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Abstract

Let G bg a compact abelian group with the totally ordered dual g@uphich admits theA positive
semigroupG 4. Let N be a von Neumann algebra amé= {O‘é}geé be an automorphism group 6fon N.
We denoteV xq G+ to the analytic crossed prgduct dgtermined\bymda. We show that iW Mo G+ is
a maximalo -weakly closed subalgebra of x, G, thenG + induces an archimedean orderGn
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1. Introduction

Let G be a compact abelian group with the totally ordered dual g®uyhich has a positive
semlgroquJr Let N be a von Neumann algebra and= {ag} ¢ be an automorphism group

of G on N. We are interested in the maximality of certain subalgebra of crossed piducG
determined bw and«. This subalgebra is called an analytic crossed product. Roughly speaking,
the analytic crossed products stand in the same relation to the crossed products as the Hardy
algebrasH *°(G), the space of all functions of analytic type which belong4.%(G), stand in

relation toZ.°°(G). In the case that = T andG = Z, it is well known thatH *°(G) is a maximal

weaksx closed subalgebra @f*° (G). Viewing the analytic crossed products as “honcommutative

H® algebras” raise the following:

Question. When is the analytic crossed produétx, é+ maximal amongs-weakly closed
subalgebras of the crossed prodiick, G?

McAsey, Muhly and the fourth author in [3] showed that, in the caseGhatT, G = Z and
G+ =74, if N is a finite von Neumann algebra, th&his a factor if and only ifN xy Z, is
maximal as ar-weakly closed subalgebra of x, Z. They also proved in [4] the same result
in the case whew is an arbitrary §-finite) von Neumann algebra. Moreover the fourth author
in [7] showed that ifV is a factor, thenV x, G is maximal wher&S is a compact abelian group
with an archimedean totally ordered di@al Motivated by these facts, we consider the following
problem:

Problem. Let N be a factor. When is the analytic crossed producki, G, maximal among
o-weakly closed subalgebras §f x, G?

Our aim in this paper is to give the answer for this problem as follows:

Theorem 1.1. Let N be a factor. Then an analytic crossed produ¢tx, Gy is a maximal
o-weakly closed subalgebra of x, G if and only if G, induces an archimedean order Ga.

In the next section we establish the notions of spectral subspaces, crossed products and its
subalgebras. In Section 3, we study the structure of analytic subalgebras in a crossed product.
And we shall prove Theorem 1.1, that is, we shall show that i, G+ is @ maximab -weakly
closed subalgebra off x, G, then G, induces an archimedean order ¢h (Theorem 3.7).

In Section 4, we will pay attention to the properties of semigroupé;iand reconsider the
maximality of analytic subalgebras.

2. Preliminaries

Throughout this papeiG will denote a compact abelian group with the operation written
additively. Elements o; will be denoted by lowercase Roman letters and the normalized Haar
measure oiG will be denoted byn. The dual ofG will be written G and the elements @ will
be distinguished from those 6f by a caret. The pairing betweghandG will be written (g, /)

(Vg € G, Vh € G) and the Fourier transform will take this form:

fi = [(e. s @dm@) (vf € LX), Vi e 6).

G
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Suppose thaf; has a positive semigrouf., , that is,G . satisfies the conditions
() G+N(=G4)={0}, (i) GyU(=G)=G

Under these condltlonsf”r induces an order i;. That is, if we defineg > /i to mean that
¢ —heGy, thenG is a totally ordered set with the order. The most important example is
the case thaG =T, G =Z andG, = Z, = {0,1,2,...}. A given groupG may have many
different orders. An order is said to be archimedean |f it has the following property: to every pair
of elements?, i of G such tha > 0 andh > 0, there corresponds a positive integesuch that
ng > h. For example, it is clear that, has an archimedean orderZn As a non-archimedean
order, there is a lexicographic order. For example, in the caseGthatT? and G = 72, we
consider the positive sem|gr0L(Eur as{(m,n) € Z%|m >0, orm = 0andn > 0}. Then G+
induces the lexicographic ordet; in G. In this case(1,0) and (0, 1) belong toG+, but, for
any positive integen, n(0,1) — (1,0) =(—1,n) ¢ G+, that is(1, 0) £z n(0, 1). Therefore this
order is non-archimedean.

