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Extraspecial 2-subgroups which are “large” in the sense of Janko arise as 
an important minimal situation in the classification of finite simple groups. 
Determination of simple groups with such subgroups has been made possible by 
recent work of Timmesfeld [30, Main Theorem], which reduces the problem to 
the study of a few specific configurations. 

All of these configurations have now been dealt with. The work of [24] shows 
that Timmesfeld’s case (3) leads to the even-dimensional orthogonal groups over 
GF(2). Reifart in [I& 191 and the author in [25] show that cases (5) and (8) lead 
to the Chevalley and twisted groups of type E over GF(2). The purpose of the 
present paper is to determine the groups arising in cases (1) and (4), where 
(essentially) the extraspecial group has width 4 or 6. Certain of the subcases have 
already been studied by Reifart [17], B’ rer b rauer, and Tran van Trung. Finally, 
an argument of Stroth and Reifart (private communication) deals with 
Timmesfeld’s cases (6) and (7); we have taken the liberty of reproducing their 
argument, for completeness. 

To state our results, we introduce the “large extraspecial” situation we deal 
with: 

GENERAL HYPOTHESIS. Let G be a finite group, with involution z. Suppose 
that F*(Cc(z)) is an extraspecial 2-group. Assume also 02(G) = G and 

x 4 O,,,,(G). 
To facilitate working with this hypothesis, we adopt further conventions: 

Notation. Let: 

M = C,(z). 
Q = F*(M). 
n = width of the extraspecial group Q. 

~ = M/Q (bar convention for the quotient). 
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Now the work divides naturally into three parts. Since the work of Gorenstein 
and Harada [7] determines the possibilities when n < 2 (as noted in [2, Lemma 
4.6]), Timmesfeld’s case (1) with n < 4 really amounts to n = 3 or 4. 

So we prove: 

THEOREM A. Assume the General Hypothesis, with n = 3 OY 4. Then 

(i) if n = 3, G E L,(2), U,(2), Mz4 , He, OY Sz. 

(ii) ifn = 4,8’*(G) s&(2), U,(2), J&*(2), 3D4(2), Q+(3), Co.2, Co.1, F3, 
OY a group of type F5 . 

Remarks. In (ii) we specify only F*(G) b ecause of possible outer automor- 
phisms of order 3 of the groups ~&s,+(2), 3D,(2), Q,+(3). The expression “of type 
F5” indicates an open uniqueness problem. 

Timmesfeld’s case (4) in width 6 really amounts to the determination of the 
two sporadic groups in our next result: 

THEOREM B. Assume the General Hypothesis with n = 6. Then GE L,(2), 
U,(2), Q&(2), OY a sporadic group of type J4 OY F& . 

Finally, Timmesfeld’s cases (6) and (7) lead to the “monster” groups of 
Fischer: 

THEOREM C (Reifart and Stroth). Assume the General Hypothesis 

(i) if n = 11 and m g Co.2, then G is a group of type F, , 

(ii) ifn = 12andmg Co.1, thenGisagroupof typeF,. 

Remark. The existence (as well as uniqueness) problems are open for J4 
and FL . 

We give a brief description of the proofs of these results. Certain aspects of 
the work are common to all three theorems. This is especially true of preliminary 
results of Section 1, many of which we can simply quote from [24], where they 
are proved essentially under the General Hypothesis. When it is necessary 
to check specific details, we will refer to the three situations as Hypotheses A, B, 
and C, respectively; or more simply, as cases A, B, and C. 

In Section 2, we concentrate on the determination of the structure of M, which 
is necessary for cases A and B. We make use of a number of crucial intermediate 
results of Timmesfeld in [30]; these allow us to construct the centralizer of a 
suitable involution in M, and then the work of Gorenstein and Harada [7] may 
be used to determine M. The arguments for widths 4 and 6 are distinct but very 
similar. 

With M determined under all three Hypotheses A, B, C, the proof turns in the 
subsequent sections to analysis of individual possibilities, none of which is 
unduly difficult. Generally it can be said that we reduce each to some classifica- 
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tion theorem already available. In case B, the determination of M is already 
sufficient, in view of work of Janko [lo] and Parrott [ 131. In cases A and C, a 
certain amount of further argument is required for each possibility. We mention 
in particular the method of Reifart and Stroth: When the group M(the centralizer 
of a 2-central involution) does not alone determine G, develop also the centralizer 
of a non-2-central involution to identify G. 

1. INITIAL REDUCTIONS 

We now assume the General Hypothesis and corresponding notation. Further 
notation will be as in [24]. In particular, if x = zQ (for some g E G), it is conve- 
nient to use a subscript x (rather than superscript g) to denote conjugates of M 
and Q, as in 

MCC for MO = C(x), 

QZ for QQ = F*(M,). 

We have also another bar convention. 

& for Q/C+ 

A tilde between groups or elements will indicate conjugacy. 
Our references to Timmesfeld’s work [30] will be too frequent and diverse to 

allow reproduction here of all the necessary results. For convenience we will use 
the letter T to refer to that paper, and a reference of form T(4.5) will be to 
result (4.5) of [30]. Similarly we use 0 to refer to [24], and an expression like 
O(1.16) refers to result (1.16) of [24]. 

We now set out to establish (for all three cases A, B, C) the preliminary 
reductions of Section 1 of 0, by checking the requirements of the axiomatization 
given there. We will reproduce directly only the most frequently used results, 
and numbering our results consistently with them. In certain exceptional situa- 
tions, we may obtain the structure of ii-i; to emphasize the logical flow of the proof, 
of the proof, it is then convenient simply to give the groups G to which the 
configurations lead, through we postpone the necessary (and independent) 
arguments to Section 3. 

The results 0( 1. I)-( 1.4) require only the General Hypothesis. In particular 
we mention: 

O(1.4) We may assume Z*(G) = 1. 

We obtain a slightly more complicated version of O(1.5): 

(1 S) Suppose xc n Q = {x}. Then we have one of: 
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(i) n = 3 and Gr U,(2). 

(ii) n = 4 and G g U,(2) or Co.2. 

(iii) it = 6 and G s U,(2). 

Thus we may now assume that xG n Q # {z}. 

Proof. Assume zG n Q = {z}. Just as in 0( 1.5), we have Z*(G) = 1 and 
02(G) = G, so we may apply the result of Aschbacher [2] as extended by 
F. Smith [Zl, 221 to determine F*(G) g U,,, or Co.2 (with 11 = 4). In particular 
F*(m) E U,(2) or Sp,(2), so we see no group arises under Hypothesis C; 
and only those listed above arise under Hypotheses A, B. Now since 
G = 02(G) we get G = F*(G) by automorphism-group considerations, so (1.5) 
holds. 

Now 0( 1.6) follows with no further checking. We must again be careful of 
certain possibilities in our version of 0( 1.7): 

(1.7) Suppose &i acts reducibly on &. Then we have one of: 

(i) n = 3 and G E L,(2), il&, He. 

(ii) 12 = 4 and G g L,(2). 

(iii) n = 6 and G z L,(2). 

So we may now assume that M acts irreducibly on &. 

Proof. Assume M is reducible on &. Just as in 0(1.7), we may apply the 
result of Dempwolff and Wong [6] to determine F*(G) = L,+,(2), or possibly 
Mz4 or He when 71 = 3. In particular, F*(R) g L,(2), so we see no group 
arises under Hypothesis C; and only those listed arise for Hypotheses A, B. 
As in (1.5), we get G = F*(G); so (1.7) holds. Notice our assumption z $0,,,(G) 
eliminates the extensions 2”+lL 1E+1(2) that arise in [6]. In 0, it was sufficient for 
us to assume z $ Z*(G). 

Now we observe that in cases A and B, our assumption beyond the General 
Hypothesis is on the width of Q only, so we have the hypothesis 0(18)(a); and 
in case C, simplicity of R gives hypothesis 0(1.8)(b). So we obtain: 

0( 1.8) We may assume G is simple. 

Remark. This really avoids the case 1 G : F*(G)1 = 3 with F*(G) E Gs+(2), 
l&+(3), or 3D,(2). 

Now O(1.8) reduces us to the situation of Timmesfeld in T, and we can make 
direct use of his results. A number of these deal with fusion of x in Q, and to 
state them we introduce: 

Notation. Let a be some fixed element of .zG n Q - {z}, as provided by (1.5). 
Set L (more specifically, L,) = Qa n M. 
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We assume the notion of Suzuki type of involutions of M on the orthogonal 
space &, as in Aschbacher and Seitz [4, Sect. 81. We get a version of O(1.9): 

(1.9) Suppose an involution of E acts with type a2 on &. Then we have one of 

(i) n = 3 and G z Sz. 

(ii) n = 4 and G gg Co.1. 

Thus we may now assume no involution of E has type a2 on &. 

Proof. If there is such an involution, we may apply T(12.16). In view of (1.7), 
we need consider only cases n = 3 with M z L&-(2), and n = 4 with M z 
L&+(2). (These cases arise in work of F. Smith [22].) 

In particular, no groups arise under Hypotheses B and C. In case A, by 
Patterson and Wong [16], the former leads to G z Sz; and by Patterson’s thesis 
[15], the latter leads to G z Co.1. So (1.9) is proved. 

Now with no a,‘s in 1, we obtain a number of important corollaries from T, 
which we collect in: 

O(1.10) (a) Co(L) = (2). 

(b) f; is weakly closed in Na(L). In particular, NM(E) controls M-fusion in 
L. Further z n M’ = [z, iVm(E)]. 

(c) M controls the G-fusion of elements of Q - (a). 

(d) Q n Qa is elementary of rank n + 1, and E elementary of rank n - 1. 

(e) & is extraspecial of +-type. 

Remark. The assertion about the transfer in (b) comes from the result of 
Yoshida [31]. Part (b) shows that N&z) contains a Sylow 2-group of M, and 
from this point of view it will be rather easy to determine M in cases A and B. 

Now we get a modified version of 0( 1.11): 

(1.11) If~isaT.I.setinM,thenn=4andGrF,or3D,(2).Sowemaynow 
assume that z is not a T.I. set in i@. 

Proof. By T(4.2), the T.I.-set assumption forces n = 4 and (La) s L&3) 
or A, . In the former case, Reifart [18] shows that G G 3D,(2). (We provide in 
(3.1) an easy independent derivation of this fact.) In the latter, we see & does not 
afford the permutation representation of A,: for if it did, a subgroup A, contains 
L, and centralizes a nonzero vector, necessarily a” by 0(1.10)(a); but N&J = 
C(n) and E, + A, . Since S, interchanges the other two &dimensional repren- 
tations of Agr we have M = A, only. Then work of Parrott [14] shows G is 
Thompson’s group F3 . 

