

Available online at www.sciencedirect.com

J. Math. Anal. Appl. 315 (2006) 216-224

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

www.elsevier.com/locate/jmaa

A note on maximality of analytic crossed products

Tomoyoshi Ohwada^{a,*,1}, Guoxing Ji^{b,2}, Atsushi Hasegawa^c, Kichi-Suke Saito^{d,3}

^a Department of General Science, Tsuruoka National College of Technology, Tsuruoka 997-8511, Japan

^b College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, PR China

^c Department of Mathematical Science, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

^d Department of Mathematical Science, Faculty of Science, Niigata University, Niigata 950-2181, Japan

Received 1 April 2004

Available online 12 October 2005

Submitted by J.A. Goldstein

Abstract

Let *G* be a compact abelian group with the totally ordered dual group \hat{G} which admits the positive semigroup \hat{G}_+ . Let *N* be a von Neumann algebra and $\alpha = \{\alpha_{\hat{g}}\}_{\hat{g}\in\hat{G}}$ be an automorphism group of \hat{G} on *N*. We denote $N \rtimes_{\alpha} \hat{G}_+$ to the analytic crossed product determined by *N* and α . We show that if $N \rtimes_{\alpha} \hat{G}_+$ is a maximal σ -weakly closed subalgebra of $N \rtimes_{\alpha} \hat{G}$, then \hat{G}_+ induces an archimedean order in \hat{G} . © 2005 Elsevier Inc. All rights reserved.

Keywords: von Neumann algebra; Analytic crossed product; Maximality; Semigroup

* Corresponding author.

hasegawa@math.sc.niigata-u.ac.jp (A. Hasegawa), saito@math.sc.niigata-u.ac.jp (K.-S. Saito).

0022-247X/\$ – see front matter @ 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2005.09.041

E-mail addresses: ohwada@tsuruoka-nct.ac.jp (T. Ohwada), gxji@snnu.edu.cn (G. Ji),

¹ Partly supported by the Grant-in-Aid for Young Scientists (B), The Ministry of Education, Culture, Sports, Science and Technology, Japan.

² Partly supported by the National Natural Science Foundation of China (No. 10571114) and the Excellent Young Teachers Program of the MOE, PRC.

³ Partly supported by the Grant-in-Aid for Scientific Research (C), Japan Society for the Promotion of Science.

1. Introduction

Let *G* be a compact abelian group with the totally ordered dual group \hat{G} which has a positive semigroup \hat{G}_+ . Let *N* be a von Neumann algebra and $\alpha = \{\alpha_{\hat{g}}\}_{\hat{g}\in\hat{G}}$ be an automorphism group of \hat{G} on *N*. We are interested in the maximality of certain subalgebra of crossed product $N \rtimes_{\alpha} \hat{G}$ determined by *N* and α . This subalgebra is called an analytic crossed product. Roughly speaking, the analytic crossed products stand in the same relation to the crossed products as the Hardy algebras $H^{\infty}(G)$, the space of all functions of analytic type which belongs to $L^{\infty}(G)$, stand in relation to $L^{\infty}(G)$. In the case that $G = \mathbb{T}$ and $\hat{G} = \mathbb{Z}$, it is well known that $H^{\infty}(G)$ is a maximal weak * closed subalgebra of $L^{\infty}(G)$. Viewing the analytic crossed products as "noncommutative H^{∞} algebras" raise the following:

Question. When is the analytic crossed product $N \rtimes_{\alpha} \hat{G}_+$ maximal among σ -weakly closed subalgebras of the crossed product $N \rtimes_{\alpha} \hat{G}$?

McAsey, Muhly and the fourth author in [3] showed that, in the case that $G = \mathbb{T}$, $\hat{G} = \mathbb{Z}$ and $\hat{G}_+ = \mathbb{Z}_+$, if *N* is a finite von Neumann algebra, then *N* is a factor if and only if $N \rtimes_{\alpha} \mathbb{Z}_+$ is maximal as a σ -weakly closed subalgebra of $N \rtimes_{\alpha} \mathbb{Z}$. They also proved in [4] the same result in the case when *N* is an arbitrary (σ -finite) von Neumann algebra. Moreover the fourth author in [7] showed that if *N* is a factor, then $N \rtimes_{\alpha} \hat{G}_+$ is maximal where *G* is a compact abelian group with an archimedean totally ordered dual \hat{G} . Motivated by these facts, we consider the following problem:

Problem. Let N be a factor. When is the analytic crossed product $N \rtimes_{\alpha} \hat{G}_{+}$ maximal among σ -weakly closed subalgebras of $N \rtimes_{\alpha} \hat{G}$?

Our aim in this paper is to give the answer for this problem as follows:

Theorem 1.1. Let N be a factor. Then an analytic crossed product $N \rtimes_{\alpha} \hat{G}_+$ is a maximal σ -weakly closed subalgebra of $N \rtimes_{\alpha} \hat{G}$ if and only if \hat{G}_+ induces an archimedean order in \hat{G} .

