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ABSTRACT 

Consider the following converse of the Mean Value Theorem. 
Let f be a differentiable function on [a, b]. If c E (a, b), then there are (Y and p in [a, b] such that 

(f(P) -f(a))l(P - a) =f’(c). 
Assuming some weak conditions to be mentioned in Section 3, Tong and Braza [3] were able to 

prove this statement. Unfortunately their proof does not provide a method to compute a and p. We 
give a constructive proof. 

1. INTRODUCTION 

Constructive mathematics tries to determine the constructive or computa- 
tional content of mathematics. One sometimes distinguishes several varieties of 
constructive mathematics [2]. We prove a result that is acceptable to all of them, 
as we avoid non-constructive steps, but do not assume axioms that are classi- 
cally false. We have to warn those who are familiar with [l] or [2]. Unlike Bishop 
we do not demand by definition that continuous functions are uniformly con- 
tinuous on compact sets. Nor do we demand by definition that differentiable 
functions are uniformly continuous or continuously differentiable. 

In constructive mathematics ‘there exists an X’ is interpreted as ‘there is an 
effective construction for x’. A constructive proof of ‘A or B’ is a proof of A or a 
proof of B. In order to prove ‘A or not A’ we have to prove or refute A. As there 
will always be unsolved problems, we do not recognize the scheme A v 4, 

Tertium non datur, as a valid principle. 
A real number x is a sequence of rational numbers x(0),x(l), . . ., such that 
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for all k there exists(!) an N satisfying Ix(N) - x(n)] < l/k, for all n > N. Let x 
and y be real numbers. x and y are equal (x = y) if for all k there exists an N 
such that Ix(n) -y(n)] < l/k, for all n > N. 

x is greater than y (x > y) if there are k and N such that Ix(N) - y(N + R)I > 
l/k, for all II. Notice that if x < y then x < z or z < y for all z. 

x is not-greater-than y (x 5 y) if not x > y. Finally, x is apartfrom y (x # y) if 
x > y or(!) x < y. Now x = y if and only if not x # y, but conversely it is not 
true in general that if not x = y then x # y. Addition, subtraction, multi- 
plication, etc. are defined in the usual way. 

2. A CONSTRUCTIVE MEAN VALUE THEOREM 

We start by giving a weak counterexample in the style of Brouwer for the In- 
termediate Value Theorem. Let f be the function (Fig. 2.1) from [O,l] to [O,l] 
given by: 

f(x) := inf(3x/2,1/2) + sup(3x/2 - l,O). 

Define a function kg9 from N to N by: 

k if the first block of 99 nines starts at position k in 
k&z) := the decimal expansion of 7r and k < n, 

n if such k does not exist. 

Define a function t from N to Q by: t(n) := i + (-1/2)k99(n). Observe that t is a 
real number. Suppose we find x such that f(x) = t; then we are able to decide 
either x < 3 or x > f. If x < $, then, if there exists a block of 99 nines in the 
decimal expansion of rr, the first one will start at an odd position. Similarly if 
x > f, then, if there exists a block of 99 nines in the decimal expansion of r, the 
first one will start at an even position. Both conclusions are unjustified. 

Observe that this difficulty arises as soon as a function is constant on an in- 
terval. 

Definition 2.1. Let f be a function on [a, b] and let y be a real number. f is called 
densely apart from y if in every interval there exists a real number x such that 

0 l/3 213 

Fig. 2.1. The function 1: 
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f(x) #y. Iff d is ensely apart from all y E I%, then f is called Zocally non- 

constant. 

If p is a polynomial function of degree at least one, then p is locally non- 
constant (Cf. [l, Problem 17, p. 631). The function f in fig. 2.1 is not densely 
apart from l/2. 

Lemma 2.2. Zff is continuous on [a, b], then there is a countable T c R, such that 
ifs # tfor all t E T, then f is densely apart from s. 

We express this fact as follows: f is densely apart from all but countably many 
real numbers. 