‘By (1.1 I), it makes sense to intersect L with conjugates. We follow Timmesfeld 
in defining for this situation: 
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Notation. 

t = some involution of L. 

W (more specifically, R,) = (P: % E M, t EP). 

p = (& K?EM, t EP). 

Iv = C,(P). 

Remarks. The condition ZEL~ (which is elementary) gives LE ,< Cm(i). 
In fact we see i? 4 C&t). We will use heavily the fact that i? is designed to 
include all a-conjugates of L containing t. 

We now mention Timmesfeld’s main technical result T(4.5), which asserts 
that when R > L, then R/N is one of the groups L,( p) or Sp,,( 8) (including 
also Sp,(2)‘) or Qg,,J a); an d in each caseLN/N = 0, (C,,,(d)). In cases A and B 
we will study more caretully Timmesfeld’s intermediate results, based on T(4.5) 
to obtain much more specific restrictions on R/N. Indeed, much as in 0 and [25], 
we will find that the existence of certain possibilities for R/N will lead “charac- 
teristically” to corresponding structures for M, and then for G. 

We mention that results 0(1.12)-(1.16) now follow without any further 
checking. Some of these results are useful when we need to determine fusion of z 
in M - Q. 

This completes the verification (for all three case A, B, C) of preliminary 
results from 0. 

In the remainder of the section, we produce some specific lemmas for use in 
Section 2 (where we determine possibilities for ?l? in cases A and B). First, the 
relevant sharpening of T(4.5): 

(1.17) (i) Assume Hypothesis A. Then for t E z# we can get Ii -= I?, OY 

R/N E {L,(P); OY sZ,*( I’) with N = (t)}. In particular, no further group G arises 
for n = 3, so we may assume n = 4. 

(ii) Assume Hypothesis B. Then for TV e#, we can get R = L OY R/N E 

cw%w), .n,+m OY S2,+( P) with n = (t)}. 

Proof. We consider what may happen in T(4.5) when R > L. Suppose first 
that w = (t). Then by T(7.6) we have n = 4 or 6 and R/N z l&*(2); or 
possibly n = 4 and R/N s Sp,(P)’ g A, . In this latter case, however, 
Timmesfeld determines (La) g S, x A,; we will show in (3.2) that no group G 
can arise in this situation. We turn then to cases with m > (t>. In view of 
O(1.12) we have L n m > (i); we may apply T(8.4)/(9.4) to see that R/N is 
not symplectic or orthogonal, except possibly for R/N s SZ,+( 8) when n = 6. 
(Since p = [&, t] has rank 4, this cannot occur for n = 3; and for n = 4, 
we are back in case fl = (t) by T(4.7).) Finally if R/N is linear, we see by 
T(6.6) that m([&, f]) 3 2 . m(p); so we can only get L,(P) in case n =~ 4; and 
L,(P), L3( P) in case n = 6. These are now all the cases listed in (1.17). 
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In particular, we get m( [&, t]) < 4 in each, so fz > L cannot arise when n = 3; 
and this contradicts our assumption in (1.11). So (1.17) is proved. 

Timmesfeld also provides information about E(M). We can remove (by way 
of postponement) one exceptional case: 

(1.18) If&@) h as more than one component, then n = 4 and G is of type F5 . 
Otherwise we get one of 

(i) E(M) is quasi-simple, and 1 O(M)] = 1 or 3. 

(ii) n = 4, %i is solvable, and O(M) is elementary of rank 3 or 4. 

Proof. By T(5.5), the assumption of several components forces O(R) = 1, 
E(M) s A, x A,, and (EM) = A, \ 2,. We show in (3.3) that this conti- 
guration leads, via the centralizer of a non-2-central involution, to Harada’s 
group F5 . Otherwise by T(5.5) we get either (i), or n < 4 and E(R) = 1 with 
O(M) elementary of rank at most 4. Since O,(M) = 1, we have O(M) = F*(M) 
in this latter case, so that z/O(a) < G&(3), where k = m(O(a)). We note 
first that M is solvable for k = 1,2. Also G&(3) has order 25 . 33 . 13, and 
13 7 1 O,+-(2)/; in view of 0(1.10)(e) we have &I < O,+(Q), so M must also be 
solvable (a (2, 3}-group) in this case. Finally let k = 4. Now O,+(g) has a unique 
conjugacy class of elementary subgroups of rank 4: so O(m) is generated by 4 
distinguished subgroups (ei> (1 < i < 4) satisfying m([&, fiJ> = 2. The 
auromizer even in L,(2) of O(M) is then the “monomial” group 24S4; where the 
subgroup 24 has the obvious diagonal action, and the S, the obvious permutation 
action. So M IS solvable in this case as well. Now we may apply the work of 
Lundgren and Wong [12] to conclude k = 3 or 4. So (1.18) is proved. 

Now in determining &! for various configurations in Section 2, we follow the 
general plan of showing first that f $ M’ for a suitable t EL+; and then that M 
has sectional 2-rank at most 4. Thus in view of (1.18)(i), we are interested in 
quasi-simple groups J of sectional 2-rank at most 4; it will be convenient to 
classify these groups J according to order and structure of a Sylow 2-group S 
of J. Furthermore, we do not need the entire list of Gorenstein and Harada 
[7]; since by 0(1.10)(e) we must have M < O&(&) (now n = 4 or 6), simple 
numerical considerations will rule out many of the groups, without forcing us to 
study irreducible representations in degree 8 or 12. Thus we may reduce the list 
of [6] to: 

(1.19) Assume Hypothesis B (n = 6). Then H = J/O(J) must be among: 

ISI trpeofs type of H Out (H) 

(4 z2 elementary &(5),-%(11) 2 

(b) z3 elementary L,(8) 3 
dihedral L,(9); L,(7), A, 2 X 2; 2,2 (resp.) 
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ISI Weof S type of H Out (H) 

(4 z4 elementary 
dihedral 
quasi-dihedral 

(4 Zb dihedral 
wreathed 

(e) Z6 “type Ls(4)” 
21+4 . 2 

(f) 2’ 24D, 

G 2 ZLJ 2 z2 

W6) 4 

Ld7) 2 
Ml1 1 

Ld31) 2 
U,(3) 2 

L,(4) 2 x s, 
s~4(3), A, > A, 9 MI, 2 

u,(3), Mm Q ,2 (rev.) 
A,, ,A,, 2. 

For the smaller width, we may further reduce this list to: 

(1.20) Assume Hypothesis A (now n = 4). H = J/O(J) is among: 

ISI Weofs type ofH Out (H) 

(4 I22 elementary Ld5) 2 

(b) 2 elementary k@) 3 
dihedral L,(9); L,(7)> A, 2 x 2; 2,2 (resp.) 

(4 Zb wreathed h(3) 2 

(4 2 “type L3(4)” L,(4) 2 x s, 
21+4 . 2 S~4(3), 4 2 4 2 

(e> 2 (-G?ZJ~ z2 40 2 

2. POSSIBILITIES FOR M IN CASES A AND B 

In this section, we determine possibilities for a under Hypotheses A and B. 
(As in Section 1, it is convenient also to indicate the groups G to which these 
choices of M lead, even though we may have to do further work in Section 3 to 
establish the implication.) Study of M will proceed by analysis of possibilities 
for centralizers of involutions t^, by means of the various cases for R, listed in 
(1.17). We may fix on one distinctive possibility for R/N, and determine what 
groups M and G are possible. Then in further work we may assume that possi- 
bility for R/N can no longer arise, but some other one does; and so on, shortening 
at each step the list of possibilities from (1.17) that we might have to deal with. 

Many of the necessary arguments for the cases of width 4 and 6 are strongly 
analogous. However, superficial differences will sometimes make it easier to 
separate arguments, at the cost of being somewhat repetitious. 

We outline the course of the argument in this section: 
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I. Suppose there is I E E# with R/N = Qnc(2), where E = + or -. We get 
the cases: 

(A) t 2-central in m. 

(i) ] O(?@)l < 33: Then mu S, X QBE(2) and G 

G = Q&,(2). 

(ii) [ O(iM)I = 34: Then n = 4, E = +, and 
-- 

(En) = O(M)L; G gg i&+(3). 

(B) f not 2-central in m. Then n = 6 and E = -; 8? = 3G) * (t), and 
GisoftypeFi,. - 

II. Assume we never get R/N g L&‘(2), but do get 

R/N = Lwz,&) for some L 

Then n = 6, Ei g Ga * (t), and G is of type J4 . 

III. If none of the above cases arises, then no group G is possible. 

Remark. The feasibility of examining the separate cases in (1.17) (which is 
really just T(4.5)) h s ows how we are really just continuing Timmesfeld’s 
ideas to finish the problem; as suggested in the introduction of his paper. 

In the proof to follow, we will frequently consider the “Suzuki type” of the 
involution I acting on the orthogonal space Q-this is just the type of t as an 
involution of O&(2), in view of 0(1.10)(c). These matters are described in 
Aschbacher and Seitz [4, Sects. 5-81, with other information available in F. Smith 
[22, (2.5)] or Aschbacher [2, (4.5)]. Furthermore in our study of C’*(i), we can 
work in the centralizer of t in a suitable O.&(2); we may denote this possibly 
larger group by CoeJt‘). I n f ormation on these centralizers appears in Aschbacher 
and Seitz [4, (8.6)-(8.8)]; we may quote these results without direct reference. 

Henceforth we drop subscripts ?@ so as to write C(t) and N(L). We recall also 
that N(L,) = C( a” ) ( in view of the definition L, = Qa n M, and C&L,) = (5) 
in 0(1.10)(a)). 

We work first under: 

HYPOTHESIS (2.1). t EE# has R/N= QS6(2). (C = + or -). 
The critical first step is determination of C(f). Afterwards we can settle many 

questions by looking inside this subgroup. 

(2.2) (a) f Au.9 ty$e a, on &. 
(b) N = (t) and l? = (f) x R,, , where $ s QmE(2). Furthermore, 

C(f)/(i> is at most O,‘(2). 
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(c) C(L) = L. I n case n = 4, note &i must have sectional 2-rank at most 4 
so if E(m) is quasi-simple, we may use (1.20). 