Let M be a von Neumann algebra afid= {8,},cc be an automorphism group 6f on M.
For eachf € L1(G), we defines(f) by the integral

ﬂ(f)(X)sz(g)ﬂg(x)dm(g) (Vx e M).

For each fixed € M, the set
Is(x)={feLYG) | B(f)(x) =0}

is a closed ideal of.2(G). The Arveson spectrum 2pr) of x with respect to the automorphism
group{Be}.cc is defined to be the hull afg (x) as follows:

Sps(x)={heG| f(h)=0(Vfelsx))}.

where f is the Fourier transform of . For each subsef C G, the spectral subspadé? (E) is
defined to be the set

MP(E)={x e M |Sp(x) S E}.

It is known that, for each subsét of G, M# (E) is g-invariant, that is 8, (M (E)) = M (E)
Vg € G).

We shall next define crossed products and analytic crossed products. heta von Neu-
mann algebra acting on a Hilbert spadeand leta = {ag} ¢ be an automorphism group of
on N. The crossed produc¥ x G of N by « is the von Neumann algebra acting on a Hilbert
Spacefz(G H)={:G—>H| Doied 1€(h)|12 < oo} generated by the operatorg(x) andi(g)
defined by the equations, for eacke N,

[Ta(E} (@) =a_z(0EE) (Y& € (3G, H), V§ € G)
and

(M@EY ) =Eh—8) (Y& €€*(G.N). VYh. g €G).

For simplicity, we writeM = N x, G andk = ¢2(G, H). The analytic crossed produstx, G .
determined byN and« is defined to be the-weakly closed subalgebra af generated by

e (N) and{k(g)}geG , that is,

N X, é.l,- = alg{na(N)» {)“(ﬁ)}fteé+}a_w'
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For eachg € G, we define
(We&)(h) = (g, h)E(h) (V& € K, Vh e G).

The automorphism groufit,},cc of G on M which is dual to{« in the sense of Take-

saki [11] is implemented by the unitary operaigg, that is,

h
}heG

ag(x) = ngW;,‘ (Vx e M, Vg € G).
It is elementary to check that the spectral resolutiofWif} . is given by the formula
We=> (s.h)E;
heG
whereE; is the projection ork defined by the formula

(E,;s)(lb:{g(”) iop e,

Then it is easy to check that the projectigp can be calculated as the (Bochner) integral
E; ()= / (g, fl)ng dm(g) (V& € K).
G
Moreover, for eachh € G, we define ar-weakly continuous linear mag, on M by the integral

£ () = f (g, M)ag(x)dm(g) (Vx € M).
G

3. Proof of Theorem 1.1
In this section, we concentrate to prove Theorem 1.1.

Lemma 3.1. Keep the notation as in Secti@LetM = N x, G and I" be a subset ir;. Then
I' is a semigroup if and only i#/* (I") is a o -weakly closed subalgebra of.
Proof. Applying [10, Proposition 15.3], for each semigrofipin G, we have

ME(IYME(I') € MO(I" + I') € ME(I).