In the next section we establish the notions of spectral subspaces, crossed products and its subalgebras. In Section 3, we study the structure of analytic subalgebras in a crossed product. And we shall prove Theorem 1.1, that is, we shall show that if $N \rtimes_{\alpha} \hat{G}_+$ is a maximal σ -weakly closed subalgebra of $N \rtimes_{\alpha} \hat{G}$, then \hat{G}_+ induces an archimedean order in \hat{G} (Theorem 3.7). In Section 4, we will pay attention to the properties of semigroups in \hat{G} and reconsider the maximality of analytic subalgebras.

2. Preliminaries

Throughout this paper, *G* will denote a compact abelian group with the operation written additively. Elements of *G* will be denoted by lowercase Roman letters and the normalized Haar measure on *G* will be denoted by *m*. The dual of *G* will be written \hat{G} and the elements of \hat{G} will be distinguished from those of *G* by a caret. The pairing between *G* and \hat{G} will be written $\langle g, \hat{h} \rangle$ ($\forall g \in G, \forall \hat{h} \in \hat{G}$) and the Fourier transform will take this form:

$$\hat{f}(\hat{h}) = \int_{G} \langle g, \hat{h} \rangle f(g) \, dm(g) \quad \big(\forall f \in L^{1}(G), \, \forall \hat{h} \in \hat{G} \big).$$

Suppose that \hat{G} has a positive semigroup \hat{G}_+ , that is, \hat{G}_+ satisfies the conditions

(i)
$$\hat{G}_+ \cap (-\hat{G}_+) = \{\hat{0}\},$$
 (ii) $\hat{G}_+ \cup (-\hat{G}_+) = \hat{G}.$

Under these conditions, \hat{G}_+ induces an order in \hat{G} . That is, if we define $\hat{g} \ge \hat{h}$ to mean that $\hat{g} - \hat{h} \in \hat{G}_+$, then \hat{G} is a totally ordered set with the order \ge . The most important example is the case that $G = \mathbb{T}$, $\hat{G} = \mathbb{Z}$ and $\hat{G}_+ = \mathbb{Z}_+ = \{0, 1, 2, \ldots\}$. A given group \hat{G} may have many different orders. An order is said to be archimedean if it has the following property: to every pair of elements \hat{g} , \hat{h} of \hat{G} such that $\hat{g} > \hat{0}$ and $\hat{h} > \hat{0}$, there corresponds a positive integer n such that $n\hat{g} \ge \hat{h}$. For example, it is clear that \mathbb{Z}_+ has an archimedean order in \mathbb{Z} . As a non-archimedean order, there is a lexicographic order. For example, in the case that $G = \mathbb{T}^2$ and $\hat{G} = \mathbb{Z}^2$, we consider the positive semigroup \hat{G}_+ as $\{(m, n) \in \mathbb{Z}^2 \mid m > 0, \text{ or } m = 0 \text{ and } n \ge 0\}$. Then \hat{G}_+ induces the lexicographic order \leq_L in \hat{G} . In this case, (1, 0) and (0, 1) belong to \hat{G}_+ , but, for any positive integer n, $n(0, 1) - (1, 0) = (-1, n) \notin \hat{G}_+$, that is $(1, 0) \not\leq_L n(0, 1)$. Therefore this order is non-archimedean.

Let *M* be a von Neumann algebra and $\beta = {\{\beta_g\}_{g \in G}}$ be an automorphism group of *G* on *M*. For each $f \in L^1(G)$, we define $\beta(f)$ by the integral

$$\beta(f)(x) = \int_{G} f(g)\beta_{g}(x) dm(g) \quad (\forall x \in M)$$

For each fixed $x \in M$, the set

$$I_{\beta}(x) = \left\{ f \in L^1(G) \mid \beta(f)(x) = 0 \right\}$$

is a closed ideal of $L^1(G)$. The Arveson spectrum $\text{Sp}_{\beta}(x)$ of x with respect to the automorphism group $\{\beta_g\}_{g\in G}$ is defined to be the hull of $I_{\beta}(x)$ as follows:

$$\operatorname{Sp}_{\beta}(x) = \left\{ \hat{h} \in \hat{G} \mid \hat{f}(\hat{h}) = 0 \left(\forall f \in I_{\beta}(x) \right) \right\},\$$

where \hat{f} is the Fourier transform of f. For each subset $E \subset \hat{G}$, the spectral subspace $M^{\beta}(E)$ is defined to be the set

$$M^{\beta}(E) = \left\{ x \in M \mid \operatorname{Sp}_{\beta}(x) \subseteq E \right\}.$$

It is known that, for each subset E of \hat{G} , $M^{\beta}(E)$ is β -invariant, that is, $\beta_g(M^{\beta}(E)) = M^{\beta}(E)$ $(\forall g \in G)$.