Proof. By T(4.5) P = [&, t] h as rank n, and the preimage V = [Q, t] of P 
is elementary; it follows that i must have type a, . We could also check this 
from [4], noting that only for i of type a, does Coz,(Z) have a section isomorphic 
to G,‘(2). Indeed, this overlying centralizer is an elementary 2-group E of rank 
(t), extended by a group Sp,(2) (split). The groups E and Sp,(2) may be 
represented by matrices of the forms 

In 0 
( ) and 

x 0 
A In ( 1 0 X’ 

respectively, when a basis for & is chosen so as to put t in Suzuki form. Notice 
we have N = (i) by (1.17); it follows that fT = (t) x & as in (b), since if we 
had a nonsplit extension, then the preimage e of the elementary group LN/N = 
O,(C,,,(cZ)) of order 2n-2 would not be elementary, a contradiction. 

Now to complete the proof of (2.2), it will suffice to show that E n R = (t): 
For the normalizer in L+,(2) of L&<(2) is just 0,E(2), and we would get C(f) 
determined as in (b); with (c) following since L is self-centralizing C(t). In 
case n = 4, N(e)@ < L,(2), and this with 0(1.10)(b) gives sectional 2-rank at 
most 4. We remark that in case n = 4 and E = +, choice of one of three repre- 
sentations in degree 8 determines which classes should be called c2 and a4 . 

Now since R s C(t), we have [R, E n M] < E n R = (t). Thus we can ask if 
i? centralizes any of E/(t). In fact, except when n = 4 and E = +, we have 
&, = E(R), and we may ask about C,(R,). In this case the group fT, is irreducible 
in 1z dimensions, and so by Schur’s lemma it centralizes among the n x n 
square matrices only 0 and I; which says C’s($) = (t), giving E n m = (t). 

In case n = 4 and E = +, a group L’,+(2) centralizes in E a subgroup 
F = (a) x (t), where ;E and dt are of type a2 on & with product t of type a4 . The 
matrices A as above for a and & have form 

- Thus in this case as well, C(t)/(t) is at most c,+(2). So (2.2) is proved. 
It is useful also to consider the action on Q of other involutions visible in C(f). 

(2.3) Assume n = 6, and set R = L n R,, . Then involutions of R are of type 
a, or c4 on &, and those of L - ff have type as or q, . In particular, we have i $ M’, 
and Kg N(L). 

Proof. These assertions about type on & are obvious if our complement R, 
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in C(t) happens to fall inside a natural complement Sps(2) in C,,,(i). For instance, 
we can establish this if O(m) = 1 and E(m) is quasi-simple. But in the absence 
of such knowledge, or information about first cohomology of E/(t) extended by 
8, , we must make a more careful study of matrix forms considered in (2.2). 

It is convenient to rearrange suitably the Suzuki form oft from [4]. We choose 
our orthogonal basis B, ,5a ,..., ‘U”a of & so that each {fii , &--i} is a hyperbolic 
pair. We do this in such a way that d, ,6, ,..., 6, is an orthogonal basis for action 
of f7’,, on v = [&, fl. Thus i still has the matrix form considered earlier. Further- 
more, we can arrange the basis so that (ai , &} is a hyperbolic pair for p, 
though in case E = - we must require that 5s ,6, be nonorthogonal vectors 
which are nonsingular for 8. The elementary subgroup E discussed above 
consists of matrices symmetric about the “opposite” diagonal, and entries on 
this antidiagonal are zero. The matrices of Q,(2) have their inverses equal to 
their “antitransposes.” 

Now the subgroup R projects onto the subgroup J = 02(CsBg(2)(ci)). We may 
as well take this latter subgroup to be given by matrices whose nonzero entries 
away from the usual diagonal are in the left column and bottom row, as in 

i 0 1 1 1 1 1 1 1 1 1 
The E-components of elements of R must then be in C,(J). However, we see 
(and this requires n = 6) that J is self-centralizing in the set of n x n matrices 
defining E. We conclude that an element c of K has type 4 or 6 on &, depending 
on whether the E-component of @ has zeros or ones on the diagonal. Now for @of 
type a,(&), we may find a 4-group of conjugates of u in if, and it is not possible 
that all three of these involutions could have ones on the diagonal. Thus the 
elements of type aa must have type 4 on Q; the same assertion follows for 
those of type ~a(&), since they are products of pairs of a,‘~. Furthermore we see 
elements ofz - Rare of form E * i and so have type 6 on &. 

In particular, we see if 4 N(L); and since i cannot be %-conjugate to elements 
of K, we get tm n L CL - R, so that [E, N(f;)] < if. By 0(1.10)(b) we have 
f # m. This proves (2.3). We remark that obtainingE n E(m) of rank < 4 now 
gives us a hope of establishing sectional 2-rank 4 for E(z). 

With these preliminaries finally completed, we can proceed to determination 
of the groups that arise for R/N E f&72). 

(2.4) Suppose t is 2-central in &f. Then either 

(i) M g S, x QnE(2) and G s L5*(2) or 

481/58/2-2 
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(ii) n = 4, E = + with ] O(M)] = 34; 

m = O(M)L and G g Q,+(3). 

Proof. We consider first the case E(a) quasi-simple. For 7t = 6, we see by 
(2.3)(i) that a Sylow 2-group of i?a is of index at most 2 in a Sylow group of E(M). 
With (2.3)(ii) we have E(M) of sectional 2-rank at most 4 in any case, and 
exactly 4 for n = 6. By (1.19)/( 1.20) the only possibilities for the simple quotient 
E(m)/O(m) with large enough 2-rank and suitable value for 1 E(a)], are: 

(n = 6) A, = Q,+(2) A, Ua(2) = Q,-(2) L,(4) M,, , 

(n = 4) L,(5) = G4-(2) L,(7) L,(8) L,(9) 4. 

As in (2.2), we recall that 1 C(E(M))i < 2 1 O(M)l. For 71 = 6, we may rule out 
A, by structure of C(t): For no outer automorphism centralizes a subgroup A, , 
and we know A, Q C(t) by (2.2). I n a similar way we rule out M,, and L,(4). 
Thus we can only get E(M)/O(M) g QE(2) z R/N. For n = 4 and E = -, 
we may rule out L,(7), L,(8), L,(9) by the requirement Q4-(2) < C(t). We can 
obtain this condition if t acts as a transposition of S, - A,, and C(t) = (f) x S, . 
In fact E(M) d A, here, for no 3-element of Q*+(2) is centralized by 3A, . Our 
group S, has a unique irreducible GF(2)- re p resentation in degree 8, in which 
“short” 3-elements are fixed-point-free on 8#. However, such elements are 
visible in our S, = Q4-(2), fixing points of @+. This contradiction shows only 
Q42,-(2) may arise for E = -. When n = 4 and E = +, we have E z E(M) in 
every case since E(M) has 2-rank 2. In none of the listed simple groups does an 
inner or outer involution centralize a group of order 32; so we must have 
O(B) # 1, and even O(m) < C(t). Even so, the requirement Q4+(2) x (t) < 
C(t) eliminates all but A, , where t acts as a transposition of S, - A, , and 
ME S, x S, . However in this case, O(2.1) shows that E n S, < A,, a 
contradiction. So E(M) is not quasi-simple for 71 = 4 and E = +. 

So in case n = 6, or 1z = 4 and E = -, we have obtained E(R)/O(Z) E 
J&<(2). If O(M) = 1, we see %! < (t) extended by OmE(2) is reducible on &, 
contradicting (1.7). So O(M) # 1, and it follows that il71 = S, x QnE(2) or 
S, x One(Z). By the work of 0, we have G z Q’,+,(2) and %i g S, x QnE(2). 

We turn to the case R solvable; in view of (1.18), we have n = 4 and E = +. 
We consider first the case ] O(M)/ = 33. The work of Lundgren and Wong [12] 
shows there are three subgroups of O(M) of order 3 which are fixed-point-free 
on &. Since O(M) = F*(m), we see M/O(M) must be a subgroup of the obvious 
monomial group 23S,. (In Aut(&+(2)) th is extra S, is realized.) Because of a 
gap in the proof of [12, Lemma 4.51, we cannot automatically reduce to the case 
O(M) E Syl,(m); to finish, we must adapt the case n = 4f of 0, which is not 
originally treated in the present generality. We notice first that M contains a 
subgroup <EM) = O(M)L g S, x Q,+(2). Th is structure induces at least the 



LARGE EXTRASPECIAL SUBGROUPS 263 

fusion discussed in 0, with further possible fusion of classes if R is in fact larger. 
After this, there is no problem with the proof that zG is a class of {3,4}+-trans- 
positions. We then conclude that our simple group G must be L&+(2) with 
AT= s, x &n,+(2). 

Suppose instead 1 O(&?)l = 34. We recall our argument in (1.18) also based 
on [12], where we showed that M/O(M) must be a subgroup of the monomial -- 
group 24S,. In fact [12] shows that (En) = O(M)& where E = (z) x &, , 
with z inverting O(M), and the elements of &,# (the type t of (1.17)) acting as 

--. 
the normal 2-subgroup of the S, . Thus M/O(M)L 1s at most S, (this extra S, 
is realized in Aut(.L$+(3))). W e will establish the hypotheses of Aschbacher in [3]. 
We fix 8, with preimage 0, of order 3, and Qi = [Q, or]. The group Qr(0,) has 
structure SL(2, 3) d an is subnormal in M. Furthermore there are just 4 M-con- 
jugates of this subgroup, and they commute pairwise. The critical condition to 
establish is that if k is a 4-element of Qr with Kg E M, then in fact Kg E N(Qr(c9,)). 
Set y = kg and x = y2 = zg; it will be enough to show that 7 = z (we are done 
if y E Q). If we had x 6 Q, then we could take 3 in &, , with Co(x) elementary of 
rank 5; but this group contains a conjugate of x, which we can take to be a, so 
that 7 EL, = L and x = 1, a contradiction. Thus x E Q, so we may assume -- 
f = (z and 7 E E. Now we may use action of O(M)L to identify elements of & by 

the notation (Z1 , f, , 2, , Z4) where fi E &; the elements of= are those with 

all four components nontrivial. We may take d = (& d g b”), and we seeGa is 
generated by: 

where &r = (6, c). We may assume k = (b” 1 1 ‘i), and we see that k centralizes 

in Q n Qa a hyperplane containing exactly one coset of conjugates of z, namely Z. 
Arguing symmetrically for J ( y E Qa n M - Q) we see that if 7 interchanged 
pairs of Qi, it would fix 10 conjugates (5 <a)-cosets) of z in Q n Qn . We must 
have 7 = i, as desired. Now we have the hypotheses of Theorems 7 and 8 of 
Aschbacher [3], so we conclude that G must be one of SZm(q) (5 G m \< 8) or 
Sp,(2) (the last is clearly too small). Furthermore Q1(S,) must be of the “funda- 
mental” type described there, so that q = 3. Now only L&+(3) among these 

-- 
groups has a large extraspecial subgroup of width 4. In particular, M = O(M)L, 
and (2.4) is proved. 