Conversely, we assume that is not a semigroup. Then there existk € I" such that
h+k ¢ I'. Since, for eacfy € G, &g(x(fz)) = (g,h hya(h) and &, (A (k) = (g.k kyr(k), we see
thatx(h) and A(k) belong toM“({h}) and M“({k}) respectwely, and sm(h) and A(k) be-
long to M“(F) SinceM%(I") is a subalgebra aoi, )»(h))»(k) is in M%(I"). This implies that
Sp, (A(h)A(k)) C I'. However, by [10, Proposition 15.3], we have

Spy (M)A (k)  Spy (2 (h)) + Spy (A(k)) S {h+ kY L T

This contradicts the assumption and hefitis a semigroup. This completes the proofa

Using [2, Corollary 4.3.2], we have the following:
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Proposition 3.2. Let I" be a semigroup inG which contains0. Then theo -weakly closed
subalgebra ofM generated byr,(N) and {A(h)};_- coincides withM“(I"). In particular,

N xq G4 = M%(G.).
Lemma 3.3. Keep the notation as in Secti@ Then, for eachx € M, we have
Sp;(x) = {h € G | e (x) #0}.
Moreover, for each semigroup in G, we have
M*(I)y={xeM|e;(x)=0(Vh ¢ ).
Proof. Take anyx € M. By a simple calculation, we note that, for edchk I' andf € LY(G),
the following equation holds:
ei (@) = Fhye; x). (3.1)
If h e I' satisfies; (x) # 0, then we have
fejx) =6 (@()H)) =0 (Vf € I(x)).
Sincee; (x) # 0, we havef (i) = 0. This implies thaf € Sp; (x).

Conversely, we assume that G such that; (x) = 0. Puttingp; (g) = (g, k) (¥g € G), then
itis clear thatp; € L*(G) and

1 d=h),

Pi(d) =/<g,d>P/z(8)dm(g) B {o d#h.

G
By Eg. (3.1), we have

e5(@(pp () = pr(d)e;(x) =0 (vd € G).

Then we obtairi(p;)(x) = 0. Sincep; (k) = 1# 0, we havek ¢ Sp;(x). This completes the
proof. O

The next result follows immediately from Lemma 3.3.

Lemma3.4.LetM =N x, G For each semigroup&’ and I” in G, I' contains X properly if
and only if the subalgebra®(I") containsM® (X) properly.

In the case oM = N x, G, the dual actior and the generaton{a(ﬁ)};leé of M satisfy the
equation
ao (M) = (g. W)A(h) (Vg € G, YheG).
This equation is satisfied precisely when;8p(h)) = {h} (Vh € G). Hence the assertion of
Lemma 3.4 is natural. But, in general, Lemma 3.4 is not necessary.

Example 3.5. Let M be a von Neumann algebra amy (n = 0, 1) be orthogonal projections
in M such thatPy + P = I. Puttingu; = Py + ¢2"'2 P; (Vt € R), then{u;},cr is a strongly
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continuous unitary group a¥ and so we can define the automorphism griyp,cr of R on M
which is implemented by,. Then, for eaclxr € M, we have

oy (x) = Pox Pp+ PixP1 + e iz Pox P1 + e2ri P1x Po.

We note thaty, (x) = ¥ x if and only if Sp,(x) = {n}. Thus if we putl" ={2n |n € Z},
thenI" is a semigroup ifZ which is contained ifZ,. properly. However it easily see that

M*(I') ={x € M| PoxP1 =0} = M*(Z.).

The fourth author in [7] studied the structure of invariant subspaces and cocychesdp6
whenG . induces an archimedean orderdn and showed the following:

Theorem 3.6 [7, Theorem 6.3]If N is a factor, thenN x, G is a maximalo-weakly closed
subalgebra of\1.

We note that this result was obtained under the assumptionttzatmits a trace. However,
considering a non-commutative?-space in the sense of Haagerup [1], we may rewrite it without
this assumption.

To prove Theorem 1.1, we need the converse assertion. Indeed, we shall show it without the
assumption tha is a factor. Let us say thaft is a maximal semigroup G if G is the only
semigroup inG which contains” as a proper subset.

Theorem 3.7. Let M = N x4 G. If M*(G1)(= N x4 G+) is a maximalo-weakly closed sub-
algebra ofM, thenG . induces an archimedean order @.

