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Abstract

We introduce new methods in the class of boundary value methods (BVMs) to solve boundary value problems
(BVPs) for a second-order ODE. These formulae correspond to the high-order generalizations of classical finite
difference schemes for the first and second derivatives. In this research, we carry out the analysis of the conditioning
and of the time-reversal symmetry of the discrete solution for a linear convection–diffusion ODE problem. We
present numerical examples emphasizing the good convergence behavior of the new schemes. Finally, we show
how these methods can be applied in several space dimensions on a uniform mesh.
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1. Introduction

Let us consider the following two-point boundary value problem (BVP) for a scalar ordinary differential
equation (ODE) with separated boundary conditions{

f (x, y, y′, y′′)= 0 x ∈ [x0, xf ],
y(x0)= y0, y(xf )= yf ,

(1)
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wheref is a sufficiently smooth function and it is assumed that a unique smooth solution exists. This
general formulation includes, for example, convection–diffusion problems corresponding to the one-
dimensional version of PDE models occurring in many applications (computational fluid-dynamics,
electromagnetism, electrochemistry, nonlinear elasticity, etc.).

In this paper, we propose to solve (1) by stable finite difference schemes of high order on a uniform
meshgrid. We reckon that the same analysis can be applied when more general boundary conditions are
considered, but for the sake of simplicity we prefer not to present this treatment here.

The traditional discretization schemes for BVPs that use finite differences (see e.g.[4,10]) replace the
derivatives in (1) with difference quotients and look for a global approximation of the solution by solving
a system of algebraic equations. In this approach the simplest approximation involves central differences
for both the first and second derivatives. The overall scheme has order two and for linear BVPs implies
the solution of a tridiagonal linear system. In the literature, in order to have well-conditioned discrete
problems, the diagonal dominance of the coefficient matrix is imposed and this leads to a restriction in the
choice of the stepsize discretization[4,10].An improvement in this direction can be obtained by imposing
a less restrictive algebraic diagonal dominance[15]. The most used alternative to this method, known
as theupwind method, involves forward or backward differences for the first derivative. In this case, no
restriction on the stepsize is required but only first-order accuracy is achieved. Despite their low accuracy,
it is worth to note that all the above-mentioned schemes are still used nowadays for discretizations along
one-space dimension, especially in the PDE context.

Historically, as outlined in[4], to avoid the drawback related to the low order of accuracy, two types
of extensions are essentially considered. The first one devises families of methods to solve the system of
first-order ODEs equivalent to the second-order equation. The relevant literature is very rich. For example,
in the context of one-step schemes, we can mention a class of implicit Runge–Kutta methods used in the
code MIRKDC[8]. Similarly, in the class of multistep formulae, we can cite the BVMs[5] used in the
Matlab code TOM[13] (see also[14]). On the other hand, acceleration techniques based on extrapolation
or deferred corrections have been applied to a basic scheme in order to obtain faster convergence. For
example, the code TWPBVP is based on deferred corrections of the trapezoidal rule[6,7]. A different
strategy seeks a high-order approximation for the BVP in the original form (even when derivatives of
order greater than two are present). For this goal, thecollocationmethods, that are a class of Runge–Kutta
methods, compute a continuous piecewise polynomial representation of the solution. The Matlab code
BVP4c[18] and the code COLNEW[4] are based on this technique.

In line with the idea of approximating the BVP in the original form and in the framework of boundary
value methods (BVMs)[5], we construct high-order extensions of the classical central, forward and
backward schemes on a uniform mesh. To this aim, in Section 2 we give a general result to define a
difference scheme of orderp to approximate the�th derivativey(�), for all ��p. Particular attention is
devoted to the treatment of the boundary additional values required by finite difference schemes of order
greater than two. Hence, we define three new classes of methods of even order to solve (1). It is worth
to note that the obtained results can be also applied to systems of ODE–BVP. In Section 3, we carry out
the conditioning analysis of the new schemes when they are applied to a linear homogeneous scalar BVP
with separated boundary conditions. Moreover, we consider the concept of time-reversal symmetry for a
second-order ODE–BVP, and we find the conditions that a numerical method must satisfy in order to yield
an isotropic discrete solution. The convergence behavior of the new techniques is discussed in Section
4 for both a linear and a nonlinear example. Moreover, the numerical results are compared with those
given by the symmetric BVMs (ETRs and TOMs in[5]) applied to the equivalent first-order ODE–BVP
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system. Eventually, in Section 5 we explain how the proposed schemes can be used along each space
dimension and then easily combined to solve an elliptic PDE on a uniform mesh.