(2.5) Suppose t is not 2-central in M. Then n = 6 and E = -. We have 

M g 3%) . (t) and G of type Fi4 . 

Proof. We begin by considering the cases with n = 4. In view of 0(1.10)(b), 
our assumption 1 R : C(i)\ even means 1 f’tl n e / = 2 or 4 or 6. 
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Consider first the case E = -. Here the involutions of K = t; n R, are already 
conjugate in N(E) n C(t), so we can only have 1 ifl n E / = 4. Thus 1 N(L)/L 1 = - - 
12 or 24, and we see that N(L)/L = A, or S, (actually, part of the parabolic 
stabilizing the hyperplane K of E). In particular we get f # M’ by 0(1.10)(b), 
and so K = E n E(M). We see that ] E(M)& = 24 or 26; and by action a 3-ele- 
ment of N(L) we see E(M) must contain either a subgroup Z4 x Z, , or an 
elementary 24. The only candidate in (1.20) is U’s(3). But this group has no 
5-elements whereas C(t) does, a contradiction. 

Suppose now E = +. In the case R solvable, we obtain from Lundgren and 
Wong [12] that t is 2-central, whether O(m) has order 33 or 34. So we may 
assume E(M) is quasi-simple. In case i; < E(M), we have 2-rank at least 3 with 

24 < j M I2 < 26, so that E(m)/O(iC;;i) z Sp,(3), A,, A, by (1.20). However, 
we do not get C(t) < (t} x O,+(2) for these groups. Thus 1 f; n E(M)1 < 22 
and I E(M)I, < 25. Since all possibilities in (1.20)(a)(b)(c) have a single class of 
involutions, and t is not 2-central, we must in fact have f $ E(m). Suppose then 
that / fl n E(M)/ = 22. Then tm does not meet & so 1 tM n L / = 2 or 4. It 
follows that N(E)/E ’ IS a 2-group, since E is self-normalizing in Q,?(2). But then 
L n E(M) must by 0(1.10)(b) meet at least two involution classes, a contra- 
diction. We must have ( e n E(R)1 = 2. SinceE . E(&f)/i)lE(M) is a 4-group, we 
must have / iM n L 1 = 2 (and not 4 or 6). Thus / E(M)l, < 23. Among the 
possibilities in (1.20) we may rule out L,(g) since it has no involutory outer 
automorphism. In the other cases, except possibly L,(9), the restriction 

/ C(E(M))! < 2 1 O(M)/ forces O(M) f 1 and MS S, x E(M)(t). We rule 
out il, since outer automorphisms are 2-central in S, . Outer automorphisms of 
A, and L,(7) do not give C(t) < (t) x O,+(2). Th e same restriction eliminates 
L,(9), even if O(M) = 1. This takes care of all possibilities in (1.20). The 
contradiction eliminates the case n = 4 for Hypothesis (2.1) with t not 2-central. 

We turn to the more difficult case n = 6. With / M : C(t)1 even we have 

IW,? x 2s and E(%!)l, > 27. Eventually we will show these are in fact equalities. 
The main tool will be analysis of R,/N, for i E K#, where R is the group L n I?, 
of (2.3)(i). 

It is useful to observe first that: I im nE I is either 10 (resp. 6) or 16 when 
E = -.- (resp. -). For tR ne lies in t# by (2.3), and action of an Q4E(2) in 
N(z) n C(t) gives orbits of size 9 and 6 (resp. 5, 10 for E = -) on Kg. Since 
I tM n L 1 is even, only the above even possibilities may arise. 

From now on we fix i of type a2 in E n R, . Since R 4 N(E) by (2.3), we know 
K must contain involutions 2-central in M, and by action of an 524e(2) as above, 
we may as well assume z is 2-central. We consider the possibilities for R</N, . 
Certainly iii > L, from conjugacy already in C(t) n C(i). Since by (2.3) i has 
type a4 or c4 on &, we know from CQIJt) as in [2] that R,/Ni 7 Q,*(2), L,(2). 
The only possibilities left in (1.17) are L,( pi) s S, and Q,+( pi) z S, x S, . 
We shall see that these are parallel possibilities corresponding to O(M) -= 1 
and O(M) #: 1; and only the latter in fact will arise. We give first the argument 
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eliminating S, , repeating only in outline those ideas which recur in the case of 

Q4+w -- 
We suppose by the way of contradiction that Ri/Ni z Sa . We see that 

fT, A Ri already induces the full S, on the 3 a-conjugates of E in & . Since these 
conjugates intersect at (t, z), and they generate & , we get: 

(a) Z(Ri) = (t) x (z) and Ri < i?, . This forces iZi = (t) x 23S, by 
considering &conjugates of K containing Z. Now Ri = C(t) n C(Z) and 
Wi a C(Z); in view of (a), it follows that: 

(b) 1 C(z) : iT, 1 = 2 (thus 1 J? I2 = 28 and 1 E(M)]a = 2’). For certainly 
we can only have t N 2 in C(Z), and this must occur since C(Z) contains a Sylow 
group, and C(t) does not. Now we may refine our previous calculation to: 

- 
(c) 1 tM nz 1 = 10 (resp. 6) as E = + (resp. -). This now forces 

1 N(E)/L 1 = 23325 in both cases. We recall that ag N(L). We claim in fact: 

(d) C(ff) = L. For C(K) centralizes i and a conjugate Z’ in K, and thus 
by (a) acts on (t) x (2) and (f) x (z’). We conclude C(R) < C(t), as desired 
for (d). We see also that N(E)/L <L,(2). We have 5 1 1 C(i)1 so that N(R) is 
transitive on f(#. We see easily that F(N(L)/L) = 1. We must have: 

(e) N(L)/E g A, , acting as Sp,(2)’ on if. Now from 0(1.10)(b), we know 
a Sylow 2-group of E(M) is contained in N(z)), so we see E(M) has sectional 
a-rank 4, and Sylow groups of order 2’. From (1.19)(f) we might only have 
EtJW(R) cz u,(3), M22 , A,,, 4, . We eliminate the alternating groups, 
since they have no elementary groups 24 consisting entirely of 2-central involu- 
tions. We eliminate M,, , since its elementary subgroups 24 normalized by A, 
are in fact T.I. sets. So we have: 

(f) E = - and E(M)/O(M) = U,(3). Note we cannot have E = +, for no 
outer involution of U,(3) centralizes L&+(2). We see O(M) = 1 also: for if 
O(M) # 1, we see t $ C(O(&?)), and this forces involutions of type Z to centralize 
O(a), against (b). We claim finally that U,(3)(t) has no irreducible GF(2)- 
representation of degree 12. To see this, consider a subgroup 34. 52,~(3) = 34A, 
of U,(3). The subgroup 34 would be generated by four commuting conjugates of 

a 3-element fixing only a subspace of Q of dimension 4 and type +. (In 3%$), 
of course, this 34 becomes an extraspecial 31+4, and there is no problem with 
its maximal elementary subgroups of order 33.) This contradiction shows 
&IN, e 83 * 

SO we have R,/Ni g 1;2,+(2). Then 1 f; n mi 1 = 23. We choose 6 so that 
(2, s> is a hyperbolic pair for vi; then i?, = (l, , &). As in T(4.7) we get 
Ni = (z, n fl+)(&, n Ri), and so 23 < I N8 1 < 25. Also by T(4.7) we 
have (z) = Z($) n~?~ > L, n L, n Ri > (i), so in fact I 17;ii 1 = 25. 
We note that with R,, = E(&), the subgroup E, n O,(C,oQ) centralizes r 
and so lies in ni; we conclude in fact xi = O,(CQ)), extraspecial of width 2 
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and type +. Then Ri g (t, 0) x N& , where 8 is a suitable 3-element of Ri 
inverted by t, so that 0 also centralizes Ni . Notice also that 

I C(i) n (8) C(t): Ri 1 = 1 (resp. 3), when E = + (resp. -). 

We may now adapt parts of the proof in the previous case. We obtain the 
analogous results: 

(4 z*(Ri) = (t, 0) x (i) with R, < R,(e). 

(b) , fC(i) , = 6 with / C(t): Iii 1 = 2. 

(c) / t” nL 1 = 10 (resp. 6) as E = +(resp. -). 

(4 C(if) = (t7)E = (t, 8) x R. 

(e) N(E)/ir gg A, . 

(f) EZ-- and E(rn)/O(Tiq g U,(3). 

In this case we must have O(m) # 1 by the condition 33 j I i& I. In view of our 

previous remarks about representation of U,(3), we must have E(M) E 3%) 

and M = 3G) . (t). Th ese are the hypotheses of Parrott in [13], so we have 
I G I = 1 Fi4 1, which is what we mean by “G is of type F& .” Thus (2.5) is 
proved, leaving open the question of whether F& is the unique simple group of 
its order (even with such a centralizer M). It is possible now to compute much 
further local information in G, to agree with F& . Presumably it is not unduly 
difficult to characterize the group by some permutation representation. 

The greater part of our work is now done, and there is just one more group to 
be located. We have completed our analysis of the consequences of Hypothesis 
(2.1), so from now on we work under the assumption: 

HYPOTHESIS (2.6). For MEL* we never get R/N g QnE(2), but do get 
R/N z L,,,(2), where m = ?p. 

Remark. In view of (1.7)(i) and (l.ll), th is is the last case to consider for 
n = 4. 

As before, we first wish to determine C(t): 

(2.7) (a) t has type a, on &. 

(b) 
-- 

C(t) = (t) x s . L,(2), where s is a natural module for R/N. 

Proof. We can see that ff = @, t] has rank n by T(6.6); and 0 is a sum of 
two natural R/N-modules, so that [&, t] is elementary, and t has type a, . Further- 
more, as in (2.2) above (by analogy with T(4.5)), we may put a nondegenerate 
symplectic product (‘, .) on 8, preserved by a quotient Sp,(2) of CoJt). 