Proof. Take T := v(x) : x E Cl! rl [a, b]}. Cl 

Lemma 2.3 (Intermediatevalue Lemma). Letf be continuous on [a, b]. Zff (a) < 

t <f(b)andf d is ensely apartfrom t, then there exists c in [a, b] such that f (c) = t. 

Proof. We use successive bisection. Choose x. E (a + (b - a/4), a + (3(b - a)/4)) 
for which f (x) # t. This means that either f (x) < t or f (x) > t. If f (x) < t let 
at := x and bl := b, otherwise let al := a and bl := x. Now f (al) < t <f (bl) 
and bl -al < 314. This process, applied recursively, produces sequences 

UrJ <at < . . . andbo>bi >..., such that for each i, 0 < bi - ai < ($)‘(b - a) 

and f (ai) < t <f (bi). 
Therefore c := limi, o. ai = limi+m bi satisfies f (c) = t. 0 

A direct consequence of Lemma 2.2 and Lemma 2.3 is the following con- 
structive version of the Intermediate Value Theorem. 

Theorem 2.4 (Intermediatevalue Theorem). Let f be continuous on [a, b]. For UN 
but countably many t: iff (u) < t < f(b) then there is c in [a, b] satisfying f (c) = t. 

A countable set of exceptions may indeed occur. Consider Cantor’s function 
(fig. 2.2). This is the unique continuous and nondecreasing function f, which is 
constant on every interval outside Cantor’s discontinuum and satisfies 
f(x) = l/2 for x in [l/3,2/3], f (x) = l/4 for x in [l/9,2/9], f (x) = 3/4 for x in 
[7/9,8/9], etc. 

We will obtain the Mean Value Theorem as a corollary of the following the- 
orem. 

Theorem 2.5 (Rolle). Let f be difirentiable on [a, b]. If f is locally nonconstant 
andf (a) = f (b), then there exists c E (a, b), such that f ‘(c) = 0. 

Proof. Choose x close to (a + b)/2, such that f (x) #f(a). We assume f (x) > 

f(a). 
Let o. = a, ,& = b and yo = x. Choose y close to (3a + b)/4 and z close to 

(a + 3b)/4, such that f (y) #f (70) and f (z) #f (70). 
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0 

Fig. 2.2. Cantor’s function. 

1 

Iffb) >f(ro), define w = (~0, PI = YO and 71 = y. 

If this is not the case, but f(z) >f(ro), define o1 = yo, pi = PO and y1 = z. 
Otherwise define oi = y, pi = z and yi = ye. 

Continuing in this way we obtain sequences (YO I (YI I . . ., PO 2 PI L . . . and 

YO,Yl,... all tending to the same limit, which we call y. Becausef is continuous 

andf(a) < f(ro) I f(r~) < . . . < f(y) there is S > 0 such that Iy - al 2 6. By 
a similar argument we see that y # b. Because for all II: CY, < “ln < Pn,f(a,) < 
f(r) and f@) < f(r), it follows that f’(r) = 0. 0 

Let f be a function on [a, b]. For x and y in [a, b], such that x # y, define the 
difference quotient 

Af(x y) .=fcx) -f(y) > . 
x-y . 

We omit the subscript when no confusion is possible. 

Observe that for each z in [a, b], such that z # x and z # y 

A(x,y) = b - zMx,z) +fk) -f(y) 

(2.1) X-Y 

= (- x - ‘)A(x,z) + (1 - =)A(z,y) 
X-Y X-Y 

Theorem 2.6 (Mean Value Theorem). Let f be dz#kentiable on [a, b]. There is a 

countable set T, such that for all a and 0. if a 5 CY < p 5 b and A(cx, p) is apart 

from every tin T, then there is c in (CE, ,8) such thatf ‘(c) = A(cx, /3). 
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Proof. Define T := {A($, q) : p, q E [a, b] rl Q,p # q}. Suppose we have o, p E 
[a, b], such that for all t E T, A(&, /3) # t. 

Define 

g(x) :=.0x) -f(o) - +(o, P)(x - o) 

then g(o) = g(p) = 0 and ifp, q E [a, b] n Q and p # q, then 

g(P) -g(q) = (P - q)(A&> 4) - A,(o> P)) # 0. 