Proof. Assume thatM‘i(GJr) is a maximalo-weakly closed subalgebra af. If G+ is not
maximal, then there exists a semigraipn G such thalG C ¥ C G. By Lemmas 3.1 and 3.3,
M*(X) is ac-weakly closed subalgebra #f satisfying

M¥(G4) C MY (D) S MY (G) =M
This contradiction shows thai_, is a maximal semigroup iG. Moreover,G . satisfiesG . N

(=G4)={0} andG, U (—G) = G. Thus, by [6, Theorem 8.1.3f; ;. induces an archimedean
order inG. This completes the proof.O

4. Someremarkson maximality

In this section, we shall give some remarks on maximality/8f(I"), whererl” is a semigroup
of G. First we modify Theorem 3.7 as follows:

Theorem 4.1. Let M = N x, G and I" be a semigroup irGi. If M%(I") is a maximab -weakly
closed subalgebra aoff, thenI" is a maximal semigroup ir. Moreover, letl” be a semigroup
which satisfies the conditions

rn(-ry={0 and I #{0}. (4.1)

If N is a factor, thenll/{&(l“) is maximal if and only if" is maximal. In this casé” induces an
archimedean order ift;.
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Proof. Let I" be a maximal semigroup @ which satisfies (4.1). By [6, Theorem 8.1.3] and its
proof, we see thatr = I" U (—I") andI" induces an archimedean orderGh Thus M“(I") is
the analytic crossed product, and®§ (I") is maximal. O

We shall say that a semigroup of G is an archimedean ordered semigrougaf, for each
h,k € X, there exists a positive integersuch thatk — h € X. For example, in the casé = Z,
the semigroupsZ =n{0,1,2,3,...}or{n,n+1,n+2,...} (vVn > 0) are archimedean ordered
semigroups.

Lemma 4.2. If I is an archimedean ordered semigroup@fwhich satisfies™ U (—I") =
thenI" is a maximal semigroup.

Proof. Suppose tha is a semigroup of; such thatI” C ¥. Then there exists a non-zero
elementh in ¥ such thath ¢ I". By the assumption, we note that: € I". Hence, for each
k e I', there is a positive integer> 0 such that(—h) — k € I" becausd™ has an archimedean
order. Thus we have

~k=nh+{n(—h) -k} e 2,

and so—I" C X. This implies that; = I" U (—I") € X C G. This completes the proof.0

Theorem 4.1 suggests that the condition (4.1) plays an important role in the maximality of
Me(I). If X is an archimedean ordered semlgroupﬁirsuch thatf U (—X)=G and X N
(X)) # {0} then M (X) does not need to be a maximalweakly closed subalgebra of.
Indeed, we shall gave an example which satisfies such a situation as follows:

Example 4.3. Let G = T2 =T x T be the two dimensional torus (the bitorus) ab®(T?) be

the usual Lebesgue space with respect to the Haar meas(ire tet M be the von Neumann
algebra acting ofi.?(T) generated by.; andL,, whereL1 (respectivelyl.,) is the multiplication
operator with the projection map on the first coordinate (respectively second coordinate). We note
that M is usually known as the algebfa®(T?), that isM is spatially isomorphic to the crossed
productC xiq Z? acting on the Hilbert spac&(Z?) = ¢2(Z?, C). Thus we may identify/ and

L2(T?) with C xiq Z2 and¢?(Z?), respectively. For each r € R, we define

(Wi 1&)(m,n) = e 2Tims e=2Tin g oy ) (VE € H, ¥(m, n) € Z?).
The automorphism group of R? on M is implemented by the unitary operati ;, that is,
Gy (X) = W x WS, (Yx € M, V(s,1) e R?).
Let I" be a semigroup df2 which satisfies™ N (—I") = {0} andI" U (—I") = G as follows:
={(k,l) € Z? | k=0andl >0, ork > 0}.