2. Numerical approximation

Let us consider the discretization of the interval[x0, xf ] in (1) by means of a constant stepsizeh=(xf −
x0)/(n+1) such thatxi=x0+ ih, for i=0, . . . , n+1, andxn+1 ≡ xf . Moreover, lety0, . . . , yn+1 be the
numerical solutions inx0, . . . , xn+1. We set the valuesk1, k2, k3, k4�1 and approximate simultaneously
the derivatives in the nonlinear two-point BVP (1) through the following finite difference schemes:

y′′(xi) ≈ 1

h2

k2∑
j=−k1

�k1+j yi+j (2)

for i = k1, . . . , n− k2 + 1, and

y′(xi) ≈ 1

h

k4∑
j=−k3

�k3+j yi+j (3)

for i = k3, . . . , n − k4 + 1, where the coefficients�j and�j have to be computed in order to obtain
formulae of orderk1 + k2 andk3 + k4, respectively.

If kr=1 forr=1, . . . ,4, we have the classical central differences for the second and the first derivatives.
It is well known that the overall scheme has order 2 and it is the simplest one to solve problem (1) (see
e.g.[4, 9,16]). Eitherk1+k2>2 ork3+k4>2, thenm=max(k1+k2 −2, k3+k4−2) additional values
of the solution are needed, that are not given by the boundary conditions of the continuous problem. We
decide to usek1+k2−2 extra formulae of the same order as (2) to approximate the second derivative and
k3+k4−2 formulae of the same order as (3) for the first derivative. These additional schemes are different
from those used in[9,11,17,19], which require less steps and could have lower order, thus reducing the
global order of approximation. They are, instead, strictly connected to the theory of BVMs (see[5]), and
are defined by the following schemes:

y′′(xi) ≈ 1

h2

k1+k2∑
j=0

�(i)j yj , i = 1, . . . , k1 − 1,

y′′(xi) ≈ 1

h2

k1+k2∑
j=0

�(i−m1)
j yj+m1, i = n− k2 + 2, . . . , n (4)

(m1 = n+ 1 − k1 − k2), and

y′(xi) ≈ 1

h

k3+k4∑
j=0

�(i)j yj , i = 1, . . . , k3 − 1,

y′(xi) ≈ 1

h

k3+k4∑
j=0

�(i−m3)
j yj+m3, i = n− k4 + 2, . . . , n (5)
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(m3 = n + 1 − k3 − k4), where the coefficients�(i)j and�(i)j have to be computed to devise schemes
with the same order as the main schemes (2) and (3), respectively. In this way, by using all the previous
schemes to computey′

i ≈ y′(xi) andy′′
i ≈ y′′(xi), the discretization of the BVP (1) yields the system of

equations

f (xi, yi, y
′
i , y

′′
i )= 0 for i = 1, . . . , n, (6)

in the unknownsy1, . . . , yn.
In vector form, ifY=[y1, y2, . . . , yn]T represents the unknown solution vector, we define the following

BVMs for the approximation of the derivatives

Y ′′(x) ≈ 1

h2 ÃỸ , Y ′(x) ≈ 1

h
B̃Ỹ ,

whereỸ = [y0, Y
T, yf ]T, andÃ andB̃ are then × (n + 2) matrices containing the coefficients of the

schemes (2)–(4) and (3)–(5), respectively.
If the same order is selected for both the derivatives, that isp= k1 + k2 = k3 + k4, the entries ofÃ and

B̃ can be determined by solving appropriate linear systems with the same(p+1)× (p+1)Vandermonde
coefficient matrix

V =




1 1 1 . . . 1
0 1 2 . . . p

0 1 4 . . . p2

...
...

...
...

0 1 2p . . . pp


 . (7)

The right-hand side in each of these systems depends on the order of the derivative we want to approximate
and on the number of initial conditions required by the scheme. The following general result holds true:

Propostion 2.1. For all ��p, the coefficients of the formula of order p

y(�)(xi+l) ≈ 1

h�

p∑
j=0

c
(l)
j yi+j (8)

required to approximate the�th derivative ofy(x) in xi+l , for l=0, . . . , p, are the entries of the(l+1)th
column of the(p + 1)× (p + 1) matrix

C(�) = V −1K�V, (9)

where V is the Vandermonde matrix in(7) and

K =




0
1 0

2
. . .
. . .

. . .

p 0


 .
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Proof. For the first derivative(� = 1), see[1]. In general, the unknown coefficientsc(l)j have to be
determined such that the approximation (8) has maximum orderp. The usual Taylor expansion yields the
following conditions to be satisfied:

p∑
j=0

j sc
(l)
j = 0, 0�s�� − 1,

p∑
j=0

j sc
(l)
j = s!

(s − �)! l
s−�, ��s�p.