By Rolle’s Theorem there exists c E (a, b) such that g’(c) = 0, thereforef’(c) = 

A(o,p). 0 

3. A CONSTRUCTIVE CONVERSE OF THE MEAN VALUE THEOREM 

We will obtain a converse of the Mean Value Theorem in which we do not have 
to make exceptions as in the theorems of Section 2. We need a few preparations. 

Lemma 3.1. Let f be differentiable on [a, b]. ZfA(a, b) > t, then there is y in [a, b], 
satisfyingf’(y) > t. Zff’(z) < tf orsomezin [a,b]andf’(x) 5 tforallxin [a,b], 
then A(a, b) < t. 

Proof. Suppose A(a, b) > t, say A(a, b) = t + C. Either f’(a) > t or f’(a) 
< t + $6. We may assume f’(a) < t + be, so there is an a’ such that 
A(u, u’) < t + ;c. Now (t + if, t + C) is uncountable, so by the Intermediate 
Value Theorem (2.4) we construct x E (a’, b) such that A(a, x) > t + if. More- 
over we choose A(a,x) outside the set of exceptions of the Mean Value 
Theorem (2.6) in order to find y in (a, x) satisfyingf’(y) = A(a, x) > t + 4~. 

Assume z E (a, b) and f’(z) < t. Because f’(z) = lim,,, A(z, y) there is yo > z 
such that A(z, yo) < t. Now apply the argument above to [a, z] and [yo, b] and 
conclude that A(a, z) 5 t and A(y0, b) 5 t. Applying Formula 2.1 twice we find 
first A(a, yo) < t, and then A(a, b) < t. Cl 

Lemma 3.2. Let f be differentiable on [a, b]. Zf t < f’(x) and 6 > 0, then for all 
z < x there exists win (x - 6, x) apartfrom z, such that t < f’(w) and A(z, w) # t. 

Proof. Choose y E (x - 6, x), such that z < y, A(x, y) > (f’(x) + t)/2 and, by 
Lemma 3.1, f’(y) > t. Let r := (z - x)/(z - y) and choose E < (f’(x) - t)/2 
(1 - r)). Now either lA(z,x) - tl > e/2 or jA(z, x) - tl < E. In the former case 
use Lemma 3.1 to take w close enough to x. In the latter case: 

A@, y) = r&z, 4 + (1 - r)A(x, y) by Formula 2.1 

> r(t - E) + (1 - r)(f’(x) + t)/2 

>t+(l-r)(f’(x)-t)/2-ET 

>t by choice of E 

So in this case let w := y. 0 
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Theorem 3.3. Let f be difirentiable on [a, b] and 6 > 0. If a < cl < c2 < b and 

f’(q) < t < f’(cz), then there exist o and p such that Q < p and A@, CX) = t and 

cr E (cl, CI + E) or P E (c2 - E, c2). 

The condition f’(ci) < t < f’(c2) is necessary: consider the function f : 

[-1, l] -+ R given byf(x) = x3 and let t := 0. 

Proof. Because f ‘( ci ) = lim,, -_) Cl A(cz,y), there existsyo such that A(q,yo) < t 

and ci < yo < ~2. Lemma 3.2 shows how to find zo in (~0, ~2) such that 

t < f’(zo) and A(q, ~0) # t. We may choose zo close enough to c, so as to 

ensure A(cz, ~0) > t. Now there are two possibilities: 1. A(cz, ~0) > t or 2. 

A(q, 20) < t. We first consider case 1. 

In classical mathematics one could simply define (Y := ci and then use suc- 

cessive bisection in order to find /3 such that A(a,p) = t. In constructive 

mathematics we have to construct both a and p, but we may ensure that a is not 

too far away from cl. 

Let (~0 := ct. Now A(ao,zo) > t and A(cro,yo) < t. Since A is continuous, 

there exists an open interval I containing as such that for all x in I: A(x, ZO) > t 

and A(x,yo) < t. Let y := (~0 +y0)/2. Lemma 3.2 applied to -f provides 

a1 < yo in In (CEO - 42, (~0 + t/2) satisfying f’(ai) < t and A(y, al) # t. If 

A(al,y) > t let yi := yo and zi := y, if A(al,y) < t let yi := y and 21 := -10. 

