., ad $ of the corresponding Lie algebra g are called G-weighted
subcoercive operators.

We assign an angle to each subcoercive form, which subsequently provides
an estimate for the lower bound of the holomorphy sector. Set

%C, G=%C=sup [% # [0, ?�2]: \� # [&%, %]

[ei�C is a G-weighted subcoercive form]].

Then %C, G # [0, ?�2]. In Section 5 and Theorem 10.1 we prove that %C, G>0.
The foregoing notation explicitly identifies the relevant group G. But if

this is clear from the context we omit the G.

Example 4.1. If G=Rd with the usual basis a1 , ..., ad and with w1 , ..., wd=1
then an m th order form C is a (weighted) subcoercive form if, and only if,
�:; |:|=m Re c:(i!):>0 for all ! # Rd"[0]. Alternatively, for general weights
C is a weighted subcoercive form if, and only if, �:; &:&=m Re c:(i!):>0 for
all ! # Rd"[0]. The conditions are equivalent to the corresponding Ga# rding
inequalities as a consequence of Fourier theory; the differential operator is
a multiplication operator on the Fourier transform.
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Example 4.2. Let g be a general Lie algebra, m # 2wN and for all
:, ; # J(d $) with &:&=m�2=&;& let c:, ; # C satisfy Re �:, ; c:, ;!: !;>0
for all non-zero complex (!:). Then the argument given in Section 1 estab-
lishes that the operator H=�:, ; (&1) |:| c:, ;A:*A; is a weighted subcoercive
operator with respect to any representation.

Example 4.3. Let wi=1 and d $, s # N. Consider the free group
G=G(d $, s, 1, ..., 1). Then a form C: J(d $) � C of order m # N is a G-weighted
subcoercive form of order m if, and only if, C is a subcoercive form of order
m and step s (see [ElR3]).

Example 4.4. Let g be a homogeneous Lie algebra with respect to a
family of dilations (#t)t>0 and fix an algebraic basis a1 , ..., ad $ such that
#t(ai)=twi ai for some wi # [1, �). Let G be the corresponding connected
simply connected Lie group with Lie algebra g. Then G is homogeneous
group with the dilations (#t)t>0 . A form P is called a Rockland form if P
is homogeneous and the operator dU(P) is injective on the space X�(U)
for every nontrivial irreducible unitary representation U of G. The Helffer�
Nourrigat theorem, [HeN], states that a homogeneous form P is a positive
Rockland form if, and only if, the operator dL(P)|Cc

�(G) is hypoelliptic.
A Rockland form P is called a positive Rockland form if dL(P) is symmetric
and positive (see [AER]). In that case the operator dL(P) is referred to as
a positive Rockland operator.

Let P be a positive Rockland form of order m. By [ElR7, Lemma 2.2],
there exist a basis b1 , ..., bd of g, d" # [1, ..., d] and v1 , ..., vd # [1, �) such
that [g, g]�span[bd"+1 , ..., bd] and #t(bi)=tvi bi for all i # [1, ..., d] and t>0.
Moreover, b1 , ..., bd" is an algebraic basis of g. We give b1 , ..., bd" the weights
v1 , ..., vd" . It follows from Example 2.6 that the filtration corresponding to the
algebraic basis a1 , ..., ad $ equals the filtration corresponding to the weighted
algebraic basis b1 , ..., bd" . It then follows from Lemma 2.4 in [ElR7] that
m # 2viN for all i # [1, ..., d"]. Set v=min[x # [1, �): x # viN for all
i # [1, ..., d $]]. Then by definition of v one deduces that m # 2vN. (We do
not assume that the vi are integers, in which case v=lcm(v1 , ..., vd $), and in
which case it is well known that m # 2vN. In the present situation one
writes m=2qv+x, with q # N and x # [0, 2v) and easily establishes that x=0.)
Moreover, it follows from [ElR7, Theorem 2.5], that dL(P) satisfies a Ga# rding
inequality. So every positive Rockland operator is a weighted subcoercive
operator associated with a weighted subcoercive form with respect to a
suitable weighted algebraic basis of g.

On the other hand, if m # 2wN then it follows from [ElR7, Theorem 2.5], that
dL(P) satisfies a Ga# rding inequality and hence P is a G-weighted subcoercive
form.

108 TER ELST AND ROBINSON



If m # 2wN then there are many positive Rockland operators of order m.
For example, if P is the form such that for any representation (X, G, U)

dU(P)= :
d $

i=1

(&1)m�(2wi) Am�wi
i (8)

(see [FoS] (4.20)) then dL(P) is a positive Rockland operator. These
operators have been studied in [FoS, Heb1, DzH, Dzi, DHZ, AER, ElR7].

The definition of G-subcoercivity is local insofar the Ga# rding inequality
(7) is only required for . supported in some arbitrarily small neighbour-
hood V of the identity. We show, however, that this is equivalent to a
global condition, i.e., we conclude that the local Ga# rding inequality implies
that (7) is valid for all . # L2; �(G). If the group is homogeneous this
equivalence is a direct consequence of the dilation structure.

In the sequel we establish that the local Ga# rding inequality for C is in
fact equivalent to a global inequality for the principal part P. But the proof
is very indirect. It follows by the passage to a reduced weighted algebraic
basis and the introduction of the corresponding homogeneous contraction
G0 of G. It is remarkable fact that the Ga# rding inequalities on G and G0

are equivalent. The next proposition compares various versions of the
Ga# rding inequalities for G and G0 . It should be emphasized that in the
following proposition all the conditions are equivalent and, in addition, all
the ellipticity constants are equal. But at this stage we are only able to
establish some of these connections. (We prove the equivalence of the
remaining implications in Section 10.)

Proposition 4.5. Let G be a connected Lie group, a1 , ..., ad $ a reduced
weighted algebraic basis of the Lie algebra g of G, G0 the corresponding
homogeneous contraction of G and V, V0 open neighbourhoods of the identity
in G and G0 , respectively. Further let m # 2wN and C be an m-th order form
with principal part P. Consider the following conditions.

1(1$). There is a +>0 and & # R such that

Re(., dLG(C) .)�+(N$2; m�2(.))2&& &.&2
2

for all . # L2; �(G) ( for all . # C �
c (V)).

2(2$). There is a +>0 and & # R such that

Re(., dLG(P) .)�+(N$2; m�2(.))2&& &.&2
2

for all . # L2; �(G) ( for all . # C �
c (V)).
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3(3$). There is a +>0 and & # R such that

Re(., dLG0
(C) .)�+(N$2; m�2(.))2&& &.&2

2

for all . # L2; �(G0) ( for all . # C �
c (V0)).

4(4$). There is a +>0 and & # R such that

Re(., dLG0
(P) .)�+(N$2; m�2(.))2&& &.&2

2

for all . # L2; �(G0) ( for all . # C �
c (V0)).

5(5$). There is a +>0 such that

Re(., dLG0
(P) .)�+(N$2; m�2(.))2

for all . # L2; �(G0) ( for all . # C �
c (V0)).

Then 1 O 1$ O 3 � 3$ � 4 � 4$ � 5 � 5$ o 2$ o 2. Moreover, if 1$ is valid
then +C, G�+P, G0

=+C, G0
and if 2$ is valid +P, G�+P, G0

=+C, G0
.

Proof. Clearly each of the five unprimed conditions implies its primed
version and 5 O 4 and 5$ O 4$. But we have already argued that 3$ O 5 and
hence 4$ O 5. Therefore we have 3$ O 5 � 5$ � 4 � 4$. Hence it suffices to
prove that 1$ O 5$ and 5 O 3, because 2$ O 4$ follows from 1$ O 4$.

First we prove 5 O 3. Let P0 be the form defined in (8). It was
established in [AER, Proposition 2.1], that dL(P0) is a positive self-adjoint
operator and there exists a c>0 such that &.&$2; m�c(&dL(P0) .&2+&.&2)
for all . # D(dL(P0))=L$2; m . Now let C1 be a form of order less than or
equal to m. Then the operator dL(C1+C -

1) is symmetric and dL(P0)-
bounded, by the foregoing bounds. Hence by Theorem VI.1.38 of [Kat]
one deduces that there exist c1>0 and c2 # R such that |(., dL(C1+C-

1) .)|
�c1(., dL(P0) .)+c2 &.&2

2 for all . # L$2; m . The same argument applies to
the operator i(dL(C1&C -

1)) and by linear combination it follows that there
exist c$1>0 and c$2 # R such that |(., dL(C1) .)|�c$1(., dL(P0) .)+c$2&.&2

2 .
Next there exists a c3>0, such that (., dL(P0) .)=&dL(P0)1�2 .&2

2�
c3(N$2; m�2(.))2 for all . # L$2; m (see [ElR7, Corollary 2.6.II]). Combining
these estimates it follows that for all : # J(d $) with &:&�m there exist
c1 , c2>0 such that |(., A:.)|�c1(N$2; m�2(.))2+c2 &.&2

2 for all . # L$2; m .
Therefore, by a scaling argument, one concludes that

|(., A:.)|�c1=m&&:&(N$2; m�2(.))2+c2=&&:& &.&2
2 (9)

for all =>0 if &:&<m and

|(., A:.)|�c1(N$2; m�2(.))2 (10)
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if &:&=m. Then 5 O 3 follows from (9). Moreover, it follows from the
proof that +C, G0

=+P, G0
.

Now we prove 1$ O 5$. We temporally denote by ( } , } )0 the inner product
on L2(G0) and ( } , } ) the inner product on L2(G). Let W be the open
neighbourhood of 0 in g as introduced in Lemma 3.3.V. We may assume
exp(W)�V and exp0(W)=V0 and use the notation of Section 3. Let
. # C �

c (V0) and set �=. b exp0 # C �
c (W). For t # [0, 1] set

PX (t)= :

&:&=m
: # J(d $)

c:X (t) :,

where we have used multi-index notation. Then

Re(., dLG0
(P) .)0=Re | da �(a) (PX (0) �)(a)

and we approximate Re � da �(a) (PX (0) �)(a) by Re � da _t(a) �(a) (PX (t) �)(a).
Let t # (0, 1]. Now Lemma 3.6, applied to �t&1 gives PX (t) �=PX (t)(�t&1)t

=tm(PX�t&1)t where PX=PX (1) . Since �t&1 , PX (t) �t&1 # C �
c (#t(W)) one can

then use Lemma 3.8 to deduce that

Re | da _t(a) �(a) (PX (t) �)(a)

=tm Re((�t&1 b log), dLG(C)(�t&1 b log))

& :
&:&<m

tm Re((�t&1 b log), c: dLG(A:)(�t&1 b log)).

Since dLG(C) satisfies the Ga# rding inequality on C �
c (V) one then estimates

that

Re | da _t(a) �(a) (PX (t) �)(a)

�+tm max
&:&=m�2 | da _(a) |(X (1) :�t&1)(a)|2&&tm | da _(a) |�t&1(a)|2

& :
&:&<m

tm Re c: | da _(a) �t&1(a) (X (1) :�t&1)(a).
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Since �t&1 , X (1):�t&1 # C �
c (#t(W)) one can again use Lemmas 3.8 and 3.6

to deduce that

Re | da _t(a) �(a) (PX (t) �)(a)

�+ max
&:&=m�2 | da _t(a) |(X (t) :�)(a)| 2&&tm | da _t(a) |�(a)|2

& :
&:&<m

tm&&:& Re c: | da _t(a) �(a) (X (t) :�)(a).

Now it follows from (6) that limt � 0 _t(a)=limt � 0 _(#t(a))=_(0)=
1=_0(a) uniformly for all a # W. Therefore, as an application of Lemma 3.5,
one estimates that

Re(., dLG0
(P) .)0

=lim
t � 0

Re | da _t(a) �(a) (PX (t) �)(a)

�lim
t � 0 \+ max

&:&=m�2 | da _t(a) |(X (t) :�)(a)| 2&&tm | da _t(a) |�(a)| 2

& :
&:&<m

tm&&:& Re c: | da _t(a) �(a) (X (t):�)(a)+
=+ max

&:&=m�2 | da _0(a) |(X (0) :�)(a)| 2=+(N$(0); 2; m�2(.))2,

where N$(0); 2; m�2 denotes the seminorm on G0 . This completes the proof. K

5. HOMOGENEOUS GROUPS

Our analysis of subcoercive operators on the Lie group G proceeds by
studying the comparable problems on the homogeneous contraction G0 of
G and then extending the results to G by a parametrix argument.

Let g be a homogeneous Lie algebra with respect to a family of dilations
(#t)t>0 and a1 , ..., ad $ an algebraic basic such that #t(a i)=twi ai for some
wi # [1, �). Then a1 , ..., ad $ is a reduced weighted algebraic basis by
Example 2.6. Further let G be the corresponding connected, simply connected,
homogeneous Lie group and C: J(d $) � C a G-weighted subcoercive form of
order m where m # 2wN. In this section we assume the form C is homogeneous,
so C=P, the principal part of C. Let H=dL(C) be the corresponding
homogeneous weighted subcoercive operator on L2(G).
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First we prove that H|C c
� is hypoelliptic and then deduce that H generates

a holomorphic semigroup S on the sector 4(%C) with a smooth kernel K
satisfying Gaussian type bounds. The homogeneous structure is exploited
through scaling arguments. The arguments are an amalgamation of methods
used in [HeN, ElR3, AER].

As a preliminary we observe that %C>0. Set

{=sup [ |Im(dLG(P) ., .)|�(N$2; m�2(.))2: . # L2; �(G), .{0].

Then {<� by (10) and %C�arc tan(+{&1)>0.

Lemma 5.1. The operator H|Cc
�=dL(C)|C c

� is hypoelliptic.

Proof. We prove that dL(C) is a Rockland operator, i.e., the operator
dU(C) is injective on H�(U) for each non-trivial irreducible representation
(H, G, U). But this is equivalent to hypoellipticity by the Helffer�Nourrigat
theorem [HeN].

It follows from Proposition 4.5 that Re(., H.)�+(N$2; m�2(.))2 for all
. # L2; �(G), where +=+C, G is the ellipticity constant. So

Re(., dL(C) .)�+ max
: # J(d $)

&:&=m�2

Re(&1) |:| (., A(:*, :).) (11)

for all . # L2; �(G). Now we argue as in Section 2 and the proof of
Proposition 4.6.2 in Helffer�Nourrigat [HeN] that

Re(x, dU(C) x)�+ max
: # J(d $)

&:&=m�2

Re(&1) |:| (x, A(:*, :)x) (12)

for every irreducible unitary representation (H, G, U) and every x # H�(U).
At this point we merely sketch the proof since Proposition 10.2 requires

a refinement of the result and we then give full details. First note that
Proposition 2.1 of [HeN], which gives a norm comparison for two operators,
has a version expressed in terms of the forms of the operators. This is evident
from the proof of the proposition which relies on Fourier transformation.
Replacing the Fourier transforms of the operator norms by similar transforms
of the operator forms does not affect the argument.

Secondly, one deduces (12) from (11) by the same argument that estab-
lishes Proposition 4.6.2 as a consequence of Proposition 4.6.1 in [HeN].
This relies upon the form version of Proposition 2.1.