We shall next define crossed products and analytic crossed products. Let *N* be a von Neumann algebra acting on a Hilbert space \mathcal{H} and let $\alpha = \{\alpha_{\hat{g}}\}_{\hat{g}\in\hat{G}}$ be an automorphism group of \hat{G} on *N*. The crossed product $N \rtimes_{\alpha} \hat{G}$ of *N* by α is the von Neumann algebra acting on a Hilbert space $\ell^2(\hat{G}, \mathcal{H}) = \{\xi : \hat{G} \to \mathcal{H} \mid \sum_{\hat{h}\in\hat{G}} \|\xi(\hat{h})\|^2 < \infty\}$ generated by the operators $\pi_{\alpha}(x)$ and $\lambda(\hat{g})$ defined by the equations, for each $x \in N$,

$$\left\{\pi_{\alpha}(x)\xi\right\}(\hat{g}) = \alpha_{-\hat{g}}(x)\xi(\hat{g}) \quad \left(\forall \xi \in \ell^{2}(\hat{G}, \mathcal{H}), \ \forall \hat{g} \in \hat{G}\right)$$

and

$$\big\{\lambda(\hat{g})\xi\big\}(\hat{h}) = \xi(\hat{h} - \hat{g}) \quad \big(\forall \xi \in \ell^2(\hat{G}, \mathcal{H}), \ \forall \hat{h}, \hat{g} \in \hat{G}\big).$$

For simplicity, we write $M = N \rtimes_{\alpha} \hat{G}$ and $\mathcal{K} = \ell^2(\hat{G}, \mathcal{H})$. The analytic crossed product $N \rtimes_{\alpha} \hat{G}_+$ determined by N and α is defined to be the σ -weakly closed subalgebra of M generated by $\pi_{\alpha}(N)$ and $\{\lambda(\hat{g})\}_{\hat{g}\in\hat{G}_+}$, that is,

$$N \rtimes_{\alpha} \hat{G}_{+} = \overline{\operatorname{alg}\{\pi_{\alpha}(N), \{\lambda(\hat{h})\}_{\hat{h}\in\hat{G}_{+}}\}}^{\sigma-w}.$$

For each $g \in G$, we define

$$(W_g\xi)(\hat{h}) = \langle g, \hat{h} \rangle \xi(\hat{h}) \quad (\forall \xi \in \mathcal{K}, \ \forall \hat{h} \in \hat{G}).$$

The automorphism group $\{\tilde{\alpha}_g\}_{g\in G}$ of G on M which is dual to $\{\alpha^{\hat{h}}\}_{\hat{h}\in \hat{G}}$ in the sense of Takesaki [11] is implemented by the unitary operator W_g , that is,

$$\tilde{\alpha}_g(x) = W_g x W_g^* \quad (\forall x \in M, \ \forall g \in G).$$

It is elementary to check that the spectral resolution of $\{W_g\}_{g\in G}$ is given by the formula

$$W_g = \sum_{\hat{h} \in \hat{G}} \langle g, \hat{h} \rangle E_{\hat{h}},$$

where $E_{\hat{h}}$ is the projection on \mathcal{K} defined by the formula

$$(E_{\hat{h}}\xi)(\hat{k}) = \begin{cases} \xi(\hat{h}) & \hat{h} = \hat{k}, \\ 0 & \hat{h} \neq \hat{k} \end{cases} \quad (\forall \xi \in \mathcal{K}).$$

Then it is easy to check that the projection $E_{\hat{h}}$ can be calculated as the (Bochner) integral

$$E_{\hat{h}}(\xi) = \int_{G} \overline{\langle g, \hat{h} \rangle} W_g \xi \, dm(g) \quad (\forall \xi \in \mathcal{K}).$$

Moreover, for each $\hat{h} \in \hat{G}$, we define a σ -weakly continuous linear map $\varepsilon_{\hat{h}}$ on M by the integral

$$\varepsilon_{\hat{h}}(x) = \int_{G} \overline{\langle g, \hat{h} \rangle} \tilde{\alpha}_{g}(x) \, dm(g) \quad (\forall x \in M).$$

3. Proof of Theorem 1.1

In this section, we concentrate to prove Theorem 1.1.

Lemma 3.1. Keep the notation as in Section 2. Let $M = N \rtimes_{\alpha} \hat{G}$ and Γ be a subset in \hat{G} . Then Γ is a semigroup if and only if $M^{\tilde{\alpha}}(\Gamma)$ is a σ -weakly closed subalgebra of M.