Then I" induces a lexicographic order B2, For this semigroup, we can define the analytic
crossed produc®(I") of M with the diagonal which is a factor as follows:

My =alg{LP Ly | (m,n) e '}7 ™.

By Theorem 1.1, we see that the analytic crossed proti§at’™) is not maximal. Indeed, if we
put X = {(k, 1) € Z? | k > 0}, thenX is the archimedean ordered semigrougsofvhich satisfies
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YU(—X)= G XN(=X)# {0} andlI"C ¥ C G. By Lemma 4.2, we note tha is a maximal
semigroup inG. By Lemmas 3.1 and 3 4&4“(2) is ao-weakly closed subalgebra #f which

containsM?(I") properly. Moreover, by [5, Section 3, Example (1)], there is net-aeakly
closed subalgebra off which containsM®(I") and is maximal among the properweakly
closed subalgebras 8f. That is,M%(X) is not a maximab-weakly closed subalgebra o1,

in spite of the facts thaE is maximal and the diagonal af%(¥) is a factor.

Motivated by this fact, we shall characteriz& (X) with some maximality in general case.

Proposition 4.4. Let N be a factor andV = N x G. Let ¥ be an archimedean ordered semi-
group of G which satisfiess U (—X) = G. If 2 is ana-invariant o -weakly closed subalgebra
of M which contains®(X), then = M%(X) or A = M. That is,M%(X) is maximal among
a-invariant o -weakly closed subalgebras &f.

Prooj. We may assume tha®(X) C 2. Since®l is d—ipvariant, there is an elemente 2A
andh ¢ ¥ such that G# ¢; (x) € 2. Since Sp(¢;(x)) = {h}, there existy € 7, (N) such that

g; (x) = yr(h). Thus we have

7o (N)yTa (NIA(R) = 76 (N )&, ()74 (N) S 2.

SinceN is a factor andr, (N)ym,(N) is a two-sided ideal ofr, (N), the o -weakly closure of
7o (N)ymy (N) coincides withry (N), and sor(h) lies in2L. Let S be the semigroup generated
by ¥ andh. Since is the algebra which contain®®(X) and A(k), we haveM®(S) C .
However, by Lemma 4.2%" is maximal and hencg = G. Therefore, we have

M =M%(G)=M*(S) CAC M.
This completes the proof.O

Corollary 4.5. Keep the notation as in Example3. Then every -weakly closed subalgebra of
L°(T?) which contains®(X) properly is nota-invariant.

Remark 4.6. The invariance of subalgebras for an automorphism group is an interesting problem
because this property is convenient to study the structure of subalgebras. For exarGpie,Tlet
ThenG = Z and soG, = Z, = {0,1,2,3,...}. Let M be an arbitrary finite von Neumann
algebra with a faithful, normal, tracial stateanda = {«; };eT be an automorphism group of

T on M such thatr o o; = (V¢ € T). Then Solel showed in [8, Corollary 4.4] that every
weakly closed subalgebra #f which containsV/®(Z.) is «-invariant. He also proved the same
result whenG = G =R and (°;+ =R;. That s, letM be ao-finite von Neumann algebra and

a = {o;};cr be an automorphism group & on M. Then everyo-weakly closed subalgebra

of M that containgy*(R..) is e-invariant [9, Proposition 2.1].

Remark 4.7. Lemma 3.1 raises the question; is everyweakly closed subalgebra af able
to describe as a subalgeh¥e (I") for some semigroup” in G? Example 4.3 gives a counter-
example for this question. In general, kéq be a positive semigroup o which induces an
archimedean order iv and letN be not a factor. Then every-weakly closed subalgebra of
M = N x4 G which conta|nsM°‘(G+) never has the fornrM?(A) for some semigroupt of G.
However we are interested in another case. More precisely, whenvseakly closed subalgebra
of M%(G.) of the formM%(A) for some semigroupt of G?
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