We consider first the nature of m. Since &z = 2 or 3, we may find d, 6 E ? -- 
with (E, , L,) covering R/N, it follows as in T(4.7) that R = (&, , Lb) and 
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m = (& n m(& n w). We have z, n m of rank &z by 0(1.10)(d), so 2” < 
/ m [ < Zn-l. Suppose we had e, n W = fl; that is, L, n m = E, n m for all 

d, 8 E r#. Then [La n Eb , E] < <a”) n (6) = 1. Now by T(6.6) we have 

P <z for all 6 E r#; further each= has rank n. As in T(4.5) we 

find that with respect to the inner product (., .) on 0 we have & =G of 

rank n - 1. Now the situation z, n &, of rank at least m centralizing E of 
rank at least +n + 1 contradicts the fact that La (of rank II - 1) acts as trans- 

vections according to d on Qa n Q (of rank n). (Compare T(3.1)(2)). Thus 
L, n N < N. 

In case n = 4, we have 1 m [ = 23, and N/(t) is then a natural module for -- 
R/N. Since involutions of R/N centralize hyperplanes of N, we get a = (t) x 

s -L,(2), as desired. (Compare T(2.5).) If n = 6, we get 1 flI = 24 or 25. In 
any case x/(i) must contain only a simple natural (or dual), and possibly a 
trivial, L,(2)-composition factor. By T(2.5) we get C&,,(2)) of rank 1 or 2, 
respectively. Since now each z, n w has rank 3, the latter case would involve 
E, n E, = (t), and so the rest of z, n m cannot be contained in the natural -- 
submodule for R/N. This forces L, n m > Cn(L,(2)), a contradiction. We must 
then have R = (t) x ,i!7 . L,(2). Notice that the parabolic subgroup 2zS3 = 
C,,,(Z) is also the stabilizer of the hyperplane L, n s of S. 

It remains now to show that i? is all of C(t). Unfortunately this is rather 
tedious. We will need to consider matrix forms as in (2.2)/(2.3). As in those 
arguments, we choose a basis for & through 0, so that {fii , i;,,+l-i} is a hyper- 
bolic pair for Q; and with respect to the product (., .) on 0, {& , &+rVi} is a 
hyperbolic pair. We may even choose the maximal isotropic subspace P of 0 to 
have basis (4 ,..., Zm}. 

Now Co*Jf) will be given by E . L@,(2), where E = C( 0) n C(t) and Sp,(2) 
are represented by matrices of form 

where A = Ad; where X-r = XJ, 

where the inverted T represents reflection about the antidiagonal. The matrices A 
have zero entries on the antidiagonal. We note that R < C(t) acts on ,?(r) and 
so on the maximal isotropic subspace P of 0; and thus on the series 

& > G > 0 > r > 1. It follows that the matrices X in the above form 
can be taken in the parabolic F *L,(2) of Sp,(2), where the matrices of F and 
L,(2) (resp.) are given by 

where B = BJ; ( 
Y 0 
0 1 (Y-y * 

We must consider how our i? can be embedded in this situation. 
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Clearly our group R covers the L,(2) of Q+,(2). We note also than C(t) = 
K 1 a, where R is the kernel of the action on Ecci’. For in case n = 4, fT already 
induces a full S, on these 3 conjugates; and for n = 6 our subgroup L,(2) acting 
on these 7 conjugates is maximal in A, , and not normalized by an element of 
S, - A, . Our argument above showing L, n w < min fact showed fl 4 C( 0); 
we see then that m n C( zi) = (f), and s must project onto a subgroup or 
rank m of F. And the unique minimal nontrivial L,(2)-submodule in F is given 
by matrices as above with B of form 

n = 4: 
a b 

( ) c a’ 
n = 6: 

with a + b + c = 0. Now we see [K n E, i?] < R n E = (f); indeed, since 
S *L,(2) = R’ we get K n E < C(a). Now we may compute in both cases that 
C,(R) = (i), so that in fact E n E = (i). For n = 6 we see 2(26 *L,(2)) = 1 
so that R n C(t‘) = (i) and C(t‘) = R. F or n = 4, Z(2a .L,(2)) is given by the 
matrix B of form 

4 0 
( ) 4 4 * 

Suppose such an element ii falls into C(t) (hence, into R). Then we see C(r)/(t) 
covers the full parabolic 2aL,(2) of Sp,(2). W e c 1 aim in fact a subgroup J covering 
the 23 of this parabolic may be taken inside our complement Q,(2). For C,(J) is 
defined by matrices B of the form 

0 
CZ: al) 

. 
2 

So the E-part of elements of J must have this form. Since u actually commutes 
with R’ and CE(R’) = (i), we get b = 0 and may assume a = 0 on replacing by 
2 if necessary. Now the value of a = 0 or 1 determines whether involutions 
of J have type a4 or c, on &; since they are all conjugate by L,(2) and form a 
4-group, they cannot all have a = 1; so they have a = 0. Furthermore, not all 
three can have b = 1; for some v with b = 0 we see z is a transvection of 
Sp,(2); by conjugacy under L,(2) of the three elements of this type in J we get 
b = 0 for all elements of J; so we have J < Q,(2). 

Suppose in particular we have an element 2 = G as above which is a trans- 
vection in Spa(2); it must then be of type a, on &, and we argue to eliminate this 
case. Now aM must be a class of 3- or {3,4}+-transposition in Z < O,(2). 
Notice we could not have aE Z*(m) with iE inverting O(M): for by (1.7), 
O(Z) must be fixed-point-free on &, so that [&, a] would have rank n = 4. 
Thus we have E(@)) = E(fM), and we may use the fundamental work of 
Fischer [32] and Timmesfeld [28] to determine E(m)/O(a). Suppose first we 
have a class of nondegenerated (3,4}+-transpositions. Then EE’GI is a uniquely 
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determined class of 2-central involutions in a suitable Chevalley or twisted group 
over GF(2). Since 1 O(a)] < 3 we get 1 C(O(m))/ < 2 1 O(M)l; and now since 
L has rank 3, we see that L n E(M) must meet the 2-central class of 2, contra- 
dicting (1.9). So we suppose now that iE determines a class of 3-transpositions. 
In the case of a symplectic or unitary group over GF(2) (except possibly 5’~,(2) = 
S, = O,-(3)) the normality of e n E(m) in a Sylow 2-group of E(M) forces this 
intersection to meet the class of a, a contradiction as before. Now of the remaining 
possible 3-transposition groups, only a few could fit inside O,+(2), and we 
consider them individually. The condition L weakly closed of rank 3 eliminates 
the possibilities: a a transvection acting on J&-(2) = Ud(2), a a transposition of 
S, or S,,, . The case of a transposition acting on A, = L&+(2) or A, is ruled out 
by the representation theory, which would force the 2-central involutions in 
L n E(M) to centralize more than a 4-dimensional subspace of &, contradicting 
what we already know. The case of A, leads via irreducibility on & in (1.7) to 
the situation M = S, x S, , eliminated in (1.17) (actually, considered in (3.2)). 
The only possibility left is for a to be a transvection of O,-(2) = 5’s; but here 
we use irreducibility to get icI = Ss x O,-(2)-and this is the case of Hypothesis 
(2.1), contradicting Hypothesis (2.6). W e conclude finally that there is no such 
a= iii? in M. 

This completes the proof that C(f) = a when n = 4. We also get Cc-r;> = f; 
in both cases because we have determined this inside C(t). So (2.7) holds. 

We get also the exact analog of (2.3): 

(2.8) Assume n = 6, and R = E n i?’ (recall fT’ = s . L,(2)). Then involutions 
of K are of type a, or c, on &, and those of E - R have type a6 or cg . In particular 
f # iV’ and ff z N(E). 

Proof. Once again K, elementary of order 24 and normal in CR(~)), projects 
onto J = 02(Cspg(a)(c?)) in our complement Sp,(2). The assertions of (2.8) 
follow just as in (2.3). 

(2.9) We have n = 6, icI s 3Gz, * (f), and C of type J4 . 

Proof. First we assume n = 4, to eliminate this case. As noted under 
Hypothesis (2.1) we may assume by [12] that we are in the case E(a) quasi- 
simple. Recall as usual that 1 C(E(@)l < 2 1 O(M)l. If we had ZGE# n C(E(M)), 
then J&/N, contains E(m), against our assumption (2.9) in view of (1.17); so 
z n C(E(M)) = 1. Suppose first i is 2-central in M. From 0(1.10)(b), M has 
sectional 2-rank 3 and 1 m I2 = 24. In (1.20)(a)(b) we could only get 2-rank 3 
(even with outer automorphisms) from L,(8), but this would contradict 
1 m ] = 24. Now with i not 2-central, we have I iM n L 1 = 2 or 4 or 6. Since - 
NR(E) = LN, this means I N(L)/L ] = 4 or 8 or 12, so ] m I2 = 26 or 26. Suppose 

- -. 
first 1 &i 1s = 26 so that N(L)/L 1s of order 8, and Sylow in L,(2). Then N(E) 
fixes a flag ofL; in particular by 0( 1.10)(b) we get z n Ef’ < z, so 1 E(ii?f)l, < 26. 
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Furthermore [ tM fl E 1 = 4 forces [E A m’ 1 = 22. However, action of N(L) 
then forces L to meet at least two involution classes in E(M), whereas the groups 
in (1.20)(a)-(c) h ave us one class. So we may assume / Zi I2 = 25. In particular j t 
t 4 E(M) since f is not 2-central, and all possibilities in (1.20)(a)-(c) have a 
single involution class; we get in fact I E(M)12 < 23 from (1.20). Now in case 
1 L n E(M)1 = 22 we can only get 1 fD n f; / = 2 (not 4, since I M I2 < 25). 

But then as above e meets two involution classes of E(M), a contradiction. 
Finally we might get IL n E(m)1 = 2 only for E(@/O(@) = L,(9). In this 
case, the involution f of E n E(M) must satisfy either E a C(s) or .R,/Rz E 
L,(2). The latter is ruled out by the work above, showing f is not 2-central. The 
former is not the case in Aut(L,(9)). Th is contradiction finally eliminates the 
case n = 4. 

So we now assume n = 6. We look first at the case t is 2-central in JiZ. Here in 
view of (2.8) a Sylow group of M’ is found in R’ = s .L,(2), so that E(R) has 
sectional 2-rank 4 and 1 E(M)12 = 26. As in (2.4) we could only get E(M)/O(M) = 
L&*(2). We rule out the case O(M) # 1, since L&*(2) $ C(i) by (2.7). When 
O(m) = 1, we get a contradiction since no outer automorphism of L&*(2) 
centralizes a subgroup 23 . L,(2). 