Proof. Applying [10, Proposition 15.3], for each semigroup Γ in \hat{G} , we have

$$M^{\tilde{\alpha}}(\Gamma)M^{\tilde{\alpha}}(\Gamma) \subseteq M^{\tilde{\alpha}}(\Gamma+\Gamma) \subseteq M^{\tilde{\alpha}}(\Gamma)$$

Conversely, we assume that Γ is not a semigroup. Then there exist $\hat{h}, \hat{k} \in \Gamma$ such that $\hat{h} + \hat{k} \notin \Gamma$. Since, for each $g \in G$, $\tilde{\alpha}_g(\lambda(\hat{h})) = \langle g, \hat{h} \rangle \lambda(\hat{h})$ and $\tilde{\alpha}_g(\lambda(\hat{k})) = \langle g, \hat{k} \rangle \lambda(\hat{k})$, we see that $\lambda(\hat{h})$ and $\lambda(\hat{k})$ belong to $M^{\tilde{\alpha}}(\{\hat{h}\})$ and $M^{\tilde{\alpha}}(\{\hat{k}\})$, respectively, and so $\lambda(\hat{h})$ and $\lambda(\hat{k})$ belong to $M^{\tilde{\alpha}}(\{\Gamma\})$. Since $M^{\tilde{\alpha}}(\Gamma)$ is a subalgebra of M, $\lambda(\hat{h})\lambda(\hat{k})$ is in $M^{\tilde{\alpha}}(\Gamma)$. This implies that $\operatorname{Sp}_{\tilde{\alpha}}(\lambda(\hat{h})\lambda(\hat{k})) \subseteq \Gamma$. However, by [10, Proposition 15.3], we have

$$\operatorname{Sp}_{\tilde{\alpha}}(\lambda(\hat{h})\lambda(\hat{k})) \subseteq \operatorname{Sp}_{\tilde{\alpha}}(\lambda(\hat{h})) + \operatorname{Sp}_{\tilde{\alpha}}(\lambda(\hat{k})) \subseteq \{\hat{h} + \hat{k}\} \nsubseteq \Gamma.$$

This contradicts the assumption and hence Γ is a semigroup. This completes the proof. \Box

Using [2, Corollary 4.3.2], we have the following:

Proposition 3.2. Let Γ be a semigroup in \hat{G} which contains $\hat{0}$. Then the σ -weakly closed subalgebra of M generated by $\pi_{\alpha}(N)$ and $\{\lambda(\hat{h})\}_{\hat{h}\in\Gamma}$ coincides with $M^{\tilde{\alpha}}(\Gamma)$. In particular, $N \rtimes_{\alpha} \hat{G}_{+} = M^{\alpha}(\hat{G}_{+})$.

Lemma 3.3. *Keep the notation as in Section 2. Then, for each* $x \in M$ *, we have*

$$\operatorname{Sp}_{\tilde{\alpha}}(x) = \{ \tilde{h} \in \tilde{G} \mid \varepsilon_{\hat{h}}(x) \neq 0 \}.$$

Moreover, for each semigroup Γ in \hat{G} , we have

$$M^{\tilde{\alpha}}(\Gamma) = \left\{ x \in M \mid \varepsilon_{\hat{h}}(x) = 0 \; (\forall \hat{h} \notin \Gamma) \right\}.$$

Proof. Take any $x \in M$. By a simple calculation, we note that, for each $\hat{h} \in \Gamma$ and $f \in L^1(G)$, the following equation holds:

$$\varepsilon_{\hat{h}}(\tilde{\alpha}(f)(x)) = f(h)\varepsilon_{\hat{h}}(x).$$
(3.1)

If $\hat{h} \in \Gamma$ satisfies $\varepsilon_{\hat{h}}(x) \neq 0$, then we have

$$\hat{f}(\hat{h})\varepsilon_{\hat{h}}(x) = \varepsilon_{\hat{h}}(\tilde{\alpha}(f)(x)) = 0 \quad (\forall f \in I_{\tilde{\alpha}}(x)).$$

Since $\varepsilon_{\hat{h}}(x) \neq 0$, we have $\hat{f}(\hat{h}) = 0$. This implies that $\hat{h} \in \operatorname{Sp}_{\tilde{\alpha}}(x)$.

Conversely, we assume that $\hat{k} \in \hat{G}$ such that $\varepsilon_{\hat{k}}(x) = 0$. Putting $p_{\hat{k}}(g) = \overline{\langle g, \hat{k} \rangle}$ ($\forall g \in G$), then it is clear that $p_{\hat{k}} \in L^1(G)$ and

$$\hat{p}_{\hat{k}}(\hat{d}) = \int_{G} \langle g, \hat{d} \rangle p_{\hat{k}}(g) \, dm(g) = \begin{cases} 1 & (\hat{d} = \hat{k}), \\ 0 & (\hat{d} \neq \hat{k}). \end{cases}$$

By Eq. (3.1), we have

$$\varepsilon_{\hat{d}}(\tilde{\alpha}(p_{\hat{k}})(x)) = \hat{p}_{\hat{k}}(\hat{d})\varepsilon_{\hat{d}}(x) = 0 \quad (\forall \hat{d} \in \hat{G}).$$

Then we obtain $\tilde{\alpha}(p_{\hat{k}})(x) = 0$. Since $\hat{p}_{\hat{k}}(\hat{k}) = 1 \neq 0$, we have $\hat{k} \notin \text{Sp}_{\tilde{\alpha}}(x)$. This completes the proof. \Box

The next result follows immediately from Lemma 3.3.