One immediately deduces from (12) that

Re(x, dU(C) x)�+(N$U; m�2(x))2 (13)

for every irreducible unitary representation (H, G, U) and every x # H�(U).
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Now let (H, G, U) be a non-trivial irreducible unitary representation
and for x # H�(U) suppose dU(C) x=0. Then (x, dU(C)x)=0 and N$U; m�2(x)
=0 by (13). Hence dU(ai)

m�(2wi) x=0 and, by spectral theory, one also has
dU(ai) x=0 for all i # [1, ..., d $]. Since a1 , ..., ad $ is an algebraic basis for g it
follows that dU(a) x=0 for all a # g and since U is non-trivial this implies
that x=0. Thus dL(C) is a Rockland operator and therefore hypoelliptic. K

The Helffer�Nourrigat theorem even states that the operator H+*I is
hypoelliptic for all * # C. We need a variant of hypoellipcity involving an
extension of H.

Lemma 5.2. Let . # D((H-)*) where H-=dL(C-). If ((H-)*+*I) . # L2; �

for some * # R then . # L2; � .

Proof. This follows as in the proof of Lemma 4.6 in [ElR3]. K

The hypoelliptic of H has many consequences. In particular by special
choice of H one can deduce regularity properties.

Corollary 5.3. I. The operator H is closed on L$2; m .

II. For all n # N one has D(Hn)=L$2; nm , with equivalent norms. There
exists a c>0 such that cN$2; nm(.)�&H n.&2 for all . # D(H n).

III. The spaces L2; � and C �
c (G) are cores for H n, for all n # N.

IV. If n # N and k # (0, nm) then there exists a c>0 such that

N$2; k(.)�=nm&kN$2; nm(.)+c=&k &.&2

for all =>0 and . # L$2; nm .

V. If n # N and k # (0, nm) then there exists a c>0 such that

&.&$2; k�=nm&k &.&$2; nm+c=&k &.&2

for all =>0 and . # L$2; nm .

Proof. This follows from the Helffer�Nourrigat theory and scaling. See
also [AER, Proposition 2.1]. The last two statements are a consequence of
the specific example (8). K

Proposition 5.4. The operator H=dL(C) generates a holomorphic semi-
group S on L2(G), with a holomorphy sector containing the sector 4(%C), which
satisfies &Sz&2 � 2�1 for all z # 4(%C).

Proof. The Ga# rding inequality establishes that

&(H+*I ) .&2 &.&2�Re(., (H+*I ) .)�* &.&2
2
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for all *>0 and . # L2; � . Hence

&(H+*I ) .&2�* &.&2 (14)

for all . # D(H). So H+*I is injective for all *>0. If we show that the
range R(H+*I ) of H+*I is equal to L2 for some *>0 then it follows
from the Hille�Yosida theorem that H generates a contraction semigroup.
It suffices to prove that R(H+*I ) is dense since the space R(H+*I ) is
closed by (14).

The formal adjoint C- is also a G-weighted subcoercive form so we can
apply the above reasoning to H-=dL(C-) and deduce that

&(H-+*I ) .&2�* &.&2 (15)

for all . # D(H-)=L$2; m and *>0. Fix *>0. Let P be the projection of L2

onto R(H-+*I ). By (15) the map T: (H -+*I ) . [ . from R(H-+*I )
into L2 is continuous. Let E=TP. Then E is continuous and E(H-+*I ) .=.
for all . # L$2; m . So for all � # L2 one has

(E*�, (H -+*I ) .)=(�, E(H -+*I ) .)=(�, .)

for all . # L$2; m . Therefore E*� # D((H -+*I )*) and (H -+*I )* E*�=�.
Now it follows from Lemma 5.2 that E*� # L2; � �D(H+*I) for all � # L2; � .
Hence (H+*I ) E*�=� for all � # L2; � . Therefore L2; � �R(H+*I) and
R(H+*I ) is dense. Thus H generates a contraction semigroup.

Finally, for any % # ( &%C , %C) the form ei%C is also a G-weighted sub-
coercive form of order m, so the operator ei%H=dU(ei%C) is the generator
of a contradiction semigroup. Then by [Kat, Theorem IX.1.23], it follows
that H is the generator of a holomorphic semigroup which is holomorphic
in a sector with angle at least %C . This completes the proof of the proposition.

K

Let | } | be a homogeneous modulus on G (see [HeS]). Extend the
algebraic basis to a vector space basis a1 , ..., ad $ , ..., ad such that for each
i # [d $+1, ..., d] there exists a wi # [1, �) such that #t(ai)=twi a i for all
t>0. Set D$=�d

i=1 wi .

Proposition 5.5. The holomorphic semigroup S generated by H has a
smooth kernel K # L1; �(G) & CO; �(G) such that

(A:Sz.)(g)=|
G

dh (A:Kz)(h) .(h&1g)
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for all : # J(d $), z # 4(%C), . # L2(G) and g # G. Moreover, the function
z [ Kz(g) is analytic on 4(%C), uniformly for g # G, and for each : # J(d $)
and = # (0, %C) there exists b, c>0 such that

|(A:Kz)(g)|�c |z| &(D$+&:&)�m e&b( | g|m |z|&1)1�(m&1)

for all z # 4(%C&=) and all g # G.

Proof. The proof is almost the same as the proofs of Proposition 2.2
and Corollary 2.3 in [AER], with one significant difference. This occurs at
the beginning of the proof of Proposition 2.2, where the spectral theorem
was used to establish that

(&(*I+H)&n&L2 � L$
2; nm

)&1�c&1
1 (16)

for a c1>0 and all n # N uniformly for * # 4(?�2+%C&=) with |*|=1 for
the self-adjoint operator H in [AER]. Since the present operator H is not
necessarily symmetric we have to give a new proof of (16), uniformly for
* # 4(?�2+%C&=) with |*|=1.

Let n # N. By Corollary 5.3 there exist c1 , c2>0 such that N$2; nm(.)�
c1 &Hn.&2 and &H n& j.&2�$ j &H n.&2+c2 $&n+ j &.&2 for all . # L$2; nm ,
j # [1, ..., n&1] and $>0. Let * # 4(?�2+%C&=). Then

&Hn.&�&(*I+H)n .&2+ :
n

j=1
\ n

j + |*| j &H n& j.&2

�&(*I+H)n .&2+((1+|*| $)n&1) &Hn.&2

+$&nc2((1+|*| $)n&1) &.&2

for all . # L$2; nm .
Let % # ( &%C+=�2, %C&=�2) be such that \=ei%* # 4(?�2&=�2). Then

the Ga# rding inequality, applied to the form ei%C, gives

&(*I+H) .&2 &.&2=�Re(., (\I+ei%H) .)�(Re \) &.&2
2

�|*| sin(=�2) &.&2
2

for all . # L$2; m . Hence by induction &.&2�|*|&n (sin(=�2))&n &(*I+H)n .&2

uniformly for all * # 4(?�2+%C&=) and . # L$2; nm .
Taking $>0 such that (1+|*| $)n&1=1�2 one establishes that

N$2; nm(.)�c1 &H n.&2

�(2c1+2c1 c2(((3�2)1�n&1) sin(=�2))&n) &(*I+H)n .&2
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uniformly for all * # 4(?�2+%C&=) and . # L$2; nm . Next, using Proposi-
tion 5.3.IV one deduces that there exists a c3>0 such that

&.&$2; nm�2&1c3(1+|*|&n) &(*I+H)n .&2 .

So the operators (*I+H)&n map the Hilbert space L2 continuously into
the Banach space L$2; nm and (16) is valid with c1 replaced by c3 , uniformly
for all * # 4(?�2+%C&=) with |*|=1. Now one can proceed as in [AER].
We omit the details. K

Next define Kt=0 for t�0. Then (t, g) [ Kt(g) is a C �-function on
(R_G)"[(0, e)] and the Gaussian bounds imply that this function is a
distribution on R_G.

Proposition 5.6. One has ((�t+H) Kt)(g)=$(t) $(g) as distributions.

Proof. It follows from [AER] that ((�t+H) Kt)(g)=0 pointwise if
(t, g){(0, e). The fact that (t, g) [ Kt(g) is a fundamental solution of the
operator �t+H then follows as in Folland [Fol1, Proposition 3.3]. K

Now we introduce a class of differential operators which is useful in
Sections 7 and 8 to prove that weighted subcoercive operators generate
holomorphic semigroups. One has

| g|n |(A:Kt)(g)|�c |t|&(D$+&:&&n)�m e&b( | g|m |t| &1)1�(m&1)

for all : # J(d $) and n # [0, �). Thus differentiation introduces an
additional singularity t&&:&�m but multiplication with | g|n introduces a factor
tn�m, which effectively removes the singularity. This motivates the following
definition. Let Mf denote the operator of multiplication with the function f. An
nth order differential operator

L= :

&:&�n
: # J(d $)

Mf:
A:,

with variable C�-coefficients f: , on an open set V containing the identity
element e, is defined to be an operator of actual order N if there exists a c>0
and an open neighbourhood B of the identity e such that | f:(g)|�c | g|n: (N)

for all : # J(d $) with &:&�n and g # B & V where n:(N)=(&:&&N) 6 0.
One can restate the foregoing inequalities.
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Corollary 5.7. Let L be a differential operator on V of actual order N
with N # [0, �) . Then for each compact subset B of V there exist b, c>0
and |�0 such that

|(LKt)(g)|�c |t|&(D$+N)�m e|te&b( | g|m |t|&1) 1�(m&1)

uniformly for all g # B and t>0.

The next lemma gives another description of the actual order of a differential
operator.

Lemma 5.8. Let V be an open neighbourhood of the identity element e in
G and .: V � C a C�-function. Then for each n # [1, �) the following are
equivalent.

I. (A:.)(e)=0 for all : # J(d $) with &:&<n.

II. For every compact neighbourhood K of e such that K/V there
exists c>0 such that |.(g)|�c | g|n for all g # K.

III. There exist a compact neighbourhood K of e such that K/V and
a c>0 such that |.(g)|�c | g|n for all g # K.

Proof. Extend the algebraic basis a1 , ..., ad $ to a vector space basis
a1 , ..., ad such that for all i>d $ there exists a wi # [1, �) with #t(ai)=twi ai

for all t>0. Define a modulus | } | on g by

} :
d

i=1

!i ai }
2w�

= :
d

i=1

|!i |2w� �wi,

where w� =min[x # [1, �): x # wi N for all i # [1, ..., d]]. Then by scaling
there exists a c�1 such that c&1 |a|�|exp a|�c |a| for all a # g. Moreover,
&a&�d 1�2 |a| if &a&�1. Next, let X i=X (1)

i be the vector fields defined
by (2), but now for the full basis of the Lie algebra g. Let �=. b exp and
N # N with N�n. Then for all a=�d

i=1 !i ai # g one has by the usual
Taylor formula

.(exp a)=�(a)= :

|:|�N
: # J(d )

: !&1(X:�)(0) !:+O(&a&N)

= :

|:|�N
: # J(d )

: !&1(A:.)(e) !:+O( |a|N)

= :

|:|�N
: # J(d )

: !&1(A:.)(e) !:+O( |a|n)
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as a � 0. Here :!=k1! } } } kd! if :=(i1 , ..., im) and kl=*[ j # [1, ..., m]: ij=l].
But if : # J(d ) with |:|�N and &:&�n then

(A:.)(e) !:=O( |a|&:&)=O( |a| n), (17)

where we have used the inequality |!i |�|a|wi. Hence

.(exp a)= :

&:&<n
: # J(d )

: !&1(A:.)(e) !:+O( |a|n). (18)

Now the implication I O II is obvious.
The implication II O III is trivial.
III O I. Suppose that |.(g)|�c | g|n for all g # K. Then .(e)=0. We

shall prove by induction on k that (A:.)(e)=0 for all . # J(d ) with
&:&=k. Let k # [0, n) and suppose that (A:.)(e)=0 for all : with &:&<k.
Then for all a=�d

i=1 !iai # g one has

:

&:&=k
: # J(d )

: !&1(A:.)(e) !:

=.(exp a)& :

n>&:&>k
: # J(d )

: !&1(A:.)(e) !:+O( |a|n)=o( |a|k)

by (17) and (18). Next fix a=�d
i=1 ! iai # g. Then the scaling 'i=uwi !i

gives

uk :

&:&=k
: # J(d )

(A:.)(e) !:= :

&:&=k
: # J(d )

(A:.)(e) ':=o( |#u(a)|k)=o(uk)

for all small u>0. Therefore

:

&:&=k
: # J(d)

: !&1(A:.)(e) !:=0. (19)

We next prove that (A:.)(e)=0 for all M # N and all : # J(d ) with &:&=k
and |:|=M. The proof is by induction on M. If M=1 then :=(i) for
some i # [1, ..., d] and one substitutes !=(0, ..., 1, ..., 0) with the non-zero
entry in the i th place. Therefore (A:.)(e)=0 if |:|=1. Next let M # N,
M�2 and suppose that (A:.)(e)=0 for all : # J(d) with &:&=k and |:|<M.
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Let :=(i1 , ..., iM) # J(d), j # [1, ..., M&1] with &:&=k. If ;=(i1 , ..., ij&1 ,
ij+1 , ij , ij+2 , ..., iM) then

(A:.)(e)=(A;.)(e)+ :
d

l=1

c l
ij ij+1

(A$l .)(e)

where the c l
ij are the structure constants of g with respect to the basis

a1 , ..., ad and $l=(i1 , ..., ij&1 , l, i j+2 , ..., iM). Since g is homogeneous one
has c l

ij ij+1
=0 if wl {w ij

+wij+1
. Therefore &$l&=k for all l such that the

term in the sum does not vanish. But |$l |=M&1. Hence by the induction
hypothesis (A$l.)(e)=0. It follows that (A:.)(e)=(A;.)(e). Conse-
quently, (A:_.)(e)=(A:.)(e) for all :=(i1 , ..., iM) # J(d ) with &:&=k and
all _ # SM , the permutation group, where :_=(i_(1) , ..., i_(M)). Now it
follows from (19) by differentiation that (A:.)(e)=0. K

One important implication of the Lemma 5.8 is that if L1 and L2 are dif-
ferential operators with variable coefficients and actual orders N1 and N2 ,
respectively, then L1 b L2 is a similar operator but with actual order N1+N2 .

Finally we need an estimate for the kernel of the resolvent

(*I+H)&1=|
�

0
dt e&*tSt ,

where * # C with Re *>0, of the closed operator H=dL(C). The estimates
of Proposition 5.5 establish that (*I+H)&1 has a kernel R* given by

R*(g)=|
�

0
dt e&*tKt(g)

and R* # L1(G) with &R*&1�c(Re *)&1 for a suitable c>0 and all * # C
such that Re *>0. Since Kt # C�(G) for t>0 it follows that R* # C�(G"[e]).
Moreover, A:R* # L1(G) for all : # J(d) with &:&<m and &A:R*&1�
c$(Re *)&(m&&:&)�m for Re *>0. (For a related discussion of strongly elliptic
operators see [Rob] Section III.6b and Appendix A of [ElR4].) Higher
derivatives of R* are, however, not in L1(G) because of singularities at the
identity e. Nevertheless differential operators of order larger or equal to m
but with actual order less than m do map R* into L1(G).