Now we know f is not 2-central. The rest of the proof will follow closely that 
of (2.5). First we note that N(L) n C(i) already has orbits of size 3, 6, 6 on E#. 
Since I tm n E / is even and this set lies in the coset ii, we get 

jfmnLI =4or 10or 16. 

We consider now involutions of R#; in particular, we fix Z E R n O,(p). Of the 
classes visible to us, at least this one must be 2-central in icI. Again the proof 
divides into two parallel cases, depending on the structure of Ri/Ni , and we -- 
show only R,/N, s Q+(2) may occur, by eliminating first the case ofL,(2). 

Thus we assume first RJN, z L,(2). We establish the following results 
exactly as in (2.5): 

(a> Z(ir,) = (i) x (i} with Wi < a,. 

(b) I C(Z) : R, I = 2, so I M 1 = 28 and I E(M)12 = 2’. 

(c) IPnnLI = 10 and / N(E)/E I = 23 . 3 . 5. 

(Note the possibilities 1 fz n t I = 4 and 16 are ruled out by (b), since Z is 
2-central.) 

(4 C(R) = L 

We also obtain: 

(e) N(L)/L G S5 . 

For as before we get F(N(L)/L) = 1, and .by order we can only get 
E(N(E)/ g A,. Indeed we see N(f;)/z must be S, , acting in its 4-dimensional 
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representation on R with 3-elements fixed-point-free. We see now in N(E) that 
E(m) has Sylow groups of order 27 and sectional 2-rank 4. We obtain 

(f) E(M)/O(m) e M,, . 

For the possibilities are given in (1.19)(f); with A,, , A,, eliminated as in (2.5). 
Furthermore the elementary subgroups of U4(3) which are weakly closed are in 
fact normalized by A, rather that S, (as we saw earlier). So only M,, is possible. - - 

Now, just as in (2.5) we get O(z) = 1 from the assumption that Ri/N, g 
L,(2). It is easily checked from a character table that the group M,, * (f) has no 
12-dimensional GF(2)-representation, and this contradicts (1.7). 

So we may now assume R,/N, z Q,+(2). As in (2.5) we may choose d, 6” to be 
a hyperbolic pair so that I?* = (L, , Lb) and Ri = (La n fl&?, n Ri), and 
obtain ni extraspecial of width 2 and type +. We get iTi = (t, 8) x fld . S, , 
where 0 is a suitable 3-element of & inverted by t. Now we may argue as above to 
obtain the analogous results: 

(4 z*(a,) = (i, 0) x (i} with & < Rt(8). 

(b) 
/ p) , = 6 with 1 C(Z) : Ri 1 = 2. 

(c) IPnEj = 10 and 1 N(L)/E 1 = 23 - 3 - 5. 

(4 C(R) = (8)E = (f, 0) x K 

(4 N(L)/L g S, . 

(4 - - E(M)/O(M) E M,, . 

As above, but now with R,/N, = L$+(2), we can only get 1 O(M)1 = 3 with 

w E 3M,, * (f). It follows from work of Janko [lo] that G is of type J4 . Now 
(2.9) is proved. Notice that the question of uniqueness (and also existence) is 
again left open. 

We have now considered all possibilities in (1.17) for n = 4. There is 
essentially one more case to eliminate for n = 6. 

(2.10) In case n = 6, suppose for tgz# we never get R/N E QeE(2) or L,(2). 
Then no simple group G is possible. 

Proof. In view of (1.17), we must get some R/N g L,(2) or Q+(2). By 
T( 11.9), the case 52,+(2) must arise; so we fix i with such R/N. 

We obtain certain results on i? as in the analogous parts of (2.5)/(2.9). We 
choose [a”, &] to be a hyperbolic pair of g and get i? = (e, , &,) with fl= 
(E, n R&E, n m). We have (t) = Z(R) n f; and ml < (i) from T(4.7). Since 
m is generated by at least three R-conjugates of L, n N, each centralized by a 
Sylow 2-group of R/N, we see (t) = E, n E,, n N. It follows since 1 E, n m 1 = 23 
that 1 fl I = 25. Note also that P = [Q, El has rank 4 with elementary preimage 
V, so i has type a, on &. 
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By way of further explanation: Recall that in the actual groups G already 
determined, having n = 6 with some R/N = Q+(2), we found R/N acting 
naturally on n/(t). We will be able, with some effort, to establish this in the 
present case. However, the real groups G also have other, “larger” choices of R/N 
available, which is not true in the present case. The absence of such under 
Hypothesis (2.10) will allow us to contradict this result on the action of R/N. 

For we notice first that a Sylow 2-group of R/N centralizes a plane of m/(t), so 
this cannot be a natural module of R/N = 4+(2). To contradict this-that is, 
to establish the analog of the situation in (2.5)/(2.9)-we must make a closer 
analysis ot C(t). 

Since now t has type a4 rather than us , it will be more complicated to 
investigate C(t) inside O,,(2). Th is is most conveniently done by means of 
Chevalley-group theory. We adopt a numbering for the root system 

/ 
05 

.-.-.-. 
’ 2 3 4\.6 

Our element t of type a4 can be taken to the product of involutions corre- 
sponding to the roots 

1 1 12 ; and 0122;. 

Then O,(ColJt)) is th e unipotent radical U of the parabolic subgroup defined 
by the fourth fundamental root. We have Z(U) elementary of rank 6, and 
6, and U/Z(U) I e ementary of rank 16. A complement to U in the full parabolic is 
provided by the group L x Q; where L is the L,(2) generated by root subgroups 
for the first three roots, and Q the Q4+(2) defined by the fifth and sixth. A 
complement to U in Cola(t) is provided by Sp x Q, where Sp is a subgroup 
Sp,(2) provided by ~~(1) x,(l) and x,(l), where 

ol=l 0 0 0 ; p=o 0 10 8 y=o 1 0 0 ;. 

We observe that U/Z(U) is a tensor product of the natural modules for L and 52, 
and hence for Sp and Q. In particular, U/Z(U) is a sum of four natural modules 
for L and for 9; a decomposition for L is provided by the natural L-conjugates of 

1 0 
0 0 0 1 o’ 0 0 0 1;, 0001;, 0 0 0 1 ;I. 

A decomposition for 52 is provided by the natural Q-conjugates of 

I 0001;, OOlli, 0 1 1 1;, 1 1 1 1 ;I. 

Now we are in position to do some computing inside CoJt). 
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We claim first that e n Z(U) = (i). For Z(U) consists of involutions of type 
a2 and a4 . In view of (1.9) such a @ EL n Z(U) would have type a, with [&, P] = 
P = [&, t]. But then we would get a contradiction as in T(4.7). Thus 
L n Z(U) = (f), and by action of R/N it follows that En Z(U) = (t>. Thus 
Urn/(t) must be an R/N-submodule of U/Z(U). (We see m < U since 
m centralizes the chain Q > Co(V) 3 p.) We consider R/N next. Since our 
complement 52 is trivial on P, and Sp acts naturally, we see our group R/N must 
cover (modulo .L’) a natural subgroup L$+(2) of Sp. Now the restriction of 
U/Z(U) to four natural modules for 5’~ (and hence for a natural subgroup 
QdL(2)) forces R/N to act naturally on n/(t). This contradicts our earlier 
assertion, and establishes, (2.10). 

In view of (1.17), the results (2.5)/(2.9)/(2.10) establish Theorem B. Further- 
more the results (2.5)/(2.9) will establish Theorem A once we have dealt with 
certain special cases for J?i in Section 3. 

3. FURTHER ANALYSIS OF M FOR n = 4 

We now take up various cases in width 4 which we left aside earlier, once we 
had determined M. Thus we assume n = 4 throughout this section, and we may 
be able to assume certain of the other preliminary results, depending on further 
assumptions. 

(3.1) (Reifart) dssume E is a T.I. set and (Ln) g&(8). Then G gg 3D,(2). 

Proof. We give a short independent proof, using the viewpoint of Section 3 
of 0. We observe first that the representation of L,(8) = E(R) = 02(M) on & 
is afforded by the Steinberg module. Its Brauer character is provided by the 
unique ordinary character of defect 0 (degree 8). For involution t, we notice that 
[&, t] has rank 4 (since the Steinberg module is the tensor product of the three 
algebraically conjugate natural representations). Furthermore t inverts a 
3-element 0 which must centralize exactly a quaternion subgroup of order 8 in 
Q; it follows that t must be of type cq on &. In particular for a preimage t, we 
have Co(t) Abelian but not elementary. If we have t E zc, then by symmetry 
Cot(z) = Qt n M is not elementary, and t has square roots in this group; 
however Sylow 2-groups of % are elementary, a contradiction. Thus zs n M _C Q. 
We may apply the result of Timmesfeld [29, Corollary C]; in the list only 
3D,(2) has a large extraspecial subgroup. So (3.1) is proved. 

Remark. In [27] Thomas also gives a characterization of 3D,(2”) by centralizer 
of involution. To use that work, we would need to know a priori that %i = E(R) 
and the extension of Q byL,(8) is split. 

Our next result takes care of a pathological case in (1.17): 
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(3.2) Suppose for some t EL# we have R/N z A,, and <J?) = S, x A, . 
Then no simple group G is possible. 

We fix t as above; we have t E C(E(m)) z S’s . (We may use preliminary 
results through (1.16), as well as (1.18) to get E(B) quasi-simple.) The idea of 
the proof is as follows: We will show suitable involution-cosets must contain 
conjugates of z. This will lead quickly to contradiction. 

We begin with some facts about the representation of Ron &, as in Section 2 
of 0: 

(3.2.1) (a) We have & = w x mi, where m is a natural E(M)-module. 
P = [&, t] = (ri.@: z?r E I%‘}. The group C(E(M)) z Ss permutes {@, L?“‘, 8) in 
the obvious way. Further R = (EM). 

(b) t has type a4 on &; so do other involutions of m. 

(c) Gis provided by the nonzero vectors of @, pi, p. 

Proof. The assertions of (a) are easily established as in 0(2.2)/(2.3); in 
particular, N(P)/(t) . t IS a most Sp,( P) = S’s . Type of involutions of M on & 
is handled as in O(3.1). We cannot have &?g S, x S, , since transvections 
Sp,(2) would be of type a2 on &, against (1.18). Finally .zG n Q is determined as 
in 0(2.5), since E(m) is transitive on r#. 

(3.2.2) Involution-cosets of(t) and E(R) contain conjugates of z. 