Lemma 3.4. Let $M = N \rtimes_{\alpha} \hat{G}$. For each semigroups Σ and Γ in \hat{G} , Γ contains Σ properly if and only if the subalgebra $M^{\tilde{\alpha}}(\Gamma)$ contains $M^{\tilde{\alpha}}(\Sigma)$ properly.

In the case of $M = N \rtimes_{\alpha} \hat{G}$, the dual action $\tilde{\alpha}$ and the generators $\{\lambda(\hat{h})\}_{\hat{h}\in\hat{G}}$ of M satisfy the equation

$$\tilde{\alpha}_g(\lambda(\hat{h})) = \langle g, \hat{h} \rangle \lambda(\hat{h}) \quad (\forall g \in G, \ \forall \hat{h} \in \hat{G}).$$

This equation is satisfied precisely when $\operatorname{Sp}_{\tilde{\alpha}}(\lambda(\hat{h})) = \{\hat{h}\} \ (\forall \hat{h} \in \hat{G})$. Hence the assertion of Lemma 3.4 is natural. But, in general, Lemma 3.4 is not necessary.

Example 3.5. Let *M* be a von Neumann algebra and P_n (n = 0, 1) be orthogonal projections in *M* such that $P_0 + P_1 = I$. Putting $u_t = P_0 + e^{2\pi i 2t} P_1$ ($\forall t \in \mathbb{R}$), then $\{u_t\}_{t \in \mathbb{R}}$ is a strongly

continuous unitary group of M and so we can define the automorphism group $\{\alpha_t\}_{t\in\mathbb{R}}$ of \mathbb{R} on M which is implemented by u_t . Then, for each $x \in M$, we have

$$\alpha_t(x) = P_0 x P_0 + P_1 x P_1 + e^{-2\pi i 2t} P_0 x P_1 + e^{2\pi i 2t} P_1 x P_0.$$

We note that $\alpha_t(x) = e^{2\pi i n t} x$ if and only if $\text{Sp}_{\alpha}(x) = \{n\}$. Thus if we put $\Gamma = \{2n \mid n \in \mathbb{Z}_+\}$, then Γ is a semigroup in \mathbb{Z} which is contained in \mathbb{Z}_+ properly. However it easily see that

$$M^{\alpha}(\Gamma) = \{x \in M \mid P_0 x P_1 = 0\} = M^{\alpha}(\mathbb{Z}_+).$$

The fourth author in [7] studied the structure of invariant subspaces and cocycles for $N \rtimes_{\alpha} \hat{G}_+$ when \hat{G}_+ induces an archimedean order in \hat{G} , and showed the following:

Theorem 3.6 [7, Theorem 6.3]. If N is a factor, then $N \rtimes_{\alpha} \hat{G}_+$ is a maximal σ -weakly closed subalgebra of M.

We note that this result was obtained under the assumption that N admits a trace. However, considering a non-commutative L^2 -space in the sense of Haagerup [1], we may rewrite it without this assumption.

To prove Theorem 1.1, we need the converse assertion. Indeed, we shall show it without the assumption that N is a factor. Let us say that Γ is a maximal semigroup in \hat{G} if \hat{G} is the only semigroup in \hat{G} which contains Γ as a proper subset.

Theorem 3.7. Let $M = N \rtimes_{\alpha} \hat{G}$. If $M^{\tilde{\alpha}}(\hat{G}_+)(=N \rtimes_{\alpha} \hat{G}_+)$ is a maximal σ -weakly closed subalgebra of M, then \hat{G}_+ induces an archimedean order in \hat{G} .

Proof. Assume that $M^{\tilde{\alpha}}(\hat{G}_+)$ is a maximal σ -weakly closed subalgebra of M. If \hat{G}_+ is not maximal, then there exists a semigroup Σ in \hat{G} such that $\hat{G}_+ \subsetneq \Sigma \subsetneq \hat{G}$. By Lemmas 3.1 and 3.3, $M^{\tilde{\alpha}}(\Sigma)$ is a σ -weakly closed subalgebra of M satisfying

$$M^{\tilde{\alpha}}(\hat{G}_{+}) \subsetneq M^{\tilde{\alpha}}(\Sigma) \subsetneq M^{\tilde{\alpha}}(\hat{G}) = M.$$

This contradiction shows that \hat{G}_+ is a maximal semigroup in \hat{G} . Moreover, \hat{G}_+ satisfies $\hat{G}_+ \cap (-\hat{G}_+) = \{\hat{0}\}$ and $\hat{G}_+ \cup (-\hat{G}_+) = \hat{G}$. Thus, by [6, Theorem 8.1.3], \hat{G}_+ induces an archimedean order in \hat{G} . This completes the proof. \Box