Lemma 5.9. Let L be a differential operator on V of actual order N with
N # [0, m) and B a compact subset of V. If 1B denotes the characteristic
function of B then 1BLR* # L1 and there are c>0 and \�0 such that

&1BLR* &1�c(Re *)&(m&N)�m

for all * # C with Re *>\.
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Proof. It follows from Corollary 5.7 that

&1BLR* &1 �c$ |
B

dg |
�

0
dt e&(*&|) tt&(D$+N)�me&b( | g|m |t| &1)1�(m&1)

�c$ |
�

0
dt |

G
dh e&(*&|) tt&N�me&b |h|m�(m&1)

�c"(*&|)&1+N�m.

Therefore one can choose \=2| and c=2c". K

6. DISTANCES

In this section we define a distance on the (general) connected Lie group
C, together with a new distance on the homogeneous contraction G0 . Let
a1 , ..., ad $ be a reduced weighted algebraic basis for the (general) Lie
algebra g and extend this algebraic basis to a full basis a1 , ..., ad $ , ..., ad with
weights w1 , ..., wd as in Lemma 2.2. So each ai with i>d $ is a commutator
of elements of the algebraic basis. Set

D$= :
d

i=1

wi= :
*>0

* dim(g* �g*
�
).

Then D$ is independent of the extension of the algebraic basis to a full basis
and we refer to it as the local dimension of G with respect to the (reduced)
weighted algebraic basis. This name is justified by the estimates of Proposition
6.1.II given below.

Let Gt and expt , for t # [0, 1], be as in Section 3. We introduce a
distance | } |$t on Gt . Although we are mainly interested in the cases t=0
and t=1 the construction is identical for all t # [0, 1]. Let B(t)

i , i # [1, ..., d],
be the left invariant vector fields on Gt corresponding to ai , i.e.,

(B (t)
i �)(g)=

d
ds

�(g expt(sai)) } s=0

for � # C�(Gt). Then for $>0 let Ct($) be the set of all absolutely
continuous functions .: [0, 1] � Gt which satisfy the differential equation

.* (s)= :
d $

i=1

.i (s) B (t)
i | .(s)
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almost everywhere with |.i (s)|<$wi for all i # [1, ..., d $] and s # [0, 1].
Now define the distance d $t(g; h) between two elements g, h # Gt by

d $t(g; h)=inf [$>0: _. # Ct ($)[.(0)= g and .(1)=h]]

and the modulus | } |$t on Gt by | g|$t=d $t(g; e). Since a1 , ..., ad $ is an algebraic
basis for (g, [ } , } ]t) it follows from a theorem of Carathe� odory that d $t(g; h)
is finite for all g, h # Gt (see also [NSW]). Moreover d $t(kg; kh)=d $t(g; h)
for all g, h, k # Gt .

If t=0 the modulus | } |$0 has the scaling property |#s(g)|$0=s | g|$0 for all
g # G0 . Therefore, if | } | is the homogeneous modulus on G0 introduced in
Section 5 then there exists a c>0 such that c&1 | g|�| g|$0�c | g| for all g # G0 .

Next, for $>0 let B(t)
$ $=[g # Gt : | g|$t<$] be the ball in Gt with radius $.

We denote by |B(t)
$ $| t the measure of B(t)

$ $ with respect to the fixed (left-)Haar
measure \t on Gt (see (5)). If t=1 we drop the subscript t as before. Moreover,
if confusion is possible, we write | g|$(a)=| g|$ to indicate the dependence of
the modulus on the reduced weighted algebraic basis.

Since w1 , ..., wd $ have a common multiple w1 , ..., wd also have a common
multiple. Set

w� =min[x # [1, �): x # wi N for all i # [1, ..., d]].

Then define a modulus | } | on g by

} :
d

i=1

!i ai }
2w�

= :
d

i=1

|!i |2w� �wi.

The moduli | } |$t are comparable locally.

Proposition 6.1. Let t # [0, 1].

I. There exist c�1 and = # (0, 1] such that c&1 |a|�|expt(a)|$t�c |a|
for all a # g with &a&�=, where & }& is a Euclidean norm on g.

II. There exists a c�1 such that c&1$D$�|B(t)
$ $| t�c$D$ for all $ # (0, 1].

Proof. The proposition is trivial if t=0 by scaling, so we only need to
consider t=1. We may assume that all weights are integers. Indeed, if one
multiplies all weights with a positive constant then the distance and modulus
are replaced by the appropriate root of the old distance and modulus and the
constants c with the appropriate powers.

For all n # N define Cn : gn � G by setting C1(b1)=exp(b1) and

Cn(b1 , ..., bn)=exp(b1) Cn&1(b2 , ..., bn) exp(&b1) Cn&1(b2 , ..., bn)&1

for n>1.
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Lemma 6.2. For all N # N there exist =N>0 and cN; # R with ; # J(N),
|;|�N+1 such that

CN(b1 , ..., bN)=exp([b1 , [ } } } [bN&1 , bN] } } } ]]+RN(b1 , ..., bN))

for all b1 , ..., bN # g with &bi&�=N , where

RN(b1 , ..., bN)= :

|;|�N+1
; # J(N)

cN; b[;] .

Moreover, the sum in RN is absolutely convergent and

:

|;|�N+1
; # J(N)

&cN; b[;]&�1.

Proof. This follows from the Campbell�Baker�Hausdorff formula and
induction on N (see [NSW, Lemma 2.21], and [VSC, Section III.3]). K

In the next lemma we replace one low-order term in an element of the
Lie algebra by several ai with i # [1, ..., d $] and another element of the Lie
algebra which is not much larger than the original element. Since it is not
possible to control all terms individually, we control all high-order terms
together.

Lemma 6.3. For all M # N and :0 # J +
M(d $) there exist n # N and

i1 , ..., in # [1, ..., d $] with the property that for each C�1 there exist C$�1
and = # (0, 1] such that for $ # (0, =) and c: # R with : # J+(d $) the properties

1. a=�: # J+(d $) c:a[:] converges absolutely,

2. |c: |�C$&:& for : # J +
M(d $),

3. &�: # J(d $); |:|�M+1 c: a[:] &�C$M+1 and,

4. c:=0 for all : # J +
|:0 |&1(d $)

imply the existence of c$: # R, : # J +(d $) and s1 , ..., sn # R such that
5. b=�: # J+(d $) c$:a[:] converges absolutely,

6. |c$: |�C$$&:& for : # J +
M(d $),

7. &�: # J+(d $); |:|�M+1 c$: a[:]&�C$$M+1,

8. |sj |�C$$wij for all j # [1, ..., n],

c$:=0 for all : # J +
|:0|&1(d $)

9. {c$:0
=0

c$:=c: if |:|=|:0 | and :{:0 , and,

10. exp(a)=exp(b) exp(s1a i1
) } } } exp(sn ain

).
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Proof. We may assume that the Campbell�Baker�Hausdorff series
converges absolutely with respect to [ } , } ] on [a # g: &a&�2]. Let M # N
and :0 # J +

M(d $). Write :0=( j1 , ..., jN) where N=|:0 |. Let cN; # R and
=N>0 be as in Lemma 6.2. It is clear that there are n # N and i1 , ..., in #
[1, ..., d $] such that one has the identity

CN({1aj1
, ..., {NajN

)=exp(|1ai1
) } } } exp(|n ain

) (20)

for all {1 , ..., {N # R, where for each l there exists a k such that |lail
={k ajk

.
Let C�1. Let = # (0, 1] be such that &a&�1 for all a=� c:a[:] where

the c: satisfy 1, 2, 3 and 4 in the statement of the lemma for some
$ # (0, =) , and, moreover, =<=NC&1d &1.

Now for $ # (0, =) let a=� c:a[:] # g and suppose that 1, 2, 3 and 4 are
valid. Let {1=sgn(c:0

) |c:0
|wj1

�&:0& and {l=|c:0
|wjl

�&:0& for all l # [2, ..., N]. Then
|{l |�C$wjl for all l # [1, ..., N] and {1 } } } } } {N=c:0

. Let a"=a&c:0
a[:0] .

Then

a=(c:0
a[:0]+RN({1aj1

, ..., {NajN
))+(a"&RN({1 aj1

, ..., {NajN
)).

We estimate RN({1aj1
, ..., {N ajN

). One has

RN({1aj1
, ..., {NajN

)= :

|;|�N+1
; # J(N)

cN; {;b[;] ,

where bk=ajk
for all k # [1, ..., N]. But b[;]=a[:] with :=( jk1

, ..., jkm
) if

;=(k1 , ..., km) # J+(N). Then |{;|=|>m
l=1 {kl

|�>m
l=1 C$wjkl=Cm$&:&�

CM $&:& if m=|;|=|:|�M. Similarly one deduces that

" :

|;|�M+1
; # J(N)

cN; {;b[;]"=" :

|;|�M+1
; # J(N)

cN;(d=&1
N {); (d &1=N) |;| b[;]"

�(C d=&1
N $)M+1 :

|;|�M+1
; # J(N)

&cN;(d &1=N) |;| b[;]&

�(C d=&1
N )M+1 $M+1,

where we have used C$<1 and Lemma 6.2. So one can write

a=(c:0
a[:0]+RN({1aj1

, ..., {NajN
))+a$$$
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with a$$$=� c:$$$a[:] absolutely convergent. The coefficients c:$$$ satisfy the
estimates |c:$$$|�C1 $&:& for : # J +

M(d $) with a C1�1 which depends only on
M, :0 and C,

" :

|:|�M+1
: # J(d $)

c:$$$a[:]"�C1$M+1

and, in addition, c:$$$=0 for all : # J +
|:0 |&1(d $), c$$$:0

=0 and c:$$$=c: if
|:|=|:0 | and :{:0 . Then by the Campbell�Baker�Hausdorff formula one
obtains as before that

exp(&c:0
a[:0]&RN({1aj1

, ..., {NajN
)) exp a=exp b

where b=�: # J(d $) c$:a[:] for some c$: # R such that 5, 6, 7 and 9 in the
statement of the lemma are valid for some C$�1 which depends only
on M, :0 and C. Inverting the first element of the left hand side and using
(20) gives 8, and 10. K

Now we complete the proof of Proposition 6.1. We need two more
distances and a quasi-distance. For j # [2, 3, 4] and $>0 let C ( j)($) be the
set of all absolutely continuous functions .: [0, 1] � G which satisfy the
differential equation

.* (s)= :
d

i=1

.i (s) B i| .(s)

almost everywhere with

.d $+1(s)= } } } =.d (s)=0 and |.i (s)|<$, if j=2,

|.i (s)|<$wi, if j=3,

.i (s)=.i (0) and |.i (0)|<$wi, if j=4,

for all i # [1, ..., d $] and s # [0, 1]. Then the (quasi-)distance d ( j)(g; h)
between two elements g, h # G is defined by d ( j)(g; h)=inf [$>0: _. # C ( j )($)

[.(0)= g and .(1)=h]]. Next let M=r max(w1 , ..., wd $), where r is the
rank of the algebraic basis a1 , ..., ad $ . Then

C (2)($M�r)�C($)�C (2)($)

for all $ # (0, 1]. Hence d (2)(g; h)�d $(g; h)�(d (2)(g; h))r�M for all g, h # G
with d $(g; h)�1. It follows, however, from [NSW, Proposition 1.1 and
Theorem 4], that there exist =1 # (0, 1] and C1�1 such that d (2)(exp a; e)
�C1 &a&1�r for all a # g with &a&�=1 . Therefore |exp a|$=d $(exp a; e)�
C2 &a&1�M for all a # g with &a&�=1 , where C2=C r�M

1 .
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It follows by induction from Lemma 6.3 that there exist n # N,
i1 , ..., in # [1, ..., d $], C3�1 and = # (0, 1] such that for all $ # (0, =) and
all a=�: # Jr

+(d $) c:a[:] with c: # R and |c: |�$&:&, : # J +
r (d $), there are

c$: # R, for : # J(d $) with |:|�M+1 and s1 , ..., sn # R such that exp(a)=
exp(b) exp(s1 ai1

) } } } exp(sn ain
), where b=�: # J(d $); |:|�M+1 c$:a[:] converges

absolutely. Moreover, &b&�C3$M+1 and |s j |�C3$wij for all j # [1, ..., n].
But by the choice of ad $+1 , ..., ad there exists for all j # [1, ..., d] an
:j # Jr(d $) such that a j=a[:j]

and &: j&=wj .
Now let a # g and suppose that |a|<min(=, C &1

3 =1). Write a=
�: # J+(d $) c:a[:] with c:=0 if : � [:1 , ..., :d]. Then |c:j

|�|a|wj=|a|&:j& for
all j # [1, ..., d] and hence |c: |�|a|&:& for all : # J +

r (d $). So for all : # J(d $)
with |:|�M+1 there exist a c$: # R and s1 , ..., sn # R such that exp(a)=
exp(b) exp(s1 ai1

) } } } exp(sn ain
), where b=�: # J(d $); |:|�M+1 c$:a[:] converges

absolutely, and, moreover, &b&�C3 |a|M+1 and |sj |�C3 |a| wij for all
j # [1, ..., n]. Then

|exp a|$�|exp b|$+|exp(s1ai1
)|$+ } } } +|exp(snain

)|$

�C2 &b&1�M+C3 |a|+ } } } +C3 |a|

�C2 C3 |a| (M+1)�M+nC3 |a|

�(n+1) C2C3 |a|.

This proves the second inequality of Statement I of Proposition 6.1.
Next we prove the first inequality. By [NSW, Theorem 2], the quasi-

distance d (4) is locally equivalent to d (3). So there exist c, =>0 such that
d (3)(g; h)�cd (4)(g; h) for all g, h # B$= . In particular, | g|$=d $(g; e)�d (3)(g; e)
�c d (4)(g; e) for all g # B$= .

Now let a=�d
i=1 !iai # B$= and for $>0 let . # C (4)($). Let b=

�d
i=1 .ia i # g and B be the left invariant vector field corresponding to b.

Then .* (s)=B|.(s) for all s # [0, 1]. So . is a C �-function and by the
uniqueness theorem for integral curves (see, for example, [SaW, Theorem 2.37])
it follows that .(s)=exp(sb) for all s # [0, 1], if = is small enough. In particular,
exp(a)=.(1)=exp(b). Hence, for small enough =, it follows that !i=.i for
all i # [1, ..., d]. Thus |!i |<$wi for all i # [1, ..., d]. But there is a j # [1, ..., d]
such that |! j |

2w� �wj�d &1 |a| 2w� . Therefore $> |! j |
1�wj�d &1�(2w� ) |a | and

d (4)(exp(a); e)�d &1�(2w� ) |a|. This completes the proof of Statement I.
The proof of Statement II follows easily from Statement I and (5). K

Corollary 6.4. There exists a c>0 such that c&1 |exp0 a|$0�|exp a|$
�c |exp0 a|$0 for all a # g with &a&�1.
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It is also straightforward to deduce that the moduli of different bases
corresponding to the same filtration are equivalent.