Proof. We consider first the canonical situation of (1.17) with d E Q. We alter 
notation slightly so that d E m-that is, ci: is centralized not by t but by an 
O(R)-conjugate of f. Here by 0(1.10)(d) we have Q n QG elementary of rank 
5. The orthogonal complement d’ to a” in @‘(for the scalar product on mdefined 
as in T(4.5)) has rank 4. As in 0(2.7), we see for a preimage @of @‘that C,t(a) 
has rank 4; and intersects Qa in a subgroup of rank 2. We observe by (3.2.1)(a) 
that C&(a) consists of conjugates of z. A particular involution of C,t(a) - Qa 
may be taken to lie in the centralizer of a 3-element which is not fixed-point-free 
on QJ(a). Now if we reverse the roles of z and a, we see C,t(a) becomes a 
subgroup projecting onto a hyperlane of E. The hyperlane must intersect E(m). 
Also the particular involution we chose centralizes a 3-element fixing points of 
& and so lying in E(M); this involution may be taken to give t. So (3.2.2) 
is established. 

We may consider the consequences of (3.2.2) in the light of the methods of 
Section 3 of 0. So let t E xc n (M - Q) with i E C(E(M)). We show first that 
t N tz. Since M has no elementary groups of rank 5, we get Q n Qt # 1 by 
O(1.15). Furthermore by O(1.13) (using (3.2.1)(b)) we see Cm(t) contains a 

quotient A,, which forces Gt = P. Thus (Q n Q&Z) is an elementary 
group of rank 5, consisting of conjugates of z by (3.2.1)(c); and t EQ~ for all 
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CT E (G)#. If d = &.Zi for 6 E r chosen as in (3.3.1)(a), we obtain a decom- 
position: 

QnQa= (6tY:B~z5~) x (6) 

just as in O(2.7). Thus we may write Qa n Q 17 Qt = (a) x (b, c} for suitable 
6”, c” E dl (inside P) but 8 J c”. N ow we have (t, Z) G Qa n Qd for all d E (b, c)#. 
The condition “(x, b, c) consists entirely of conjugates of a” means (in view of 
(3.2.1)(c)) that (a, b, c) lies in some V,, = [Qa , t’] for suitable t’ E C(E(M,/Q,)). 
This forces nds(,,c)s (Qa n Qd) to lie in V,, also. Thus we get (t, x) G V,, , 
and so t N z N tz in view of (3.2.1)(c), as desired. 

It follows also from the above that all involutions in the coset t are conjugate; 

also that Q n &It = (t), since Q n Mt has rank 5 and Q n Qt has rank 4. 
Now we consider x E .eG n (M - Q) with 3~ E(M). We get Q n Qz # 1 

as above using O(1.15). And using (1.13), action of a 3-element of C,(X) 
projecting onto O(M) forces Q n QZ to have rank 2 or 4. The case of rank 2 

would force QZ n M to have rank 3 and so (we may assume) contain t. But then 
a suitable preimage t E z G lies in QZ n M, contradicting our previous deter- 

mination Qt n M = (t>. (Recall t EQ% iff x gQt by 0(1.6)(a).) We then get 

G = [Q, %] of rank 4, and QZ n M = (%). 
Now we may obtain our contradiction. For just as in O(2.8) we see the exten- 

sion of Q by A, splits; it follows that we may choose x in a complement A, , 
and then CM(*) is Co(x) extended by a group S, x D,; where we take t E ,$ n 
(M - Q) with Ss = (t, 0) and (t, 0) = C(E(m)); and D, = CAB(x). We see 
that QZ n M is just the subgroup (x) (QZ n Q) not intersecting (t, z). Thus in 
M,/Qz we get an elementary subgroup of rank 4 provided by the images of 
(t, Z) x D,/(x). This contradicts 8? E S, x A,. So (3.2) is established. 

Finally we come to the bizarre case corresponding to Harada’s group F5 . 
Here we may proceed as in the argument of Reifart and Stroth in the following 
section: Beginning with the 2-central centralizer M, we construct C(X) for an 
involution x not 2-central in G; then G may be identified by work of Harada [9]. 

(3.3) Suppose (LB) z A, \ 2, and E(M) g A, x A, . Then G is of type F5. 

Notice we may use preliminary results through (1.17). 

Notation. Set E = E(m) = 2 x B, where 2 and B are the components. 
Let X1 E Syl,(A). 

As in Timmesfeld’s construction in T(5.2) corresponding to this case, we may 
fix t E E - E, so that B = Ai. Then we may suppose E = <Z) x (ZZ’ : r! E Ai). 
In particular in (1.17) we have R/N E Q*-(2): Indeed as in (2.2) we see 1y = (t) 
and 2 = (t) x i?‘, where R’ = (& : KE A). In the usual way we see i has 
type a,(&), since 17 = [&, t] has rank 4 and elementary preimage. In particular, t 
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could not centralize O(m) if O(M) # 1, by structure of Co,(t); and O((L’)) = 1 
then forces O(Z) = 1, E = F*(R). It follows that iiZ is at most S, \ 2, . Indeed, 
our assumption on (EM) forces [f,M] g R’, so that Mis at most &f)(t), where 
f acts as an outer automorphism of A and B, and C(t) = R’(f) x (t) = (t) x 

O,-(2). We will be able to do the necessary analysis for E(t), even through &! 
might be slightly larger. 

(3.3.1) NE(L) = (Jr X Jr’)(80’), where B is a 3-element of .NA(A~). In par- 

ticular, we have 1 # 1 = 75. 

Proof. Determination of NE(E) is easy. Since N(E) = C(Z), it follows in 
any case that ] M : C(Z)] = 75. 

We obtain further information about the representation of A? on & by con- 
sidering, in contrast to (z, a vector f of nonsingular type in the orthogonal 
space P. 

(3.3.2) (a) C,,,,(Z) s S, . This quotient centralizes in C,(x)/(@ only a group 
(2, jj) where y is a 4-element. 

(b) & is a sum of two modules for 2 represented as SL,(4). Similar remarks 
hold for i?. 

Proof. Since there are just 135 cosets in Q containing involutions, (3.3.1) 
forces 1 p I < 60 so that / CE,r,(n)l > 120. Furthermore this centralizer 
intersects R’ in a subgroup S, . We see that 23 and Y do not divide I C,(Z)] ; but 
but since this order is at least 60, 5 must divide it. Now any 5-element of CR(%) - - 
lies outside A, B, R’ and so centralizes no 3-element of C,(Z). Using Sylow’s 
theorem, we can only get C,(Z) of order 60 and structure A,; so C,,,,(Z) z S, . 
In particular, I p I = 60. In view of (3.4.1) involutions of Q are conjugate to x 
or a (hence z). In particular, structure of C(Z) and C(Z) shows that the former 

does not centralize another involution-coset in G/(n), though it must fix 
a point of this 6-dimensional space. So (a) is proved. For (b), let m be a minimal 
J-submodule of &, and so of dimension 4. If we had also i? < N( @‘), then we 
would have B <. C( I@), and centralizers of involutions of type rZ or 3i: in @would 
be too large tar (3.3.1) or (3.3.2)(a). So B $ N(m). Indeed for suitable involu- 
tions 7 E B we get Q s m x p, a decomposition of J-submodules. To see 
that the representation of 2 on m is not that of Q,-(2), note in (3.3.1) and 
(3.3.2)(a) that no 3-element of 2 centralizes an involution of Q - (a). Now 
(3.4.2)(b) is proved also. 

We may now establish the local information that will lead us to structure of 
C(x). We let an asterisk denote images in the quotient C(x)* = C(x)/(x). 

(3.3.3) (a) C,(x)* is extraspecial of width 3 and type +. 

(b) C,(x)* normalizes a maximal subgroup of C,(x)*: a central product of 
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(f *> and F”, where f * is a 4-element, and F* is extraspecial of width 2 and 

trpe i-e 

Proof. Since x is an involution, Co(x) = <x> x D, where D is extraspecial 
of width 3 and type + , giving (a). Now since x and x2 are not conjugate to z, we 
have C(X)* r\ C(z*) = C,(X)*. By (3.3.2)(a) this group is just C,(x)* extended 
by a group S, (and possibly an extra involution a 4 i?(i) as mentioned earlier). 
Now the &module Co(x)*/(z*> of dimension 6 has just one nontrivial com- 
position factor, of type SL,(4)- since a 3-element B of C,(X) centralizes a sub- 

group of rank 4 of &, and so of rank 2 in Co(x)/(3i;>. In particular 
F* = [C,(x)*, 0*] is extraspecial of width 2 and type + . Now if we let f be the 
Celement y of (3.3.2)(a), then C,(x)* normalizes the central product of (f *> 
and F*. (Compare T(2.3).) So (3.3.3) is proved. 

(3.3.4) C(x) - 22s * 2. 

Proof. First we consider a four group (x, a}*, where a E zG fl C,(x). Since 
0(&b(X)*) = I f or all 6 E <x, a>+ the usual generation lemma shows 
o(c(x)*) = 1. s ince our reasoning for x applies equally well to any x’ E ,sG 
with x E Qeg , we see each such z’ brings into C(x) a different group CMJx) of the 
structure <x) x 2rfs . S, . We get x’* 4 Z(C(x)*). As in 0( 1.8), conjugates of z* 
generate the unique minimal normal subgroup of C(x)*, and it follows that 
z*(c(x)*) = 1. 

Now we claim that Os(C(x)*) contains at least (f *)F* extended by A, . This 
might only fail if the A,-module (f*>F*/(z*) were decomposable. Since the 
action of A, on Co(x)*/(z*> is self-dual (with A, < G,+(2)) this would force the 
A, to centralize a subgroup of rank 2 of C,(X)*/(X)*, contradicting (3.4.2)(a). 

We let u be an involution such that (u*> is a complement to <f *)F* in 
C,(X)*. We suppose u* E Os(C(z)*). Then F*(02(C(x)*)) = C,(x)* is extra- 
special of width 3 and type +. In view of (1.17) we may apply Theorem A for 
width 3 to conclude Oa(C(x*)) E U,(2), L,(2), Mz4, or He. In particular we 
would get C,(~)*jclC~(x)* E U,(2) or L,(2), a contradiction. 

so u* $i OS(C(x)“), and F*(02(C(x)*) = <f *)F* is symplectic but not 
extraspecial. It follows from Aschbacher’s classification theorem [l] that 
Os(C(x)*) g HS; and with u* we get C(X)* g Aut(H5’). Furthermore we see x 

has square roots in C,(x) such as tf. It follows that C(X) s 2% .2, proving 
(3.3.4). 