4. Some remarks on maximality

In this section, we shall give some remarks on maximality of $M^{\tilde{\alpha}}(\Gamma)$, where Γ is a semigroup of \hat{G} . First we modify Theorem 3.7 as follows:

Theorem 4.1. Let $M = N \rtimes_{\alpha} \hat{G}$ and Γ be a semigroup in \hat{G} . If $M^{\tilde{\alpha}}(\Gamma)$ is a maximal σ -weakly closed subalgebra of M, then Γ is a maximal semigroup in \hat{G} . Moreover, let Γ be a semigroup which satisfies the conditions

$$\Gamma \cap (-\Gamma) = \{\hat{0}\} \quad and \quad \Gamma \neq \{\hat{0}\}. \tag{4.1}$$

If N is a factor, then $M^{\tilde{\alpha}}(\Gamma)$ is maximal if and only if Γ is maximal. In this case Γ induces an archimedean order in \hat{G} .

Proof. Let Γ be a maximal semigroup of \hat{G} which satisfies (4.1). By [6, Theorem 8.1.3] and its proof, we see that $\hat{G} = \Gamma \cup (-\Gamma)$ and Γ induces an archimedean order in \hat{G} . Thus $M^{\tilde{\alpha}}(\Gamma)$ is the analytic crossed product, and so $M^{\tilde{\alpha}}(\Gamma)$ is maximal. \Box

We shall say that a semigroup Σ of \hat{G} is an archimedean ordered semigroup of \hat{G} if, for each $\hat{h}, \hat{k} \in \Sigma$, there exists a positive integer n such that $n\hat{k} - \hat{h} \in \Sigma$. For example, in the case $\hat{G} = \mathbb{Z}$, the semigroups $n\mathbb{Z}_+ = n\{0, 1, 2, 3, ...\}$ or $\{n, n+1, n+2, ...\}$ ($\forall n \ge 0$) are archimedean ordered semigroups.

Lemma 4.2. If Γ is an archimedean ordered semigroup of \hat{G} which satisfies $\Gamma \cup (-\Gamma) = \hat{G}$, then Γ is a maximal semigroup.

Proof. Suppose that Σ is a semigroup of \hat{G} such that $\Gamma \subsetneq \Sigma$. Then there exists a non-zero element \hat{h} in Σ such that $\hat{h} \notin \Gamma$. By the assumption, we note that $-\hat{h} \in \Gamma$. Hence, for each $\hat{k} \in \Gamma$, there is a positive integer n > 0 such that $n(-\hat{h}) - \hat{k} \in \Gamma$ because Γ has an archimedean order. Thus we have

$$-\hat{k} = n\hat{h} + \left\{n(-\hat{h}) - \hat{k}\right\} \in \Sigma,$$

and so $-\Gamma \subseteq \Sigma$. This implies that $\hat{G} = \Gamma \cup (-\Gamma) \subseteq \Sigma \subseteq \hat{G}$. This completes the proof. \Box

Theorem 4.1 suggests that the condition (4.1) plays an important role in the maximality of $M^{\tilde{\alpha}}(\Gamma)$. If Σ is an archimedean ordered semigroup in \hat{G} such that $\Sigma \cup (-\Sigma) = \hat{G}$ and $\Sigma \cap (-\Sigma) \neq \{\hat{0}\}$, then $M^{\tilde{\alpha}}(\Sigma)$ does not need to be a maximal σ -weakly closed subalgebra of M. Indeed, we shall gave an example which satisfies such a situation as follows:

Example 4.3. Let $G = \mathbb{T}^2 = \mathbb{T} \times \mathbb{T}$ be the two dimensional torus (the bitorus) and $L^2(\mathbb{T}^2)$ be the usual Lebesgue space with respect to the Haar measure on \mathbb{T}^2 . Let M be the von Neumann algebra acting on $L^2(\mathbb{T})$ generated by L_1 and L_2 , where L_1 (respectively L_2) is the multiplication operator with the projection map on the first coordinate (respectively second coordinate). We note that M is usually known as the algebra $L^{\infty}(\mathbb{T}^2)$, that is M is spatially isomorphic to the crossed product $\mathbb{C} \rtimes_{\mathrm{id}} \mathbb{Z}^2$ acting on the Hilbert space $\ell^2(\mathbb{Z}^2) = \ell^2(\mathbb{Z}^2, \mathbb{C})$. Thus we may identify M and $L^2(\mathbb{T}^2)$ with $\mathbb{C} \rtimes_{\mathrm{id}} \mathbb{Z}^2$ and $\ell^2(\mathbb{Z}^2)$, respectively. For each $s, t \in \mathbb{R}$, we define

$$(W_{s,t}\xi)(m,n) = e^{-2\pi i m s} e^{-2\pi i n t} \xi(m,n) \quad (\forall \xi \in \mathcal{H}, \ \forall (m,n) \in \mathbb{Z}^2).$$