Corollary 6.5. Let a1 , ..., ad $ be a reduced weighted algebraic basis
with weights w1 , ..., wd $ and b1 , ..., bd" a second reduced weighted algebraic
basis with weights v1 , ..., vd" such that the filtrations with respect to the two
weighted algebraic bases coincide. Then the corresponding moduli | } |$(a) and
| } |$(b) are equivalent, i.e., there exists a c�1 such that

c&1 | g|$(b)�| g|$(a)�c | g|$(b)

for all g # G.

Proof. By Proposition 3.1.III the two homogeneous contractions G (a)
0

and G(b)
0 obtained by the two reduced weighted algebraic bases are

isomorphic, by an isomorphism 8. Then g [ |8(g)|$0(b) is a homogeneous
modulus on G (a)

0 , as is | } |$0(a) . Therefore there exists a c>0 such that
c&1 | g|$0(a)�|8(g)|$0(b)�c | g|$0(a) for all g # G (a)

0 . Now the corollary follows
from Corollary 6.4. K

7. KERNELS

In this section we extend the kernel theorem of Section 5 for homo-
geneous groups to general groups G by exploiting the homogeneous contraction
G0 of G.

Let (X, G, U) be a continuous representation of a connected Lie group
G and a1 , ..., ad $ a reduced weighted algebraic basis of the Lie algebra g
of G. Extend the algebraic basis to a vector space basis a1 , ..., ad $ , ..., ad as
in Lemma 2.2 and adopt the notation of Section 3. Let m # 2wN and
C: J(d $) � C be a form of order m. In Proposition 4.5 we established that
each G-weighted subcoercive form C is a G0 -weighted subcoercive form
and throughout this section, we adopt the seemingly weaker assumption
that C is a G0 -weighted subcoercive form.

Let dU(C) be the operator on X corresponding to the form C. Our aim
is to establish that the closure of dU(C) generates a continuous semigroup
S with a kernel K satisfying Gaussian type bounds. We approach this
problem by first constructing a family of functions K which formally corre-
sponds to the semigroup kernel. In the next section we verify that the K is
a semigroup kernel and the generator of the semigroup is the closure of dU(C).

The starting point of the construction is the observation that the kernel K,
if it exists should be the fundamental solution for the heat operator �t+dL(C).
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Precisely, if one defines Kt=0 for t�0 then (t, g) [ Kt(g) from R_G into C
should be the fundamental solution for the heat operator �t+dL(C), i.e.,

((�t+dL(C)) Kt)(g)=$(t) $(g) (21)

for all t # R and g # G. The parametrix method expresses K as an expansion
in terms of a localized version of the corresponding kernel for G0 . The
expansion is a direct analogue of ``time-dependent'' perturbation theory.

Let W be the open neighbourhood of 0 in g as in Lemma 3.3.V and
0=exp(W). For all .: 0 � C define .̂: W � C by .̂=. b exp. Let Xi and
X (0)

i denote the vector fields on (g, [ } , } ]) and (g[ } , } ]0) as in Section 3.
Then X (0)

i and X i are very similar.

Lemma 7.1. For all i # [1, ..., d] the differential operator exp0 V (Xi&X (0)
i )

is of actual order Ni with Ni<wi .

Proof. Let M, $, c=1, ..., =n
be as in (4). Then Xi | a

&X (0)
i | a

=�d
j=1 fij (a) X (0)

j | a
for all a=�d

l=1 !la l # W, where

fij (a)= :
�

n=1

:
=1, ..., =n # [0, 1]

c=1, ..., =n
? j ((ad=1

a) } } } (ad=n
a)(ai)&(ad0 a)n (ai))

= :
�

n=1

:
=1, ..., =n # [0, 1]

:
n

k=1

:
d

i1, ..., in=1

c=1, ..., =n
!i1

} } } !in

_? j ((ad=1
a i1

) } } } (ad=k&1
aik&1

)(ad=k
aik

&ad0 a ik
)

_(ad0 aik+1
) } } } (ad0 a in

)(ai)).

The difference of the two commutators is an element of g, so there exist
+l, k, =1, ..., =n

# R, with |+l, k, =1, ..., =n
|�2cn

1 for some c1>0, such that

(ad=1
ai1

) } } } (ad=k&1
aik&1

)(ad=k
aik

&ad0 aik
)(ad0 aik+1

) } } } (ad0 ain
)

= :
d

l=1

+l, k, =1, ..., =n
al .

Then

fij (a)= :
�

n=1

:
=1, ..., =n # [0, 1]

:
n

k=1

:
d

i1, ..., in=1

c=1, ..., =n
! i1

} } } ! in
+ j, k, =1, ..., =n

.

Now suppose j # [1, ..., d] and wj�wi . Since [&:&: : # J(d )] is a discrete
set, there exist 'j>0 such that &:&�wj&wi+'j for all : # J(d ) with
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&:&>wj&wi . Let (g*)*�0 be the filtration corresponding to the weighted
algebraic basis a1 , ..., ad $ . Consider the element

(ad=1
ai1

) } } } (ad=k&1
aik&1

)(ad=k
aik

&ad0 aik
)(ad0 a ik+1

) } } } (ad0 a in
)(a i)

of the Lie algebra g. Now (ad0 aik+1
) } } } (ad0 a in

)(a i) # gwi+wik+1
+ } } } +win

.
Therefore

(ad=k
aik

&ad0 aik
)(ad0 aik+1

) } } } (ad0 ain
)(ai) # g(wi+wik

+ } } } +win
)&

by Proposition 3.1.VI if =k=1, and clearly also if =k=0. Thus

(ad=1
a i1

) } } } (ad=k&1
aik&1

)(ad=k
aik

&ad0 aik
)(ad0 aik+1

) } } } (ad0 ain
)(ai)

# g(wi+wi1
+ } } } +win

)&
.

So if +j, k, =1, ..., =n
{0 then aj # g(wi+wi1

+ } } } +win
)&

. Hence wj<wi+wi1
+ } } } +win

and therefore wi1
+ } } } +win

�wj&wi+'j . Moreover |!l |�|a|wl�|a| if
l # [1, ..., d] and |a|�1. Consequently

fij (a)= :
�

n=1

:
=1, ..., =n # [0, 1]

:
n

k=1

:
d

i1, ..., in=1
wi1

+ } } } +win
�wj&wi+'j

|c=1, ..., =n
|

_|!i1
| } } } |!in

| |+j, k, =1, ..., =n
|

� :
�

n=1

:
=1, ..., =n # [0, 1]

:
n

k=1

:
d

i1, ..., in=1
wi1

+ } } } +win
�wj&wi+'j

M $n |a|wi1
+ } } } +win 2cn

1 .

Let N # N be such that N>wj&wi+'j . Next, split the sum over n in two
parts: the first over n with n�N and the second over n>N. Then if |a|�1

fij (a)�2 :
N

n=1

:
=1, ..., =n # [0, 1]

:
n

k=1

:
d

i1, ..., in=1
wi1

+ } } } +win
�wj&wi+'j

M(c1 $)n |a|wj&wi+'j

+2 :
�

n=N+1

:
=1, ..., =n # [0, 1]

:
n

k=1

:
d

i1, ..., in=1
wi1

+ } } } +win
�wj&wi+'j

M(c1 $ |a| )n

�2 :
N

n=1

Mn(2c1 d$)n |a| wj&wi+'j+2 :
�

n=N+1

Mn(2c1 d$ |a| )n.

Now the lemma follows if one takes a # W, |a|�1 and |a|<(3c1 d$)&1. K

Set H=dL(C) and let HX be the elliptic operator constructed from H
with the vector fields Xi of Section 3 replacing the generators Ai . It follows
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immediately from this lemma together with the remark following Lemma 5.8
that

HX=PX (0)+H$ (22)

where PX (0)=�&:&=m c:X (0) : and exp0 V (H$)=�: f: A: is an operator
with actual order N with N<m and the f: are C�-functions on exp0(W).
Moreover, dLG0

(P)=exp0 V (PX (0)) where P is the principal part of C. The
results of Section 5 apply to dLG0

(P) and one verifies the transformation
property

(H*(� b log), . b log)=(dLG0
(P-)((_�) b log0), . b log0)

+:
:

(&1) |:| (A:( f:(_� b log0)), . b log0) (23)

for all � # C �
c (W) and . # L1(g) with supp ./W where _ is as in (5).

Let K� be the kernel on G0 corresponding to the operator dLG0
(P). If t�0

we define K� t=0 as before. Now let /, /$ # C �
c (0) be real with /(e)=1 and

/$=1 on supp /. We will identify a function { on G with the function 1�{
on R_G. For t # R define the function K (0)

t on G with compact support

in 0, by K t
(0)@=(K� t b exp0) } /̂. Then the function (t, g) [ K (0)(t, g)=K (0)

t (g) is
locally integrable, so K (0) is a distribution. We shall prove that it is an
approximation of the fundamental solution of �t+H. Let � # C �

c (R_G). Then
with {(t, g)=�(t, exp log0(g)) /$(exp log0(g)) _(log0(g)) for all g # exp0(W) it
follows from (23) that

(�, (�t+H) K (0))

=((&�t+H*)(�/$), K (0))

=|
R

dt |
G0

dg ((&�t+dLG0
(P-)) {)(t, g) K� t(g) (/̂ b log0)(g)

+:
:

(&1) |:| |
R

dt |
G0

dg (A:( f: {))(t, g) K� t(g) (/̂ b log0)(g).

We consider the two terms on the right hand side separately. For the first
term one uses Proposition 5.6 to deduce that

|
R

dt |
G0

dg ((&�t+dLG0
(P-)) {)(t, g) K� t(g) (/̂ b log0)(g)

=�(0, e)+:
i

(�, (LiK� t b exp0 b log) } /i)
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where the sum is finite, the operators Li are operators with actual order
less than m and the /i # C �

c (0).
The second term can be handled similarly and one deduces that

((�t+H)(K (0)
t ))(g)=$(t) $(g)+Mt(g)

as distributions on R_G, where Mt=�i (LiK� t b exp0 b log) } /i , the sum is
finite, the operators Li have actual order less than m and the /i # C �

c (0).
Proposition 5.5 gives estimates for K� . Specifically, for all : # J(d $) there

exist b, c>0 such that

|(A:K� t)(g)|�ct&(D$+&:&)�me&b(( | g|$0)m t&1)1�(m&1)

uniformly for all t>0 and g # G0 . Consequently, one has by Corollary 5.7

|(LK� t)(g)|�ct&(D$+N)�me|te&b(( | g|$0)m t&1)1�(m&1)

uniformly for all t>0 and all g in a compact subset on which the operator
L of actual order N is defined. It then follows from the estimates of
Corollary 6.4 that for each : # J(d $) there are b, c, '>0 and |�0 such
that

|(A:K (0)
t )(g)|�ct&(D$+&:&)�me|te&b(( | g|$) m t&1)1�(m&1)

,
(24)

|(A:Mt)(g)|�ct&(D$+&:&+m&')�me|te&b(( | g|$) m t&1)1�(m&1)

uniformly for all t>0 and g # G, since K (0)
t has compact support. For n # N

define K (n)
t inductively by K (n)

t =&(K (n&1) V̂ M)t , where the convolution
product V̂ is given by

(/ V̂ �)t (g)=|
R

ds |
G

dh /s(h) �t&s(h&1g)

=|
R

ds |
G

dh /t&s(h) �s(h&1g).

The main theorem of this section is the following.

Theorem 7.2. The series

Kt= :
n�0

K (n)
t (25)

is Lp -convergent to a limit Kt # Lp; � for all p # [1, �] and t>0. The limit
K satisfies the heat equation (21), with the convention Kt=0 for t�0.
Moreover, t [ Kt is continuous from (0, �) into L\

1(G) for all \�0,
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where L\
1(G)=L1(G; e\ | g|$ dg) is the weighted space with norm &.&\

1=
� dg e\ | g|$ |.(g)|. Finally, for each : # J(d $) there exist b, c>0 and |�0
such that

|Kt(g)|�ct&D$�me|te&b(( | g|$) m t&1)1�(m&1)

|(A:Kt)(g)|�ct&(D$+&:&)�me|te&b(( | g|$) m t&1)1�(m&1)

for all g # G and t>0.

Proof. Variations of this theorem have been proved in [ElR6, Theorem 4.1]
for unweighted subcoercive operators and in [ElR5, Theorem 4.1] for
weighted strongly elliptic operators. We refer to these two papers for the
proof of the Gaussian bounds.

The only new part is the continuity of t [ Kt from (0, �) into L\
1(G).

It follows from the Gaussian bounds (24) that K (0)
t # L\

1 and Mt # L\
1 for

all \�0 by a quadrature estimate, using the volume estimates of Proposi-
tion 6.1.II. Specifically, one has bounds

&K (0)
t &\

1�ce|(1+\m) t, &Mt &\
1�ct&(m&')�me|(1+\m) t

for some c, |, '>0, uniformly for all t>0 and \�0. Then, by induction
on n, one has

&K (n)
t &\

1�c
(bt)n'�m

1(1+n'�m)
e|(1+\m) t

for some b>0, uniformly for all n # N0 , t>0 and \�0. Therefore (25)
converges in L\

1 for all t>0. Obviously the map t [ K (n)
t is continuous

from (0, �) into L\
1 for all n # N0 , so the map t [ Kt is also continuous

from (0, �) into L\
1 . K

In the next section the continuity of t [ Kt is used to deduce that the
closure of the operator dU(C) generates a continuous semigroup in each
representation.

8. WEIGHTED SUBCOERCIVE OPERATORS

In this section we extend the generator theorem of Section 5 to a general
group G in an arbitrary continuous representation and show that the
``kernel'' K constructed in Section 7 is indeed the kernel of the semigroup.

Adopt the notation of the previous section. So C is a G0 -weighted
subcoercive form. Let (X, G, U) be a continuous representation of G. Then
one has bounds &U(g)&�Me\ | g|$ with M�1 and \�0. But Kt # L\

1(G),
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because of the Gaussian bounds, and once can define bounded operators
St on X by

St x=U(Kt) x=|
G

dg Kt(g) U(g) x.

Note that t [ Stx is continuous from (0, �) into X for all x # X, since
t [ Kt is continuous from (0, �) into L\

1(G) (see Theorem 7.2). Because
of the bounds &K (n)

t &\
1�c(bntn�n !)'�m e|(1+\m) t it follows that limt a 0 St x=

limt a 0 U(K (0)
t ) x, if one of the two limits exists. But (K� t)t>0 is a bounded

approximation of the identity (cf. the proof of Lemma 3.3 in [AER]) and
hence

lim
t a 0

U(K (0)
t ) x=lim

t a 0 |
W

da _(a) K� t(exp0(a)) /̂(a) U(exp(a)) x=x.

Therefore limt a 0 St x=x strongly if U is strongly continuous and weakly*
if U is weakly* continuous.

We first apply this to the L\
p -, and L\$p; n -, spaces with respect to the left

regular representation. Then St .=Kt V . and hence StL\
p �L\

p; � �D(H).
Moreover, if p # [1, �) and q # (1, �] is conjugate to p then

&|
R

dt (�t{)(t) (�, St .)+|
R

dt {(t) (�, HSt.)