Thus ai E (QO - e/2, (3~0 + e/2) and Izi - yi 1 = ( IZO - y01)/2. 

By repeating the above construction, we obtain sequences (a,),, E N, (yn)nE N 

and (z,,),~~ such that for all n: A(Q,,Y,~) < t and A(an,,-,) > t. Let cr := 

lim,,, a, and ,8 := lim,, co yn = lim,, oc -7,,, and observe A(QI, /3) = t and 

Id! - c,I < E. 

In case 2 we follow a similar construction and obtain the conclusion 

Ip-czI <E. 0 

By taking t =f’(c) in the previous theorem one obtains a constructive weak 

converse of the Mean Value Theorem, in which a and ,0 are found such that 

f’(c) = $4 a), P ossibly not satisfying a < c < p. For the stronger conclusion 

we need two more lemmas. 

Lemma 3.4. If f is d@erentiable on [a, b], then f’ is strongly extensional, i.e. if 

c, d E [a, b] andf ‘(c) #f’(d), then c # d. 

Proof. Observe that either c # d or, as we will assume, c and d are close enough 

to each other to find x, such that A(c, x) # A(d, x), i.e. v(c) -f (x)/(c - x) # 

(f(d) -f(x))/(d - x). So f(e) -f(x) #f(d) -f(x) or c - x # d - x. In the 

latter case the proof is complete. In the former case we remark that f is con- 

tinuous and therefore c # d. 0 

Lemma 3.5 (Darboux). Letf be dzfjerentiable on [a, b]. Zff ‘(d) < t < f’(e) and 

f ’ is densely apart from t, then there is c between d and e such that f ‘(c) = t. 
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Proof. Define g(x) :=f(x) - tx. Then g’(d) < 0 < g’(e) and g’ is densely apart 

from 0. So g is locally nonconstant. 

We assume d < e. Because g’(d) < 0 < g’(e), there is y between d and e, such 

that g(y) < inf{g(d),g(e)}. So by the Intermediatevalue Lemma (2.3) there are 

zi E [d, y] and z2 E Iv, ] e such that g(zi) = g(z2). By Rolle’s Theorem (2.5) there 

exists c such that g’(c) = 0, thereforef’(c) = t. 0 

We now prove the promised constructive strong converse of the Mean Value 

Theorem. The conditions in this theorem are classically equivalent to: f’ does 

not have a local extremum in c and c is not an accumulation point of 

A, := {x E (a,b) : f’(x) = f’(c)}. Tong and Braza [3] showed the statement is 

not true without these conditions: it suffices to consider the continuous func- 

tion g : [-l/2,1/2] 4 [w satisfying g(x) := x3 sin( l/x) + xix]/2 for x # 0, and 

g(0) := 0. 

Theorem 3.6. Let f be difirentiable on [a, b] and 6 > 0 such that for all x in 

(c-6,c+S) p tf a ar rom c: f ‘(c) #f’(x). Iffor all E > 0 there exist cl and c2 in 

(c - E, c + E), satisfying f ‘(cl) < f’(c) < f ‘(c2), then there are cy and p in (a, 6) 

such that (Y < c < @and A(cY, p) = f’(c). 

Proof. Take ct and c? in (c - S,c + 6) satisfying f’(q) <f’(c) < f’(c2). 
Lemma 3.4 assures that cl # c, say cl < c. Suppose that c2 < c, then Lemma 3.5 

provides y, satisfying cl < y < c and f’(y) = f ‘(c), which contradicts the 

assumptions. Hence c2 2 c, moreover because f ‘(cz) #f’(c) it follows that 

c2 > c. 

Theorem 3.3 provides (Y and p, such that (Y < p and A(o, ,Q = f’(c). We may 

decide 01 < c or c < ,!3. We only consider the case (Y < c. By Lemma 3.1 we have 

A(a, x) < f’(c) for x E [a, c]. So o < c < p. 0 
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