The automorphism group $\tilde{\alpha}$ of \mathbb{R}^2 on *M* is implemented by the unitary operator $W_{s,t}$, that is,

$$\tilde{\alpha}_{s,t}(x) = W_{s,t} x W_{s,t}^* \quad \big(\forall x \in M, \ \forall (s,t) \in \mathbb{R}^2 \big).$$

Let Γ be a semigroup of \mathbb{Z}^2 which satisfies $\Gamma \cap (-\Gamma) = \{\hat{0}\}$ and $\Gamma \cup (-\Gamma) = \hat{G}$ as follows:

$$\Gamma = \left\{ (k, l) \in \mathbb{Z}^2 \mid k = 0 \text{ and } l \ge 0, \text{ or } k > 0 \right\}.$$

Then Γ induces a lexicographic order in \mathbb{Z}^2 . For this semigroup, we can define the analytic crossed product $M^{\tilde{\alpha}}(\Gamma)$ of M with the diagonal which is a factor as follows:

$$M^{\tilde{\alpha}}(\Gamma) = \overline{\operatorname{alg}\{L_1^m L_2^n \mid (m,n) \in \Gamma\}}^{\sigma-w}.$$

By Theorem 1.1, we see that the analytic crossed product $M^{\tilde{\alpha}}(\Gamma)$ is not maximal. Indeed, if we put $\Sigma = \{(k, l) \in \mathbb{Z}^2 \mid k \ge 0\}$, then Σ is the archimedean ordered semigroup of \hat{G} which satisfies

 $\Sigma \cup (-\Sigma) = \hat{G}, \Sigma \cap (-\Sigma) \neq \{\hat{0}\}$ and $\Gamma \subsetneq \Sigma \subsetneq \hat{G}$. By Lemma 4.2, we note that Σ is a maximal semigroup in \hat{G} . By Lemmas 3.1 and 3.4, $M^{\tilde{\alpha}}(\Sigma)$ is a σ -weakly closed subalgebra of M which contains $M^{\tilde{\alpha}}(\Gamma)$ properly. Moreover, by [5, Section 3, Example (1)], there is not a σ -weakly closed subalgebra of M which contains $M^{\tilde{\alpha}}(\Gamma)$ and is maximal among the proper σ -weakly closed subalgebras of M. That is, $M^{\tilde{\alpha}}(\Sigma)$ is not a maximal σ -weakly closed subalgebra of M, in spite of the facts that Σ is maximal and the diagonal of $M^{\tilde{\alpha}}(\Sigma)$ is a factor.

Motivated by this fact, we shall characterize $M^{\alpha}(\Sigma)$ with some maximality in general case.

Proposition 4.4. Let N be a factor and $M = N \rtimes_{\alpha} \hat{G}$. Let Σ be an archimedean ordered semigroup of \hat{G} which satisfies $\Sigma \cup (-\Sigma) = \hat{G}$. If \mathfrak{A} is an $\tilde{\alpha}$ -invariant σ -weakly closed subalgebra of M which contains $M^{\tilde{\alpha}}(\Sigma)$, then $\mathfrak{A} = M^{\tilde{\alpha}}(\Sigma)$ or $\mathfrak{A} = M$. That is, $M^{\tilde{\alpha}}(\Sigma)$ is maximal among $\tilde{\alpha}$ -invariant σ -weakly closed subalgebras of M.

Proof. We may assume that $M^{\tilde{\alpha}}(\Sigma) \subsetneq \mathfrak{A}$. Since \mathfrak{A} is $\tilde{\alpha}$ -invariant, there is an element $x \in \mathfrak{A}$ and $\hat{h} \notin \Sigma$ such that $0 \neq \varepsilon_{\hat{h}}(x) \in \mathfrak{A}$. Since $\operatorname{Sp}_{\tilde{\alpha}}(\varepsilon_{\hat{h}}(x)) = \{\hat{h}\}$, there exists $y \in \pi_{\alpha}(N)$ such that $\varepsilon_{\hat{h}}(x) = y\lambda(\hat{h})$. Thus we have

$$\pi_{\alpha}(N)y\pi_{\alpha}(N)\lambda(\hat{h}) = \pi_{\alpha}(N)\varepsilon_{\hat{h}}(x)\pi_{\alpha}(N) \subseteq \mathfrak{A}.$$

Since N is a factor and $\pi_{\alpha}(N)y\pi_{\alpha}(N)$ is a two-sided ideal of $\pi_{\alpha}(N)$, the σ -weakly closure of $\pi_{\alpha}(N)y\pi_{\alpha}(N)$ coincides with $\pi_{\alpha}(N)$, and so $\lambda(\hat{h})$ lies in \mathfrak{A} . Let S be the semigroup generated by Σ and \hat{h} . Since \mathfrak{A} is the algebra which contains $M^{\tilde{\alpha}}(\Sigma)$ and $\lambda(\hat{h})$, we have $M^{\tilde{\alpha}}(S) \subseteq \mathfrak{A}$. However, by Lemma 4.2, Σ is maximal and hence $S = \hat{G}$. Therefore, we have