=&|
R

dt(�t{)(t) (�, St .)+|
R

dt {(t) (H*�, St .)=0

for all . # L\
p , { # C �

c ((0, �) ) and � # C �
c (G). But by continuity and

density ([ElR1, Theorem 2.4]) this is valid for all � # L\
q . On the other

hand the map t [ HSt. is continuous if . # L\$p; m . Therefore it follows
from the lemma of Du Bois�Reymond that t [ (�, St.) is differentiable
and (d�dt)(�, St.)+(�, HSt.)=0 for all . # L\$p; m , � # L\

q and t>0. Then

d
dt

St .+HSt.=0 (26)

strongly for all . # L\$p; m by the mean value theorem and the continuity
of t [ HSt ..

The family S=(St)t>0 forms a semigroup if, and only if, K is a convolu-
tion semigroup. But the definition of K seems unsuited to direct verification
of this property. We argue that it follows from the lower semiboundedness
of Re H on L2 .
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Proposition 8.1. Each symmetric operator H=dLG(C) on L2(G), where
C is a G0 -weighted subcoercive form, is essentially self-adjoint and lower
semibounded.

Proof. It suffices to establish that the range of (*I+H� ) is equal to L2

and its inverse is bounded for all large positive *. For this we use a
resolvent version of the foregoing parametrix techniques.

Let /, /$ # C �
c (G), supp /$/0, /(e)=1 and /$=1 on supp /. Then for

all . # C �
c (G) and � # L2(G) one has for all r # C �

c (G) with supp r�supp /

|
G

dr r(g) (�, (*I+H) L(g) .)

=(�, (*I+H)(r V .))

=|
G

dg ((*I+H) r)(g)(., L(g) .) /$(g)

=|
G

dg r(g)((*I+H) {)(g) (27)

where {(g)=(�, L(g) .) /$(g). Since C �
c (G) is dense in L1(G) it follows by

continuity that (27) is valid for all r # L1(G) with supp r�supp /. Now let r*

be the function on G with support contained in 0 such that r̂*=(R� * b exp0) } /̂
where R� * denotes the kernel of the resolvent (*I+dLG0

(P))&1 on G0 . Then
using (22) one readily calculates that

(�, (*I+H)(r* V .))

=|
W

da _(a)(R� * b exp0)(a) /̂(a)((*I+PX (0)+H$) {̂)(a)

=|
W

da _(a) $(a) /̂(a) {̂(a)+|
W

da _(a) ŝ*(a)(�, L(exp a) .),

in the sense of distributions where ŝ* has the form ŝ*=�i ((L(i)R� *) b
exp0) } /̂i . Once again the /̂ i # C �

c (W) and the L(i) are operators of actual
order less than m. But the estimates of Lemma 5.9 imply that &r*&1�c*&1

and &s*&1�c*&'�m for some '>0 and large *. Therefore, if R* and S*

denote the operators of convolution with r* and s* , respectively, then
&R*&2 � 2�c*&1 and &S* &2 � 2�c*&'�m. So

(�, (*I+H)(r* V .))=(�, .)+(�, s* V .)

and

(*I+H� ) R* .=.+S* . (28)
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for all . # C �
c (G). By density it follows that R*L2 �D(H� ) and (28) is valid

for all . # L2 . Thus if c*&'�m<1 then (I+S*) has a bounded inverse and

.=(*I+H� ) R*(I+S*)&1 .

for all . # L2(G). This establishes that the range of (*I+H� ) is equal to
L2(G) for all large * and hence H� is self-adjoint. But it then follows that

.=(I+S**)&1 R**(*I+H� ).

and hence

&.&2�c*&1(1&c*&'�m)&1 &(*I+H� ) .&2 .

Therefore (*I+H� ) has a bounded inverse. Thus H� is lower semibounded
by spectral theory. K

Now it is straightforward to prove that K is a convolution semigroup.
Since Re H is a symmetric weighted subcoercive operator on L2(G) it

follows from Proposition 8.1 that it is lower semibounded on L2 , i.e.,
Re(., H.)�&& &.&2

2 for some &�0 and all . # L$2; m . Next observe that
if .t # D(H) satisfies the Cauchy equation

d
dt

.t+H.t=0 (29)

for all t>0 then

d
dt

&.t &2
2=&2Re(.t , H.t)�2& &.t &2

2 .

Therefore t [ e&&t &.t &2 is a decreasing function. Now suppose . (1)
t and

.(2)
t both satisfy (29) and . (1)

t � ., . (2)
t � . as t � 0. Then . (1)

t &. (2)
t also

satisfies the equation but . (1)
t &. (2)

t � 0 as t � 0. Therefore, as a conse-
quence of the foregoing decrease property, . (1)

t =.(2)
t , i.e., the solution of

(29) is uniquely determined by the initial data .=.0 .
Now let . # L$2; m . Then .t=St+s.=Kt+s V . satisfies (29) with initial

data .0=Ss. (see (26)). Moreover, .t=StSs. satisfies the equation with the
same initial data. Therefore (St+s&StSs).=0 for all . # L$2; m and then, by
continuity, for all . # L2 . This establishes that S is a semigroup on L2 . But this
implies that Kt is a convolution semigroup. Therefore S is also a semigroup on
the other L\

p -spaces or in any Banach space representation.
It follows from (26) that the generator HS of S is an extension of H

on L\
p . Now L\

p; � is a dense S-invariant subspace and hence a core of HS .
Therefore HS must be the closure of H.
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At this point we have essentially established the main result for the left
regular representation in the L\

p -spaces if p # [1, �).

Theorem 8.2. Let (X, G, U) be a continuous representation, a1 , ..., ad $

a reduced weighted algebraic basis in the Lie algebra g of G and C a
G0 -weighted subcoercive form of order m where G0 is the homogeneous
contraction of G. Let H=dU(C) be the associated operator. Then one has
the following.

I. The closure H� of H generates a continuous semigroup S and S has
K as kernel.

II. The semigroup S is holomorphic in a sector 4(%)=[z # C:
|arg z|<%] where the angle of holomorphy % satisfies the bounds %�%C, G0

.

III. H� =H-*, where H-=dU
*

(C-) is the dual operator.

Proof. Since the kernel K is a convolution semigroup it now follows
that (St)t>0=(U(Kt))t>0 is a continuous semigroup. One then deduces as
in Theorem 3.4 of [AER] that H� is the generator and S is holomorphic,
with the holomorphy sector containing at least 4(%C, G0

). K

As a consequence of the bounds on the kernel we can compare the
domain of powers of the operator dU(C) and the differential structure of
the representation associated with the weighted algebraic basis a1 , } } } , ad $ ,
i.e., the spaces X$n .

Corollary 8.3. Let (X, G, U) be a continuous representation, a1 , ..., ad $

a reduced weighted algebraic basis in the Lie algebra g of G and C a
G0 -weighted subcoercive form of order m. Let S be the semigroup generated
by the closure of the operator H=dU(C).

I. The semigroup S maps into the smooth C�-elements, i.e.,
St X�X� for all t>0.

II. If k # [0, �) then there exist c>0 and |�0 such that

&Stx&$k�ct&k�me|t &x&

for all t>0 and x # X.

III. If n # N and k # [0, nm) then D(H� n)�X$k and there exists c>0
such that

&x&$k�=mn&k &H� nx&+c=&k &x&
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for all x # D(H� n) and = # (0, 1]. In particular

X�= ,
�

n=1

D(H� n),

so the spaces of C�-elements of (X, G, U) and of the operator H� coincide.

Proof. Statements I and II follow immediately from the fact that the
kernel Kt is smooth and, together with its derivatives, satisfies Gaussian
bounds.

If n # N, k # [0, nm) and *�0 is large enough then

(*I+H� )&n=(n&1)!&1 |
�

0
dt e&*ttn&1St .

Therefore D(H� )=R((*I+H� )&n)�X$k by Statement II. Moreover,

&A:(*I+H� )&n&�(n&1)!&1 c |
�

0
dt e&(*&|) ttn&1&&:&�m

=c$(*&|) (mn&&:&)�m�c"*(mn&&:&)�m

if * is large enough. Taking = proportional to *&1�m and rearranging it
follows that

&A:x&�=mn&&:& &H� nx&+c$$$=&&:& &x&

for all x # D(H� n) and for small positive values of =. Statement III then
follows. K

Remark. Note that the constants c in Corollary 8.3 depend on the
kernel only though the constants M and | in the bounds &A:Kt&\

1�
Mt&&:&�me|t if \�0 is such that &U(g)&�Me\ | g|$.

9. REGULARITY

The bounds on the semigroup in the previous section enable the deduction
of several regularity results for the operators dU(C) associated with a
representation (X, G, U), a reduced weighted algebraic basis and a G0-weighted
subcoercive form of order m. Recall that w=min[x # [1, �): x # wiN for all
i # [1, ..., d $]]. We adopt the notation of [BuB] for the real interpolation spaces.
We need two special interpolation spaces associated with the representation U
and the distance corresponding to the weighted algebraic basis.
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Let O be a bounded open neighbourhood of the identity e of G, p # [1, �]
and n # N. Then for each # # (0, n*1) , with *1 the smallest weight of the
algebraic basis, define & }&n, p, U

# : X � [0, �] by

&x&n, p, U
# =&x&+\|On

d+n(g) ( |g| &# &(IU (g1)) } } } (I&U(gn)) x&) p+
1�p

,

where g=(g1 , ..., gn) and |g|=| g1 |$+ } } } +| gn |$. Moreover, +n is the
absolutely continuous measure with respect to the left Haar measure on Gn

with density g [ |g|&nD$. The usual changes are needed in the case p=�.
Then the Lipschitz space Xn, p

# (U) is defined by

Xn, p
# (U)=[x # X: &x&n, p, U

# <�].

It is a Banach space with respect to the norm & }&n, p, U
# . Note that as the

space is independent of the choice of O, up to equivalence of norms, we
have omitted it from the notation.

Next we introduce a uniform version of the Lipschitz spaces. First, for
each x # X and n # N0 define | (n)

x : (0, �) � [0, �) by | (0)
x (t)=&x& and

| (n)
x (t)= sup

g1, ..., gn # G
| gj |$�t

&(I&U(g1)) } } } (I&U(gn)) x&

for n # N. Secondly, for # # (0, n*1) define & }&n, p, |
# : X � [0, �] by

&x&n, p, |
# =&x&+\|

1

0
dt t&1(t&#| (n)

x (t)) p+
1�p

.

Then the space

Xn, p, |
# =[x # X: &x&n, p, |

# <�]

is a Banach space with respect to the norm & }&n, p, |
# .

Finally we also use & }&Y to denote the norm on a Banach space Y.

Theorem 9.1. Let (X, G, U) be a continuos representation, a1 , ..., ad $ a
reduced weighted algebraic basis in the Lie algebra g of G, *1 the smallest
weight and C a G0 -weighted subcoercive form of order m, where G0 is the
homogeneous contraction of G. Let S be the semigroup generated by the
closure of the operator H=dU(C).
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I. If p # [1, �], #>0, n
�
=min[n # N; #<nw], k

�
=min[k # N:

k�n
�
w�*1] and k, n # N are such that k�k

�
, n�n

�
then

(X, X$nw)#�(nw), p; K=(X, D(H� n))#�(nm), p; K=Xk, p, |
# =Xk, p

# (U)

as Banach spaces.

II. Let p # [1, �]. If n1 , n2 # N and 0<#<n1 7 n2 then

(X, X$n1w)#�(n1 w), p; K=(X, X$n2w)#�(n2 w), p; K .

III. If l, n # N0 and k # (lw, nw) then there exists a c>0 such that

&x&$k�=nw&k &x&$nw+c=&(k&lw) &x&$lw

for all =>0 and x # X$nw .

IV. If l, n # N0 and k # (lw, nw) then there exists a c>0 such that

N$k(x)�=nw&kN$nw(x)+c=&(k&lw) &x&$lw

for all =>0 and x # X$nw .

V. If n, k # N, # # (0, nw) and p # [1, �] then

[x # D(H� k): H� kx # (X, X$nw)#�(nw), p; K]�(X, X$nw)#�(nw), p; K; km .

Moreover, if * is large enough then there exists a c>0 such that

&x&(X, X$nw)#�(nw), p; K; km
�c &(H� +*I )kx&(X, X$nw)#�(nw), p; K

for all x # [x # D(H� k): H� kx # (X, X$nw)#�(nw), p; K] where (X, X$nw)#�(nw), p; K; km

denotes the space of (weighted ) km-times differentiable vectors for the
Lipschitz space (X, X$nw)#�(nw), p; K .

Proof. The proofs are very similar to those in Section 5 of [ElR5],
so we only indicate the differences. The equality (X, X$nw)#�(nw), p; K=
(X, D(H� n))#�(nm), p; K follows as in Proposition 5.1 of [ElR5] and therefore
Statement II is valid. So (X, X$nw)#�(nw), p; K=(X, X$n

�
w)#�(n

�
w), p; K . Now it

follows as on pp. 581�582 in [ElR5] that

|k
�x�

�c :

|:|=k
�

: # J(d )

t&:& &A:x�&

for some c>0, uniformly for all t # (0, 1] and x� # X� . Since &:&�*1k
�
�

n
�
w for all : with |:|=k

�
one can argue as in the proof of Theorem 5.7 in
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[ElR5] to deduce that (X, X$n
�
w)#�(n

�
w), p; K �Xk

�
, p, |

# . The inclusion Xk
�
, p, |

#

�Xk, p, |
# follows by definition and the local boundedness of the represen-

tation. Next the inclusions Xk, p, |
# �Xk, p

# (U)�(X, D(H� k))#�(km), p; K can be
proved precisely as in Steps 2 and 3 of the proof of Theorem 3.2 in [ElR2].
Statement I follows by an application of the reiteration theorem (see [BuB]).

Since X$lw is continuously embedded in (X, X$nm) lw�(nm), �; K , by the proof
of Proposition 5.1 in [ElR5], Statement III follows from Corollary 8.3.III
and Statement I as in [ElR2] Proposition 4.3. Statement IV is an easy
consequence of Statement III. K

Next we turn to unitary representations.

Theorem 9.2. Let (X, G, U) be a unitary representation, a1 , ..., ad $ a
reduced weighted algebraic basis in the Lie algebra g of G and C a G0 -weighted
subcoercive form of order m, where G0 is the homogeneous contraction of G.

I. The operator H=dU(C) is closed.

II. For all n # N and all large *>0

D((*I+H)nw�m)=X$nw

with equivalent norms.

III. For each =>0 there exists a & # R, independent of the representa-
tion U, such that

Re(x, Hx)�(+C, G0
&=)(&x&$m�2)2&& &x&2

for all x # X� .

IV. If n # N then

X$nw= ,
d $

i=1

D(Anw�wi
i ).

V. For each % # (0, %C, G0
) there exists an |>0 such that &Sz&

�e| |z| uniformly for all z # 4(%) where S is the holomorphic semigroup
generated by H.

Proof. The proofs of Statements I, II and IV are as in the proof of
Theorem 5.8 in [ElR5] and the proof of Statement V is similar to the
proof in [BGJR]. Since Statement III is stronger than Statement III of
Theorem 5.8 in [ElR5] we give a new proof.