Now by work of Harada [9] we get G of type F, , proving (3.3). 
The results (3.1)-(3.3) fill in the gaps left in (1.11)/(1.17)/(1.18). Thus 

Theorem A is now fully proved. 

481/S%-3 
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4. PROOF OF THEOREM C 

We now assume the hypotheses of Theorem C. We have all the results of 
Section 1; in particular we may assume G is simple. In both cases the proof will 
proceed by going from ikl to structure of C(X) where x is a non-2-central involu- 
tion. We describe first the representation of M on &, including &central involu- 
tions a E a+ n Q - {a}. 

It is convenient to begin by considering the larger case n = 12. The 24-dimen- 
sional irreducible & for M g Co. 1 must be given by /l/Z/l, where rl is the Leech 
lattice, as shown by Griess in [8]. For II, we will use the notation of Conway’s 
article [5]. The weakly closed subgroup L of rank 11 must be given by the images 
of the transformation l c for C a set in the Golay code %; and then N(E) = C(Z) 
is the image of the group N. In particular N(L) has the structureL * Mz4 (split). 
This is the group fixing a “coordinate frame” in /l; of course all 48 vectors of a 
coordinate frame are identified in /l/2/l, since 8v, - 8v, E 2/l. Thus d is the 
image of a lattice vector of type A, . 

We may consider instead a involution x E Q - zG, such that f is the image of 
a lattice vector 4w, - 4v, of type fl, . Then C,(x)/(x) is an extraspecial group 
of width 11 and type +, extended by a subgroup Co.2 of Co.1. 

Now in case n = 11, the 22-dimensional irreducible module for m s Co.2 is 
provided by the section 4’-/(Z) of the orthogonal & just described. The weakly 
closed subgroup L of rank 10 is again provided by images of transformations l s , 
where now %? is a set in the Golay code orthogonal to the set (0, r}. Then if 
L = L, for a E zG n Q - {z} we have N(E) = C(Z) of structure L . Mz2 (split). 
Indeed if we take (z to be the image of 8v,, we see that 8v, = (4v, + 4v,) + 
(4v,, - 4v,) and so N(E) is the subgroup .422 of Conway. 

If instead we take 4 to be the image of 4~s - 4v, , we notice 4v, - 4v, = 
(40, - 4v,) + (4v, - 4~~); we see then that C(Z)/(Z) is an extraspecial group 
of width 10 and type f, extended by a subgroup .222 of structure Ti,(2) .2 
inside M = Co.2. 

Now in both cases, we use an asterisk to denote images in the quotient 
C(x)* = C(x)/(x). W e o bt ain a number of easy results just as in (3.4.4): 

c(x)* n c(z*) = c,(x)*. 
Co(x)* = F*(C,(x)*) is extraspecial of width 10 or 11 (respectively). 

z*(c,(x)*) = 1. 

We consider the case n = 11. Here C,(x)* has the configuration 21+2a . U,(2) .2. 
By the result of Reifart [17] or the author [24], we see that 02(C(x)*) = 2E,(2) 
and C(x)* c Aut(2E,(2)). Since we can find square roots of x in CM(x), we get 

C(X) E 2%&2) .2. Now it follows from the result of Stroth [29] that G is of 
type F2 - 
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G Width of Q Type n = M/Q 

-L+d2) 

Un+d2) 

Q;+,(2) 

J2,,c4 

4 = -L(9) 

Ml, 

Hal= Ja, J3 

MI,, AB 

G(3) 

U,(3), L(3) 

Mz4, He 

sz 

‘D,(2) 

f&l+(3) 

co. 2 

co. 1 

Fb 

F3 

‘FL 

b J4 

%d2) 

-%(2) 

‘F2 

bFl 

-G(2) 

E,(2) 

n + 

n>2 + 

n even Z 2 + 

n even > 2 + 

1 + 

1 - 

2 - 

2 + 

2 + 

2 + 

3 + 

3 - 

4 + 

4 + 

4 + 

4 + 

4 + 

4 + 

6 + 

6 + 

10 + 

10 + 

11 + 

12 + 

16 + 

28 + 

L(2) 

G(2) 

& x Gz+G9 

& x Qd.3 

trivial 

s, = O,-(2) 

A, = L’,-(2) 

s, 

s, x 3 

s, x s, = f&+(2) 

L,(2) 

Qll-69 

L,(8) 

solvable 34 * 28 

~Pd2) 

Q*+(2) 

A,\-% 

A8 
3G) *2 

GP ea -2 

u&3 

L(2) 

co. 2 

co. 1 

Q:,(2) 

E,(2) 

a Uniqueness problem remains. 
b Existence and uniqueness problems remain. 
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We turn to the case n = 12. Here C,(x)* has the configuration 21+22 . Co.2. 

By the result just proved we must have C(X)* E F, , and similarly C(x) s 2GZ . 

But now with both centralizers M = C(Z) and C(X) g 2GZ , we have the 
assumptions of Griess [8] for a group of type Fl . Now Theorem C is proved. We 
have not addressed the uniqueness problems for FI and F, (or existence for FJ. 
The uniqueness proof of Leon and Sims [ 1 I] requires further conditions which 
should not be unduly difficult to establish. 

Remarks. This paper, with the earlier work [17, 18, 23, 241 completes the 
determination of possibilities in the exceptional cases of the main theorem of 
Timmesfeld [30]. Thus simple groups with large extraspecial subgroups are 
determined. For the convenience of the reader, we include these simple groups 
in Table I. 

1. M. ASZHBACHER, On finite groups in which the generalized Fitting group of the 
centralizer of some involution is symplectic but not extra-special, Comm. Algebra 
(7) 4 (1976), 595-616. 

2. M. ASCHBACHER, On finite groups in which the generalized fitting group of the 
centralizer of some involution is extra-special, Illinois J. Math. 21 (1977), 347-364. 

3. M. ASCHBACHEX, A characterization of Chevalley groups over fields of odd order, I, 
Ann. Math. (2) 106 (1977), 353-398. 

4. M. ASCHESACHER AND G. SEITZ, Involutions in Chevalley groups over fields of even 
order, Nugoyu Muth. J. 63 (1976), l-92. 

5. J. H. CONWAY, Three lectures on exceptional groups, in “Finite Simple Groups,” 
(M. B. Powell and G. Higmann, Eds.), Academic Press, New York, 1971. 

6. U. DEMPWOLFF AND S. K. WONG, On finite groups whose centralizer of an involution 
has normal extra special and abelian subgroups, I, J. Algebra 45 (1977), 247-253 ; 
II, J. Algebra 52 (1978), 210-217. 

7. D. GOFBNSTEIN AND K. HARADA, Finite groups whose 2-subgroups are generated 
by at most 4 elements, Mem. Amer. Moth. Sot. 147 (1974), l-464. 

8. R. GRIESS, The structure of the Monster simple group, in “Proc. Conf. Finite Groups,” 
Academic Press, New York, 1976. 

9. K. HARADA, On the simple group F of order 214 . 36 . 58 7 . 11 . 19, to appear. 
10. 2. JANKO, A new finite simple group of the order 86, 775, 571, 046, 077, 562, 880 

which possesses M,, and the full cover of M,, as subgroups, J. Algebra 42 (1976), 
564-596. 

11. J. LEON AND C. C. SIMS, The existence and uniqueness of a simple group generated 
by {3,4}-transpositions, Bull. Amer. Math. Sot. 83 (1977), 1039-1040. 

12. R. LUNDGREN AND S. K. WONG, On finite simple groups in which the centralizer 
not an involution is solvable and O,(M) is extra-special, J. Algebra 41 (1976), I-15. 

13. D. PARROTT, Characterizations of the Fischer groups, II, Trans. Amer. Math. SOL, 

in press. 
14. D. PARROTT, On Thompson’s simple group, J. Algebra 46 (1977), 389-404. 
15. N. PATTERSON, Unpublished thesis, Cambridge University, 1972. 



16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 
25. 

26. 

21. 

28. 

29. 

30. 

LARGE EXTRASPECIAL SUBGROUPS 281 

N. PATTERSON AND S. K. WONG, A characterization of the Suzuki sporadic simple 
group of order 448, 345, 491, 600, _l. Algebra 39 (1976), 277-286. 
A. REIFART, A characterization of the simple group Dla(2s), J. Algebra 50 (1978). 

63-68. 
A. REIFART, On finite groups with large extra-special subgroups, I, J. Algebra 53 

(1978), 452-470. 
A. REIFART, On finite groups with large extra-special subgroups, II, J. Algebra 54 

(1978), 273-289. 
F. SMITH, On centralizers of involutions in finite fusion-simple groups. J. Algebra 

38 (1976), 268-273. 
F. SMITH, A characterization of the Conway simple group . 2, J. Algebra 31 (1974), 

477-487. 
F. SMITH, On groups with an involution z such that the generalized Fitting subgroup 
E of C(z) is extra-special and C(z)/E < Out (E)‘, Comm. Algebra 5 (3), (1977), 
267-277. 

F. SMITH, On finite groups with large extra-special 2-subgroups, J. Algebra 44 
(1977), 477-487. 
S. SMITH, A characterization of orthogonal groups over GF(2), J. Algebra, in press. 
S. SMITH, A characterization of finite Lie groups of types =E and E over GF(2), 
J. Algebra, in press. 
G. STROTH, A characterization of Fischer’s sporadic simple group of the order 
2”’ 3i1 . 56 . 72 . 11 * 13 . 17 . 19 . 23 . 31 . 47, J. AZgebru 40 (1976), 499-531. 
G. THOMAS, A characterization of the Steinberg groups Doa = 2E, J. Algebra 

14 (1970), 373-385. 
F. G. TIMMESFELD, A characterization of Chevalley and Steinberg groups over F,, 
Geom. Dedic. 1 (1973), 269-321. 
F. G. TIMMESFELD, Groups generated by root-involutions I, J. Algebra 33 (1975), 
75-l 34. 
F. G. TIMMESFELD, Finite simple groups in which the generalized Fitting group 
of the centralizer of some involution is extra-special, Ann. of Math. 107 (1978), 
297-369. 

31. T. YOSHIDA, Character-theoretic transfers, J. Algebra 52 (1978), l-38. 
32. B. FISCHER, Finite groups generated by 3-transpositions, I, Inwent. Math. 13 (1971). 

232-246. 