 $M = M^{\tilde{\alpha}}(\hat{G}) = M^{\tilde{\alpha}}(S) \subseteq \mathfrak{A} \subseteq M.$

This completes the proof. \Box

Corollary 4.5. Keep the notation as in Example 4.3. Then every σ -weakly closed subalgebra of $L^{\infty}(\mathbb{T}^2)$ which contains $M^{\tilde{\alpha}}(\Sigma)$ properly is not $\tilde{\alpha}$ -invariant.

Remark 4.6. The invariance of subalgebras for an automorphism group is an interesting problem because this property is convenient to study the structure of subalgebras. For example, let $G = \mathbb{T}$. Then $\hat{G} = \mathbb{Z}$ and so $\hat{G}_+ = \mathbb{Z}_+ = \{0, 1, 2, 3, ...\}$. Let M be an arbitrary finite von Neumann algebra with a faithful, normal, tracial state τ and $\alpha = \{\alpha_t\}_{t\in\mathbb{T}}$ be an automorphism group of \mathbb{T} on M such that $\tau \circ \alpha_t = \tau$ ($\forall t \in \mathbb{T}$). Then Solel showed in [8, Corollary 4.4] that every σ weakly closed subalgebra of M which contains $M^{\alpha}(\mathbb{Z}_+)$ is α -invariant. He also proved the same result when $G = \hat{G} = \mathbb{R}$ and $\hat{G}_+ = \mathbb{R}_+$. That is, let M be a σ -finite von Neumann algebra and $\alpha = \{\alpha_t\}_{t\in\mathbb{R}}$ be an automorphism group of \mathbb{R} on M. Then every σ -weakly closed subalgebra of M that contains $M^{\alpha}(\mathbb{R}_+)$ is α -invariant [9, Proposition 2.1].

Remark 4.7. Lemma 3.1 raises the question; is every σ -weakly closed subalgebra of M able to describe as a subalgebra $M^{\tilde{\alpha}}(\Gamma)$ for some semigroup Γ in \hat{G} ? Example 4.3 gives a counterexample for this question. In general, let \hat{G}_+ be a positive semigroup of \hat{G} which induces an archimedean order in \hat{G} and let N be not a factor. Then every σ -weakly closed subalgebra of $M = N \rtimes_{\alpha} \hat{G}$ which contains $M^{\tilde{\alpha}}(\hat{G}_+)$ never has the form $M^{\tilde{\alpha}}(\Lambda)$ for some semigroup Λ of \hat{G} . However we are interested in another case. More precisely, when is a σ -weakly closed subalgebra of $M^{\tilde{\alpha}}(\hat{G}_+)$ of the form $M^{\tilde{\alpha}}(\Lambda)$ for some semigroup Λ of \hat{G} ?

Acknowledgment

The authors are very grateful to the referee for his many valuable remarks and suggestions.

References

- U. Haagerup, L^p-spaces associated with an arbitrary von Neumann algebra, in: Algèbre d'opèrateurs et leurs applications en physique mathèmatique, Marseille, 20–24 Juin 1977, in: Colloques internationaux du CNRS, vol. 274, Éditions du CNRS, Paris, 1979, pp. 175–184.
- [2] R.I. Loebl, P.S. Muhly, Analyticity and flows in von Neumann algebras, J. Funct. Anal. 29 (1978) 214-252.
- [3] M. McAsey, P.S. Muhly, K.-S. Saito, Non-selfadjoint crossed products (Invariant subspaces and maximality), Trans. Amer. Math. Soc. 248 (1979) 381–409.
- [4] M. McAsey, P.S. Muhly, K.-S. Saito, Non-selfadjoint crossed products III, J. Operator Theory 12 (1984) 3-22.
- [5] T. Nakazi, Nonmaximal weak-* Dirichlet algebras, Hokkaido Math. J. 5 (1976) 88–96.
- [6] W. Rudin, Fourier Analysis on Group, Interscience, New York, 1967.
- [7] K.-S. Saito, Invariant subspaces and cocycles in nonselfadjoint crossed products, J. Funct. Anal. 45 (1982) 177-193.
- [8] B. Solel, Invariant subspaces for Algebras of analytic operators associated with a periodic flow on a finite von Neumann algebra, J. Funct. Anal. 58 (1984) 1–19.
- [9] B. Solel, Maximality of analytic operator algebras, Israel J. Math. 62 (1988) 63-89.
- [10] S. Strătilă, Modular Theory in Operator Algebras, Abacus Press, Tunbridge, UK, 1981.
- [11] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, Berlin, 2002.