Let C0 be the weighted subcoercive form such that

dV(C0)= :

&:&=m�2
: # J(d $)

(&1) |:| A:
*A:
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in any continuous representation (Y, G, V). Let M be the number of
multi-indices : # J(d $) with &:&=m�2. Then

(N$V, m�2(x))2�(x, dV(C0) x)�M(N$V, m�2(x))2

for all x # Y�(V) if V is unitary. Next, let :0 # J(d $) with &:0&=m�2 and
= # (0, (2M)&1 +C, G0

). Further let C1 be the homogeneous form such that

dV(C1)=(+C, G0
&2M=)(&1) |:0| A:0*A:0+= dV(C0).

Then

Re(., dLG0
(RC&C1) .)�M=(N$2, LG0

(.))2

for all . # L2; �(G0). So RC&C1 is a G0 -weighted subcoercive form for
which the corresponding operator is essentially self-adjoint and its closure
generates a semigroup. Hence dU(RC&C1) is lower semibounded by
spectral theory, with lower bound &&�0. Therefore

Re(dU(C) x, x)=(dU(RC) x, x)�(x, dU(C1) x)&& &x&2

�(+C, G0
&2M=) &A:0x&2&& &x&2.

Since the number of multi-indices :0 with &:0&=m�2 is finite the theorem
follows. K

It is also possible to obtain regularity results for the left regular represen-
tation on the Lp -spaces with respect to left Haar measure if p # (1, �).
These are basically a result of the good kernel bounds and the regularity
on L2 .

Corollary 9.3. Let G be a connected Lie group, a1 , ..., ad $ a reduced
algebraic basis of the Lie algebra g of G and C a G0 -weighted subcoercive
form of order m. Let L be the left regular representation on Lp , where
p # (1, �) . Then

I. The operator H=dL(C) is closed.

II. For all n # N one has

D((*I+H)nw�m)=L$p; nw

with equivalent norms, if *>0 is large enough.

III. If n # N then

L$p; nw= ,
d $

i=1

D(Anw�wi
i ).
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Similar statements are valid on the space Lp -spaces with respect to right
Haar measure, Lp̂ .

Proof. The proof is precisely the same as for the unweighted operators
in [BER]. K

Corollary 9.4. Let G be a connected Lie group, a1 , ..., ad $ a reduced
algebraic basis of the Lie algebra g of G and C a G0 -weighted subcoercive
form of order m. Let L be the left regular representation on Lp , where
p # (1, �), and H=dL(C). If % # (0, %C) then there is a &0�0, independent
of p, such that the operators &I+H, &>&0 , have a bounded functional calculus
over the bounded functions holomorphic in a sector 4(.) with . # (?�2&%, ?].

Proof. The proof is precisely the same as in [ElR4]. K

Note that in the next section we establish that C is G0 -weighted subcoer-
cive if, and only if, it is G-weighted subcoercive so the last two results could
be phrased entirely in terms of G.

10. WEIGHTED SUBCOERCIVE FORMS: PART II

In this section we prove that all conditions of Proposition 4.5 concerning
the Ga# rding inequality are equivalent. Moreover, we give other character-
izations in the spirit of the characterization of hypoelliptic operators by
Rockland operators on a homogeneous group.

Theorem 10.1. Let G be a connected Lie group, a1 , ..., ad $ a reduced
weighted algebraic basis of the Lie algebra g of G and G0 the corresponding
homogeneous contraction of G. Further let m # 2wN and C be an m-th order
form with principal part P. The following conditions are equivalent.

I. The form C is G-weighted subcoercive.

II. The form C is G0 -weighted subcoercive.

III. For all non-trivial irreducible unitary representations (X, G0 , U) of
G0 one has

Re(x, dU(P) x)>0

for all x # X�(U) with x{0, where P is the principal part of C.

IV. The operator dLG0
(RP) is a positive Rockland operator.

Moreover, if these conditions are valid then +C, G=+C, G0
and %C, G=%C, G0

.
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Proof. The implication I O II has been established in Proposition 4.5
together with the inequality +C, G�+C, G0

. The converse implication II O I
follows from Theorem 9.2.III and +C, G�+C, G0

. Therefore I and II are
equivalent and %C, G=%C, G0

.
The implication II O III is trivial since N$U, m�2(x){0 if U is a non-trivial

irreducible unitary representation and x # X�(U) is non-zero.
If III is valid then dLG0

(RP) is hypoelliptic by the Helffer�Nourrigat
theorem. Moreover, the Plancherel formula, [Kir, Proposition 4], gives
(dLG0

(RP) ., .)�0 for all . # C �
c (G0), and hence by continuity, for all

. # L2; �(G0). So RP is a positive Rockland form.
The implication IV O II follows from Theorem 2.5 of [ElR7]. K

It now follows that all conditions of Proposition 4.5 are equivalent.

Remark. If G0=Rd then the equivalence II � III in Theorem 10.1 states
that a form C is G0-weighted subcoercive if, and only if, Re �&:&=m c:(i!):>0
for all ! # Rd with !{0. This gives new proofs for Example 4.1.

The implication 1$ O 4 in Proposition 4.5 states that

Re(., dLG0
(P) .)�+(N$2; m�2(.))2&& &.&2

2

for all . # L2; �(G0) if C is a G-weighted subcoercive form, where P is the
principal part of C. This clearly implies that for all # # (0, m�2) , p # [1, �]
and n # N with n>m there exist +>0 and & # R such that

Re(., dLG0
(P) .)�+(&.&n, p, LG0# )2 && &.&2

2

for all . # L2; �(G0). We next show that this seemingly weaker inequality
also characterizes weighted subcoercivity.

Proposition 10.2. Let G be a connected Lie group, a1 , ..., ad $ a reduced
weighted algebraic basis of the Lie algebra g of G and G0 the corresponding
homogeneous contraction of G. Further let m # 2wN and C be an m-th order
form with principal part P. The following conditions are equivalent.

I. The form C is G-weighted subcoercive.

II. There exist # # (0, m�2) , p # [1, �], n # N with n>m, +>0 and
& # R such that

Re(., dLG0
(P) .)�+(&.&n, p, LG0# )2&& &.&2

2

for all . # L2; �(G0).
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Proof. We only need to prove the implication II O I. The proof is a
modification of the reduction theorem in Section 2 in [HeN]. We show
that Condition III of Theorem 10.1 is valid using a scaling argument and
a refinement of the proof of Lemma 5.1. We may assume that p=2 and #<1
by an application of the reiteration theorem [BuB, Proposition 3.2.18].
Moreover, we may assume that G=G0 .

If U is a bounded representation in X on G we define N U
# : X � [0, �]

by

N U
# (x)=\|Gn

d+n(g) ( |g|&# &(I&U(g1)) } } } (I&U(gn)) x&)2+
1�2

,

where g=(g1 , ..., gn), |g|=| g1 |$+ } } } +| gn |$ and +n is the absolutely
continuous measure with respect to the left Haar measure on Gn with
density g [ |g|&nD$ as before. Then there exists a constant c>0 such that

&x&n, 2, U
# �&x&+N U

# (x)�&x&n, 2, U
# (x)+c &x&

for all x # X. So one has

Re(., dLG(P) .)�+(N LG
# (.))2&& &.&2

2

for all . # L2; �(G). Therefore, by scaling,

$m Re(., dLG(P) .)�+$2#(N LG
# (.))2&& &.&2

2

uniformly for all $>0 and . # L2; �(G).
Next we need some details about standard induced representations of G.

We follow [HeN, Section 2] and [CoG]. Let m be subalgebra of g and let
b1 , ..., bk # g be such that k=codim m and m+span[b1 , ..., bi] is a subalgebra
of g for all i # [1, ..., k]. Such elements exist by [CoG, Theorem 1.1.13]. Define
:: Rk � G by

:(s1 , ..., sk)=exp(s1 b1) } } } exp(sk bk).

For every g # G there exist (unique) Em (g) # m and Fm(g) # Rk such that

g=exp(Em (g)) :(Fm (g))

(see [CoG, Theorem 1.2.12]). Assume that the elements b1 , ..., bk are
normalized such that

|
G

dg .(g)=|
m

dm |
Rk

ds .((exp m) :(s))
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for all . # Cc(G). Let l # g* and suppose that l([m, m])=[0]. Then
Ul, m : L2(Rk) � L2(Rk) defined by

(Ul, m(g) .)(s)=e il(Em(:(s) g)).(Fm (:(s) g))

is unitary and Ul, m is a unitary representation of G in L2(Rk) which
depends on the choice of b1 , ..., bk . If m is a polarizing subalgebra for l then
the representation Ul, m is irreducible, and all irreducible unitary representa-
tions of G are of this form, up to unitary equivalence (see [GoG, Chapter 2]).

We also need some results on reduction of variables. Let n/m be sub-
algebras with [m, m]�n and let b1 , ..., bp , ..., bq # g, where q=codim n,
such that n+span[b1 , ..., b i] is a subalgebra of g for all i # [1, ..., q] and
m=n+span[b1 , ..., bp]. Set k=q& p=codim m. Now we define :: Rq � G
by :(s1 , ..., sq)=exp(s1b1) } } } exp(sqbq) and also introduce ;: Rk � G by
;(s1 , ..., sk)=exp(s1bp+1) } } } exp(skbp+k). For ! # R p define l! # g* by

l! \a+ :
p

i=1

t ibi+ :
k

i=1

sibp+i+= :
p

i=1

!isi

for all a # n, t # Rp and s # Rk. Let l # g* and suppose that l([m, m])=[0]
and, moreover, l(bi)=0 for all i # [1, ..., p]. We give a relation between
Ul, n and Ul+l!, m . Note that Ul+l!, n=Ul, n . Let F denote the (partial)
Fourier transform on L2(R p_Rk) with respect to the first p variables. If
. # S(R p_Rk) and ! # R p define (F.)! # S(Rk) by (F.)! (s)=(F.)(!, s).

Lemma 10.3. If . # S(R p_Rk) then

(FUl, n(g) .)!=U l+l!, m(g)(F.)!

for all ! # R p and g # G.

Proof. Let s # Rk and t # R p. Then

(Ul, n(g) .)(t, s)=eil(En(:(t, s) g)).(Fn (:(t, s) g))
(30)

(Ul+l!, m(g)(F.)!)(s)=ei(l+l!)(Em(;(s) g))(F.)! (Fm (;(s) g)).

Now

:(t, s) g=:(t, 0) ;(s) g=(:(t, 0) exp Em (;(s) g)) ;(Fm (;(s) g))

=exp En (:(t, 0) exp Em (;(s) g))

_:(Fn (:(t, 0) exp Em (;(s) g))) } ;(Fm (;(s) g)).
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So

En (:(t, s) g)=En (:(t, 0) exp Em (;(s) g))

and

Fn (:(t, s) g)=(?1(Fn (:(t, 0) exp Em (;(s) g))), Fm(;(s) g))

where ?1 is the projection from R p_Rk onto R p. Since l([m, m])=[0] it
follows from the Campbell�Baker�Hausdorff formula that l(log(exp a exp b))
=l(a)+l(b) for all a, b # m. Therefore

l(En (:(t, s) g))=l(t1b1)+ } } } +l(tpbp)+l(Em (;(s) g))=l(Em (;(s) g)).

If one uses [m, m]�n and the Campbell�Baker�Hausdorff formula once
again one sees that Fn (exp a exp b)=Fn (exp a)+Fn (exp b) for all a, b # m.
So

Fn (:(t, 0) exp Em (;(s) g))=(t, 0)+Fn exp Em (;(s) g).

Therefore

.(Fn (:(t, s) g))=.(t+?1Fn exp Em (;(s) g), Fm (;(s) g))

for all t # R p. Using the identity l!(a)=! } ?1Fn exp a for all a # m one
establishes that

(FUl, n(g) .)(!, s)=e il(Em(;(s) g))ei! } ?1Fn exp Em(;(s) g)(F.)(!, Fm (;(s) g))

=ei(l+l!)(Em(;(s) g))(F.)! (Fm (;(s) g))

=(Ul+l!, m(g)(F.)!)(s)

and the lemma has been proved. K

This relation is the key to obtaining a connection between N Ul+l!
, m

#

and N Ul, n
# .

Lemma 10.4. Let !0 # R p and { # C �
c (R p) be positive with &{&2=1. For

j # N define {j # S(R p) by {j (!)= j p�2{( j(!&!0)). Let � # S(Rk) and set
.j=(F&1{ j)��. Then

I. N Ul+l!0
, m

# (�)=limj � � N Ul, n
# (.j),

II. (�, Ul+l!0
, m(a:) �)=lim j � �(.j , dUl, n(a:) .j) for all : # J(d ).
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Proof. For all j # N one has

(N Ul, n
# (.j))2

=|
G n

d+n(g) ( |g| &# &F(I&U l, n(g1)) } } } (I&Ul, n(gn)) .j&)2

=|
G n

d+n(g) ( |g| &# &{j � (I&Ul+l! , m(g1)) } } } (I&Ul+l! , m(gn)) �&)2

=|
G n

d+n(g) |
R k

ds |
Rp

d! |g| &2# |{j (!)|2

_|((I&Ul+l! , m(g1)) } } } (I&Ul+l! , m(gn)) �)(s)|2

=|
G n

d+n(g) |
R k

ds |g|&2# �j (g, s),

where

�j (g, s)=|
R p

d! |{j (!)| 2 |((I&Ul+l! , m(g1)) } } } (I&Ul+l! , m(gn)) �)(s)|2.

Obviously

lim
j � �

�j (g, s)=|((I&Ul+l!0
, m(g1)) } } } (I&Ul+l!0

, m(gn)) �)(s)|2

for all g # Gn and s # Rk, by (30), so if we can show that �Gn d+n(g)
_�R k ds |g|&2# � j (g, s) is uniformly bounded in j then the first statement
follows from the Lebesgue dominated convergence theorem.

Clearly

|
Rk

ds �j (g, s)=|
R p

d! |{j (!)| 2 &(I&Ul+l!, m(g1)) } } } (I&Ul+l! , m(gn)) �&2

�|
R p

d! |{j (!)|2 22n &�&2=22n &�&2

for all g # Gn. So

|
[g: |g|�1]

d+n(g) |g| &2# �j (g, s)�22n &�&2 |
[g: |g|�1]

d+n(g) |g|&2#<�
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for all j # N. Finally, let g=(g1 , ..., gn) # Gn. Then

|
R k

ds �j (g, s)�22(n&1) |
Rp

d! |{ j (!)| 2 &(I&Ul+l! , m(gn)) �&2

Now suppose gn=exp(a). Then

&(I&Ul+l! , m(gn)) �&�&a& \ :
d

i=1

&dUl+l! , m(a i) �&2+
1�2

�d 1�2 &a& :
d

i=1

&dU l+l! , m(ai) �&.

For all i # [1, ..., d] and s # Rk let Pi (s) # span[b1 , ..., bp] be such that

d
dt

Em (;(s) exp(tai))| t=0=P i (s)+b

for some b # n. Then Pi is a polynomial function and

(dUl+l!, m(ai) �)(s)=(dUl, m(ai) �)(s)+i :
d

i=1

l!(Pi (s)) �(s)

for all ! # R p. Since � d! |{j (!)| 2 |!i1
!i2

| 2 is uniformly bounded for all
i1 , i2 # [1, ..., d] one deduces that

|
Rk

ds �j (g, s)�c &a&2

for some c>0, uniformly for all j # N and g # Gn, where a=log gn . Now
&a&�c$ | gn | if | gn |�1. Therefore &a&�c$ | gn |$�c$ |g| if |g|�1. Since
#<1 one then establishes that

|
[g: |g|�1]

d+n(g) |g| &2# �j (g, s)�c(c$)2 |
[g: |g|�1]

d+n(g) |g|2(1&#)<�

uniformly for all j # N and Statement I follows.
One can establish Statement II by a similar argument (see also the proof

of Lemma 2.2 in [HeN]). K

Corollary 10.5. If

$m Re(., dUl, n(P) .)�+$2#(N Ul, n
# (.))2&& &.&2
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for all . # S(Rq) then

$m Re(�, dU l+l!0
, m(P) �)�+$2#(N Ul+l!0 , m

# (�))2&& &�&2

for all � # S(Rk) and !0 # R p.

Corollary 10.6. If n�m are subalgebras of g with codimensions k and
q and [m, m]/n and l # g* is such that l([m, m])=[0] then

$m Re(., dUl, n(P) .)�+$2#(N Ul, n
# (.))2&& &.&2

for all . # S(Rq) implies

$m Re(�, dUl, m(P) �)�+$2#(N Ul, m
# (.))2&& &�&2

for all � # S(Rk).

Now we finish the proof of Proposition 10.2. Let (g*)*�0 be the filtration
of g and *1< } } } <*k the weights of the filtration. Let (#t)t>0 be the family
of dilations on the homogeneous Lie algebra g. Let l # g* and m a polarizing
subalgebra of g for l. For j # [1, ..., k] set

mj=m & span[a # g: _*�*j
\t>0[#t(a)=t*a]]

and set mk+1=[0]. Then mk+1 /mk / } } } /m2 /m1=m are subalgebras
of g and [mj , mj]/mj+1 for all j # [1, ..., k]. The representation Ul, mk+1

is
unitarily equivalent with the left regular representation LG of G in L2(G), so

$m Re(., dUl, mk+1
(P) .)�+$2#(N Ul, mk+1# (.))2&& &.&2

for all . # S(Rd) and $>0. Hence by downward induction on j it follows
from Corollary 10.6 that

$m Re(., dUl, mj
(P) .)�+$2#(N Ul, mj# (.))2&& &.&2

for all j # [1, ..., k] and . # S(Rnj), where nj=codim mj . But Ul, m1
=Ul, m ,

so

$m Re(x, dU(P) x)�+$2#(N U
# (x))2&& &x&2

for any irreducible unitary representation U of G, x # X�(U) and $>0.
Now suppose U is a non-trivial irreducible unitary representation of G and
x # X�(U) is non-trivial. Then N U

# (x){0 since otherwise (I&U(g1)) } } }
(I&U(gn)) x=0 for all g1 , ..., gn # G"[e] and therefore A:x=0 for all
: # J(d) with |:|=m. Choose $>0 so large that +$2#(N U

# (x))2&& &x&2>0.
Then $m Re(x, dU(P) x)>0 and Re(x, dU(P) x)>0. Now the proposition
follows from Theorem 10.1.III. K
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The next proposition gives a necessary and sufficient condition for a
form P to be a Rockland form on the homogeneous contraction group.

Proposition 10.7. Let G be a connected Lie group, a1 , ..., ad $ a reduced
weighted algebraic basis of the Lie algebra g of G and m # 2wN. Let C be
a form of order m0 with m0�m. The following conditions are equivalent.

I. The order of the form C equals m and the operator dLG0
(P) is

hypoelliptic, where P is the principal part of C.

II. There exists a c>0 such that

&Ai .&2�=m&wi &dLG(C) .&2+c=&wi &.&2

uniformly for all = # (0, 1], . # C �
c (G) and i # [1, ..., d $].

III. There exist c>0 and a neighbourhood V of the identity of G such
that

&Ai .&2�=m&wi &dLG(C) .&2+c=&wi &.&2

uniformly for all = # (0, 1], . # C �
c (V) and i # [1, ..., d $].

Proof. I O II. Suppose dLG0
(P) is hypoelliptic and m=m0 . Consider

the form C1=C-C. The principal part of C1 is P-P and clearly dLG0
(R(P-P))

=dLG0
(P-P) is a positive Rockland operator on L2(G0). Hence the form C1

is a weighted subcoercive form by Theorem 10.1. So by Theorems 9.1.III and
9.2.II there exist c, *>0 such that

&Ai .&2�=m&wi &(*I+dLG(C1))1�2 .&2+c=&wi &.&2

uniformly for all =>0, . # C �
c (G) and i # [1, ..., d $]. Since dLG(C1) is the

generator of a bounded semigroup it follows from [Rob, Lemma II.3.2],
that there exists a c$>0 such that &(*I+dLG(C1))1�2 .&2�&(dLG(C1))1�2 .&2

+c$&.&2 , uniformly for all . # C �
c (G). Then

&Ai.&2 �=m&wi &(dLG(C1))1�2 .&2+(c=&wi+c$=m&wi) &.&2

==m&wi &dLG(C) .&2+(c=&wi+c$=m&wi) &.&2

from which Condition II follows.
The implication II O III is trivial, so it remains to prove III O I.

Temporarily, define the form P: J(d $) � C by

P(:)={C(:)
0

if &:&=0,
if &:&<m.
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Then P is the principal part of the form C if m=m0 , but P=0 if m0<m.
We use the notation of Section 3. In particular, W is the set constructed in
Lemma 3.3.V. We may assume that exp W/V.

First, the bounds in Condition III can be rephrazed as

=wi \|W
da _(a) |(Xi�)(a)|2+

1�2

�=m \|W
da _(a) } :

&:&�m

c:(X:�)(a)}
2

+
1�2

+c \|W
da _(a) |�(a)| 2+

1�2

for all � # C �
c (W), = # (0, 1] and i # [1, ..., d $]. Next fix � # C �

c (W). Let
t # (0, 1]. Replacing = by =t and � by �t&1 in the previous inequality gives

=wi \|W
da _(a) twi |(Xi�t&1)(a)|2+

1�2

�=m \|W
da _(a) } :

&:&�m

tm&&:&c: t&:&(X:�t&1)(a) }
2

+
1�2

+c \|W
da _(a) |�t&1(a)| 2+

1�2

for all = # (0, 1] and i # [1, ..., d $]. (Note that the integrals only need to be
carried out over #t(W).) Changing variables and dividing by tD$�2 then gives
the estimates

=wi \|W
da _(#t(a)) |tD$�2twi (Xi�t&1)(#t(a))| 2+

1�2

�=m \|W
da _(#t(a)) } :

&:&�m

tm&&:&c: tD$�2t&:&(X :�t&1)(#t(a))}
2

+
1�2

+c \|W
da _(#t(a)) |tD$�2�t&1(#t(a))|2+

1�2

for all = # (0, 1] and i # [1, ..., d $]. Therefore by Corollary 3.7 one deduces
that

=wi \|W
da |(X (0)

i .)(a)|2+
1�2

�=m \|W
da } :

&:&=m

c:(X (0):�)(a)}
2

+
1�2

+c \|W
da |�(a)|2+

1�2

for all � # C �
c (W), = # (0, 1] and i # [1, ..., d $].
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Next let � # C �
c (g). There exists r�1 such that supp �r /W. Then

applying the previous inequality to �r , gives

(=r)wi \|g

da |(X (0)
i �)(a)|2+

1�2

�(=r)m \|g

da } :
&:&=m

c:(X (0):�)(a) }
2

+
1�2

+c \|g

da |�(a)| 2+
1�2

and choosing ==r&1 finally gives

&A (0)
i .&�&dLG0

(P) .&+c &.&

uniformly for all . # C �
c (G) and by density, for all . # L2; �(G0).

Now on can argue as in the proof of Proposition 10.2. By scaling one has

$wi &A (0)
i .&�$m &dLG0

(P).&+c &.&

for all $>0 and . # L2; �(G0) and by reduction (Lemma 10.4.II)

$wi &dU(ai)x&�$m &dU(P) x&+c &x&

for each irreducible unitary representation U of G0 , x # X�(U) and $>0.
Suppose U is non-trivial, dU(P) x=0 and x{0. Then $wi &dU(a i)x&�
c &x& and hence &dU(ai) x&=0 for all i # [1, ..., d $]. Since a1 , ..., ad $ is an
algebraic basis, this implies x=0, which is a contradiction. So dLG0

(P) is
a Rockland operator, and hypoelliptic by the Helffer�Nourrigat theorem.
In particular, P{0 and the order of the form C equals m. K

This proposition has immediate implications for subcoercive forms.

Theorem 10.8. Let G be a connected Lie group, a1 , ..., ad $ a reduced
weighted algebraic basis of the Lie algebra g of G. Suppose m # 2wN and let
C be an m-th order form with principal part P. Then the following conditions
are equivalent.

I. The form C is G-weighted subcoercive.

II. There are c, +>0 and an open neighbourhood V of the identity of
G such that

+=2wi &Ai .&2
2�=m Re(., dLG(C) .)+c &.&2

2

for all . # C �
c (V), all = # (0, 1] and all i # [1, ..., d $],

III. The closure of dLG(C) generates a holomorphic semigroup S on
L2(G) which is quasi-contractive in an open sector 4(%)/C with % # (0, ?�2).
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Moreover, St maps L2(G) into D(Ai) for all i # [1, ..., d $] and there exist
c, |>0 such that &AiSt&2 � 2�ct&wi�me|t for all t>0.

Proof. The implication I O II has been proved in Section 1 and the
implication I O III follows from Corollary 8.3.II. The converse implication
II O I follows from

+=2wi &Ai.&2
2 �=m &.&2 &dLG(RC) .&2+c &.&2

2

�=m(=&m &.&2
2+=m &dLG(RC) .&2

2)+c &.&2
2

�(=m &dLG(RC) .&2+(1+c) &.&2)2.

One then deduces from Proposition 10.7 that dLG0
(RP) is hypoelliptic,

where P is the principal part of C. But the contraction process also shows
that dLG0

(RP) is a positive operator. Therefore C is G-weighted subcoer-
cive by Theorem 10.1.

It remains to prove III O I. It follows from the bounds on the derivatives
of the semigroup, by Laplace transformation, that there exists a c>0 such
that

&Ai .&2�=m&wi &dLG(C) .&2+c=&wi &.&2

uniformly for all = # (0, 1], . # C �
c (G) and i # [1, ..., d $]. Hence dLG0

(P) is
hypoelliptic by Proposition 10.7. But it follows from quasi-contractivity
that ei:(dLG(C)&|I ) generates a contraction semigroup, if | is large enough,
uniformly for all : # ( &%, %). Hence, by the Lumer�Phillips theorem,
Re(., ei:(dLG(C)&|I ) .)�0 for all . # L$2; m(G). Applying the contraction
process it follows that Re(., ei: dLG0

(P) .)�0 for all . # L$2; m(G0) and
: # ( &%, %). The proof of this implication is a variation of the proofs used
in Propositions 4.5 and 10.7. Then |(., dLG0

(IP).)|�M(., dLG0
(RP).)

for all . # L$2; m(G0), where M=cot %. Hence, by reduction, Lemma 10.4.II,
it follows that

|(x, dU(IP)x)|�M(x, dU(RP)x)

for each unitary irreducible representation U of G0 and all x # X�(U), and
then, by density, for all x # X$m(U). But it follows from [Sch, Lemma XII.3.1],
that

|( y, dU(IP) x)|�M(x, dU(RP) x)1�2 ( y, dU(RP) y)1�2 (31)

for all x, y # X$m(U).
We shall prove that RP is a Rockland form. Let U be a non-trivial

irreducible unitary representation of G0 , x # X�(U) and suppose dU(RP) x=0.
Then it follows from (31) that ( y, dU(IP) x=0 for all y # X$m(U). Since X$m(U)
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is dense in X one establishes that dU(IP) x=0. Therefore dU(P) x=0 and
thus x=0 since P is a Rockland form. Hence RP is positive Rockland form
and C is G-weighted coercive by Theorem 10.1. This completes the proof of
the theorem. K

This corollary shows that Conditions I, II and III in Theorem 1.1 are
equivalent in case of a reduced weighted algebraic basis.

If the principal part of the form C is symmetric one can weaken the
assumptions of the previous theorem. One only needs quasi-contractivity of
the semigroup on the positive real line.

Theorem 10.9. Let G be a connected Lie group, a1 , ..., ad $ a reduced
weighted algebraic basis of the Lie algebra g of G and G0 the corresponding
homogeneous contraction of G. Suppose m # 2wN and let C be an m-th order
form with symmetric principal part P, i.e., P=P-. The following conditions
are equivalent.

I. The form C is G-weighted subcoercive.

II. The closure of dLG(C) generates a continuous, quasi-contraction,
semigroup S on L2(G) which maps into D(Ai) for all i # [1, ..., d $]. Moreover,
there exist c, |>0 such that &Ai St&2 � 2�ct&wi �me|t for all t>0.

Proof. It follows as in the proof of Theorem 10.8 that RP=P is
hypoelliptic and Re dLG0

(P)�0. So Re dLG0
(P) is a positive Rockland

operator. K

11. GENERAL ALGEBRAIC BASES

In Section 2 we passed from a weighted algebraic basis to a reduced
weighted algebraic basis and the subsequent results have been largely
formulated in terms of reduced bases. In this section we examine the
passage from the reduced basis back to the original basis and the extension
of the foregoing results to general weighted bases.

Let a1 , ..., ad $ be a weighted algebraic basis with weights w1 , ..., wd $ and
filtration (g*)*�0 . Assume �d $

i=1 wiN{<. We can define a distance d( } ; } )
and modulus | } |$(a)=| } |$ on G similarly to the definitions with respect to a
reduced weighted algebraic basis in the beginning of Section 6.

Next, Proposition 2.1 established that if the elements of the algebraic
basis a1 , ..., ad $ are suitably ordered then there exists a reduced weighted
algebraic basis b1 , ..., bd" with weights v1 , ..., vd" such that bi=a i and vi=wi

for all i # [1, ..., d"] and ai # gwi
for all i # [d"+1, ..., d $]. Moreover, the

filtrations corresponding to the algebraic basis a1 , ..., ad $ and the reduced
basis b1 , ..., bd" coincide. The reduced basis is a subset of the original basis
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obtained by eliminating those directions aj such that aj # gwj
. But the

moduli | } |$(a) and | } |$(b) are equivalent.

Lemma 11.1. There exists a c�1 such that

c&1 | g|$(b)�| g|$(a)�c | g|$(b)

for all g # G.

Proof. Obviously | g|$(a)�| g|$(b) for all g # G. Next, for all i # [1, ..., d $]
let w$i=min[*>0: ai # g*]. Then one easily proves by induction on the
weights of the filtration that the filtration (g*)*�0 equals the filtration
corresponding to the weighted algebraic basis a1 , ..., ad $ with weights
w$1 , ..., w$d $ . So a1 , ..., ad $ with weights w$1 , ..., w$d $ is a reduced weighted
algebraic basis. Let | } |$(a$) denote the modulus with respect to this weighted
algebraic basis. Then obviously | g|$(a$)�| g|$(a) for all g # G with | g|$(a)<1.
But the moduli | } |$(a$) and | } |$(b) are equivalent by Corollary 6.5. Therefore
the lemma follows for small g. For large g the distances are comparable by
[VSC, Proposition III.4.2]. K

Corollary 11.2. There exists a c�1 such that

c&1$D$�|B$$ |�c$D$

for all $ # (0, 1], where D$=�*>0 * dim(g* �g*
�
) is the local dimension and

B$$ is the ball with radius $.

Proof. This follows from Proposition 6.1.II and the previous lemma. K

The reduced weighted algebraic basis b1 , ..., bd" is constructed from the
weighted algebraic basis by deleting the ``overweight'' directions (see
Proposition 2.1). But these directions have a representation

aj= :

&:&v�wj

: # J+(d")

cj:b[:] (32)

where we have used & }&v to denote the length of the multi-index with
respect to the weights vi of the reduced basis. On the other hand, such a
representation also exists if aj is an element of [b1 , ..., bd"]. Hence in a
continuous representation (X, G, U) of the group

Aj= :

&:&v�wj

: # J+(d")

cj:B[:]
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where Bj=dU(bj). Therefore, expanding the commutators, there are c$j: # R
such that

Aj= :

&:&v�wj

: # J+(d")

c$j:B:. (33)

If C: J(d $) � C is an m th order form (33) implies there exist c$; # C such
that

dU(C)= :

&:&w�m
: # J(d $)

c: A:= :

&;&v�m
; # J(d")

c$;B; (34)

where we have now used & }&w to denote the weighted length of the multi-
indices with respect to the weights wi of the original basis. The form C is
an m th order form with respect to the weighted algebraic basis a1 , ..., ad $

and we use the notation C=Ca to denote the dependence on the basis.
Further let Cb : J(d") � C be the m th order form with the coefficients c$;
entering on the right hand side of (34). Then (34) states that dU(Ca)=
dU(Cb). The form Cb has order less than or equal to m with respect to the
weighted algebraic basis b1 , ..., bd" and weights v1 , ..., vd" .

We temporarily add a subscript a and b to the spaces X$n(U) and the
(semi)norms & }&$U, n and N$U, n to denote the dependence of the weighted
algebraic basis. Obviously X$a, n(U)�X$b, n(U), N$b, U, n(x)�N$a, U, n(x) and
&x&$b, U, n�&x&$a, U, n for all n # [0, �) and x # X$a, n(U), since the bi are a
subset of the ai with the same weight. Next suppose m # wi N for all
i # [1, ..., d $] and set

v=min[x # [1, �): x # viN for all i # [1, ..., d"]]

w=min[x # [1, �): x # wi N for all i # [1, ..., d $]].

Then w # vN. Let k # N. It follows from (34) that X$b, kv(U)�X$a, kv(U),
N$a, U, kv(x)�c &x&$b, U, kv and hence &x&$a, U, kv�c$ &x&$b, U, kv for some c, c$>0,
uniformly for all x # X$b, kv(U). So the spaces X$a, kv(U) and X$b, kv(U) are equal,
with equivalent norms. Moreover, it follows from Theorem 9.1.IV that
there exists a c>0 such that

N$a, U, kv(x)�c(N$b, U, kv(x)+&x&) (35)

for all x # X$a, kv(U).
Now Theorem 1.1 of the introduction follows as a corollary of the results

we have established for reduced weighted bases.

Proof of Theorem 1.1. Let C be an m th order form and assume that the
weights wi satisfy m�wi # 2N.
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If the weighted algebraic basis a1 , ..., ad $ is a reduced weighted algebraic
basis then the theorem follows from Proposition 4.5, 1$ O 3 and Theorems
7.2, 8.2 and 10.8.

If, however, a1 , ..., ad $ is not a reduced weighted basis one can proceed
as above and introduce the reduced weighted subbasis b1 , ..., bd" . Then
C=Ca is the given m th order form. Let Cb be the associated form of order
less than or equal to m with respect to the weighted algebraic basis
b1 , ..., bd" . We say that Cb satisfies Condition I of Theorem 1.1 if there are
+, &>0 and an open neighbourhood V of the identity of G such that

Re(., dLG(Cb) .)�+(N$b, 2; m�2(.))2&& &.&2
2

for all . # C �
c (V). Similarly, we say that the form Cb satisfies Conditions

II, III, or IV of Theorem 1.1 if the particular condition is valid for the
form Cb , the algebraic basis b1 , ..., bd" , weights v1 , ..., vd" and infinitesimal
generators B1 , ..., Bd" .

We first show that the order of the form Cb equals m if the form Cb

satisfies one of the Conditions I�IV of Theorem 1.1. Obviously one has the
implications I O II and IV O III for the form Cb . The proof is the same as
in Section 1. But if the form Cb satisfies Condition II or III then there exist
c>0 and a neighbourhood V of the identity of G such that

&Bi .&2�=m&wi &dLG(Cb) .&2+c=&wi &.&2

uniformly for all = # (0, 1], . # C �
c (V) and i # [1, ..., d"]. This follows as in

the proof of Theorem 10.8. Therefore the order of the form Cb equals m
by Proposition 10.7. Hence the Conditions I�IV are all equivalent for the
form Cb .

Now we prove Theorem 1.1 for the form Ca . If Ca satisfies Condition I,
i.e., Ca is a G-weighted subcoercive form, then in the left regular representa-
tion on L2(G) one has

Re(., dLG(Cb) .)=Re(., dLG(Ca) .)

�+(N$a, 2; m�2(.))2&& &.&2
2

�+(N$b, 2; m�2(.))2&& &.&2
2

for all . # C �
c (V), with V the open neighbourhood of the identity occurring

in the definition of the subcoercivity of Ca . Hence Cb satisfies Condition I
and Cb is an m th order weighted subcoercive form. Since the bi are a subset
of the ai with the same weight Conditions II, III, and IV for Ca obviously
imply the same condition for the form Cb .
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Conversely, if Cb is an m th order weighted subcoercive form then it
follows from (35) that the form Ca is weighted subcoercive. Then Condi-
tion II is also valid for Ca , as we have proved already in Section 1. In any
representation (X, G, U) the closure of dU(Cb) generates a semigroup
which is holomorphic in an open sector containing 4(%Cb , G). Moreover, it
has a representation independent kernel. Since dU(C)=dU(Ca)=dU(Cb)
this establishes the generator property for dU(C). The Gaussian bounds for
the semigroup kernel follow from (33) and the bounds on the derivatives
of the kernel with respect to the B;. The bounds on the derivatives of the
semigroup in Condition III for Ca follow again by a quadrature estimate.
This completes the proof of Theorem 1.1. K

It should again be emphasized that Theorem 1.1 is valid for any Lie group
G and any weighted algebraic basis of the Lie algebra g of G. Although most
of the foregoing material involves reduced weighted algebraic bases and the
corresponding homogeneous contraction G0 the final result is independent
of these concepts.

In Section 1 we defined &x&$n=0 if n � [&:&w : : # J(d $)] to avoid compli-
cations in various proofs. We now drop this condition for the weighted
algebraic basis a1 , ..., ad $ . For n # [0, �) define _ }_$n : X$a, n(U) � [0, �)
by

_x_$n= max
: # J(d $)
&:&�n

&A:x&.

Then (X$a, n(U), _ }_$n) is a normed space and the two spaces (X$a, n(U), _ }_$n)
and (X$b, n(U), & }&$b, n) are equal, with equivalent norms, if n # vN. Hence all
conclusions of Theorems 9.1 and 9.2 and Corollaries 8.3, 9.3 and 9.4 are valid
if C is a G-weighted subcoercive form with respect to the weighted algebraic
basis and the norms _ }_$n on the space X$a, n(U). Most statements follow
directly from the comparable statement for the reduced weighted algebraic
basis b1 , ..., bd" , so we indicate the differences. In Corollary 8.3.II one fixes
k # [0, �). Let k0=max[&:&v : : # J(d"), &:&v�k]. Then it follows from (34)
that X$b, k0

(U)�X$a, b(U) and _x_$k�c$ &x&$b, U, k0
for some c$>0. Therefore

_St _$k�c$ &St&$b, U, k0
�cc$t&k0�me|t &x&�cc$t&k�me|$t &x&

for a suitable |$�|. Next, in Corollary 8.3.III one has &x&$b, U, k0
�

=mn&k0 &H� nx&+c=&k0 &x&, which is equivalent to the J-interpolation
inclusion (X, D(H� n))k0�(mn), 1; J �X$b, k0

(U) (see [Tri, Lemma 1.10.1(a)]).
Therefore one has the following continuous inclusions

(X, D(H� n))k�(mn), 1; J �(X, D(H� n))k0 �(mn), 1; J �X$b, k0
(U)�X$a, k(U),
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from which the new version of Corollary 8.3.III for the algebraic basis
a1 , ..., ad $ and the new norm follows. Theorem 9.1.III can be proved
similarly.

Earlier work [ElR6] on unweighted bases and subcoercive operators
was based on the assumption of G� -coercivity where G� denotes the
Rothschild�Stein local approximant of G, i.e., G� is the nilpotent Lie group
with d $ generators which is free of step r where d $ and r are the number
of elements and the rank of the algebraic basis, respectively. Thus G� =
G(d $, r, 1, ..., 1) (see Example 2.7).

The next proposition establishes that the earlier results [ElR6] are a
corollary of Theorem 1.1.

Proposition 11.3. Let G be a connected Lie group and a1 , ..., ad $ a
weighted algebraic basis of the Lie algebra g of G with weights w1 , ..., wd $ .
Let * be larger than the largest weight in the filtration corresponding to the
weighted algebraic basis and larger than wi for all i # [1, ..., d $]. Let C: J(d $) � C
be a form of order m with m # 2wN. If C is a G(d $, *, w1 , ..., wd $)-weighted
subcoercive form then C is a G-weighted subcoercive form.

Proof. Let b1 , ..., bd" be the reduced weighted algebraic basis as in
the beginning of this section. Again we indicate with a subscript the
dependence of the algebraic basis. Then ai # gwi

if, and only if, i>d". Let

G0 be the homogeneous contraction of G. Define the form C$b : J(d") � C
by C$b(:)=Ca(:) for all : # J(d"). We first prove that C$b is a G0 -weighted
subcoercive form, hence a G-weighted subcoercive form, and secondly that
C=Ca is G-weighted subcoercive.

Let g~ =g(d $, *, w1 , ..., wd $)=G�I be the weighted nilpotent Lie algebra
with generators a~ 1 , ..., a~ d $ and weights w1 , ..., wd $ which is free of step * and
G� =G(d $, *, w1 , ..., wd $) the corresponding connected simply connected Lie
group (see Example 2.7). There exists a unique Lie algebra homomorphism
T� ; g~ � Hom(L2; �(G0)) such that

T� (a~ i)={dLG0
(b i)|L2; �(G0)

0
if i # [1, ..., d"],
if i # [d"+1, ..., d $].

Then T� is a representation of g~ in the Hilbert space L2(G0) by skew-adjoint
operators such that the (dense) set of analytic vectors for LG0

is a set of
analytic vectors for T� (a~ i) for all i # [1, ..., d $]. So, by [Sim, Corollary 2],
there exists a unitary representation U of G� in L2(G0) such that L2; �(G)�
((L2(G0))�)(U) and T� (a~ i) is the restriction of dU(a~ i) to L2; �(G0) for all
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i # [1, ..., d $]. Then, by Theorem 9.2.III, it follows that there exist +, &>0
such that

Re(., dLG0
(C$b) .)=Re(., dU(Ca) .)�+(&.&$a, U, m�2)2&& &.&2

2

=+(&.&$b, 2; m�2)2&& &.&2
2

for all . # ((L2(G0))�)(U) and, in particular, for all . # L2; �(G0), where
& }&$b, 2; m�2 is the norm on L$2; m�2(G0) with respect to the algebraic basis
b1 , ..., bd" . So C$b is a G0-weighted subcoercive form and hence by Theorem 10.1
a G-weighted subcoercive form.

Arguing as in the beginning of this section, but now using (1) instead of
(32) for all j # [d"+1, ..., d $], it follows that there exists a form C"b : J(d")
� C of order strictly less than m, such that dLG(Ca)=dLG(C$b)+dLG(C"b).
Then the principal parts of C$b and C$b+C"b coincide, so C$b+C"b is a
G-weighted subcoercive form by Proposition 4.5. Finally, since the norms
& }&$a, 2; m�2 and & }&$b, 2; m�2 on L$2; m�2(G) are equivalent, it then follows that
C=Ca is a G-weighted subcoercive form. K

One can now immediately recover all the main results of [ElR6].

Corollary 11.4. Let G be a connected Lie group with Lie algebra g
and a1 , ..., ad$ an (unweighted) algebraic basis of rank r of g. Let C: J(d $) � C
be a subcoercive form of order m and step r (see [ElR3]). Let (X, G, U) be a
representation of G. Then the closure of the operator dU(C) generates a holo-
morphic semigroup S which is holomorphic in an open sector containing
4(%C, G� ), where G� =G(d $, r, 1, ..., 1). Moreover, S has a representation
independent kernel which satisfies Gaussian type bounds of order m.

Proof. If C is a subcoercive form of order m and step r then C is a
G(d $, r, 1, ..., 1)-weighted subcoercive form (see Example 4.3). Hence it is a
G-weighted subcoercive form. The corollary follows immediately. K

The final example shows that the assumptions of [ElR6] are strictly
stronger then those of weighted subcoercivity.

Example 11.5. Consider the five-dimensional Heisenberg group G.
Thus one has a Lie algebra basis a1 , ..., a5 with [a1 , a2]=[a3 , a4]=a5 .
Take the weighted algebraic basis a1 , ..., a4 with all weights equal to one.
Then G� =G(4, 2, 1, 1, 1, 1) has dimension 10 and the Lie algebra g~ has a
basis [a~ 1 , ..., a~ 4] _ [a~ ij : 1�i< j�4]. The commutation relations are [a~ i , a~ j]
=a~ ij if 1�i< j�4. Let C1 be the form such that

dU(C1)=&A2
1&A2

2&A2
3&A2

4
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for any representation. Further let C2 be the form such that

dU(C2)=dU(C1)&*i&1([A1 , A2]&[A3 , A4]),

where * is an eigenvalue of the operator dV(C1), and V is an irreducible
unitary representation of G� with dV(a~ 12&a~ 34)=iI. Then C2 is not a sub-
coercive form of step 2 since (x* , dV(C2) x*)=0, where x* is an eigenvector
of dV(C1) with eigenvalue * (see [ElR6, Corollary 3.5]). On the other
hand, dlG(C2)=dLG(C1), so C2 is a G-weighted subcoercive form.
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