The assertion easily follows by representing these relations in vector form for eachl = 0, . . . , p. In fact,
the above conditions mean that the coefficientsc

(l)
0 , . . . , c

(l)
p have to be computed by solving the linear

system

V c = (K�V )el+1,

whereel is thelth unit vector ofRp+1. Hence, the(l+ 1)th column of the matrixC(�) in (9) contains the
coefficients of a scheme of orderp with l initial conditions. �

We observe that, ifC(1)=C, thenC(�)=C�, for all ��p. Consequently, sinceJpCJp=−C (see[1]),
whereJp is the(p + 1)× (p + 1) permutation matrix

Jp =




1
1

·
·

1


 , (10)

one has thatC(�) satisfies

JpC
(�)Jp = (−1)�C(�). (11)

Property (11) implies thatC(�) is a centro-symmetric matrix for even derivatives and a skew-centro-
symmetric matrix for odd derivatives. Therefore, the coefficients of thej th column are the same as those
of the(p+ 2− j)th column, but in reverse order (and also changed in sign for the approximation of odd
derivatives). For example, forp = 4 and� = 1,2, we have

C(1) =




−25
12 −1

4
1
12 − 1

12
1
4

4 −5
6 −2

3
1
2 −4

3

−3 3
2 0 −3

2 3

4
3 −1

2
2
3

5
6 −4

−1
4

1
12 − 1

12
1
4

25
12




, C(2) =




35
12

11
12 − 1

12 − 1
12

11
12

−26
3 −5

3
4
3

1
3 −14

3

19
2

1
2 −5

2
1
2

19
2

−14
3

1
3

4
3 −5

3 −26
3

11
12 − 1

12 − 1
12

11
12

35
12




.

Since the BVP (1) has one initial and one final condition, we do not use the first and the last column of
each matrixC(�), since the first one does not require initial conditions and the last one does not require
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final conditions. The remainingp − 1 formulae identify several BVMs for the approximation of the�th
derivative. A peculiar BVM is characterized by the choice of the main scheme (which must be used
n− p + 2 times) and, hence, by the number of initial conditions that it requires.

Since the second derivative represents the symmetric part of the convection–diffusion operator asso-
ciated with the ODE–BVP (1), we discard the odd-order schemes. In fact, for this choice, the number of
initial methods would be different from the number of the final ones and then a global symmetry would
be lost. Moreover, for even-orderp = 2k we choose as main scheme the BVM withk initial conditions,
that is the(k + 1)th column ofC(2), since the centro-symmetry ofC(2) implies the symmetry of this
formula(�i = �2k−i). In this case we havek1 = k2 = k and thek − 1 initial and thek − 1 final schemes
fulfill the following property:

�(j)i = �(2k−j)2k−i , i = 0, . . . ,2k, j = 1, . . . , k − 1.

We remark that the overall method is an even-order generalization of thecentral difference schemewhich
has been already introduced in[3] for the solution of Hamiltonian problems. In the following, we refer
to these formulae asD2.

An explicit representation and some properties of the coefficients for the approximation of the first
derivative are given in[1]. In our context, these formulae have different features since we use them in the
solution of BVPs and coupled with those of the same order for the second derivative. Due to the definition
of the D2 schemes, we prefer to consider BVMs of even orderp = 2k. Hence, we propose three classes
of methods according to the choice of the main scheme.

The first one, introduced in[5] as a generalization of the midpoint formula for IVPs, is defined for
k3 = k4 = k and corresponds to choosing the(k+1)th column ofC(1) as main BVM scheme. In this case,
k − 1 initial andk − 1 final schemes are considered. The skew-centro-symmetry ofC(1) implies that, in
the main scheme, we have�i = −�2k−i and, for the additional schemes, we have

�(j)i = −�(2k−j)2k−i , i = 0, . . . ,2k, j = 1, . . . , k − 1.

The overall method leads to a high (even)-order extension of the classicalcentral difference scheme[9]
for the first derivative. For this reason, we define the formulae in this class asextended central difference
formulae(ECDFs).

The second class of methods is defined fork3 = k4 + 2 = k + 1 and corresponds to choosing the
(k+2)th column ofC(1) as main BVM scheme. In this case there arek initial andk−2 final schemes. We
remark that the firstk− 1 initial schemes are the same of the ECDF and thekth is the main scheme of the
ECDF. Note that any kind of symmetry is lost. These schemes can be considered an even-order extension
of the classical first-orderbackward difference schemeand correspond to thegeneralized backward
differentiation formulae(GBDFs) of even order (see[5]).

The third class of formulae is defined fork4=k3+2=k+1 and corresponds to choosing thekth column
of C(1) as main BVM scheme. In this case, there arek − 2 initial andk final formulae. These schemes
can be considered as an even-order extension of the classical first-orderforward difference scheme. For
this reason, we define them asgeneralized forward differentiation formulae(GFDFs). Also in this case
any kind of symmetry is lost.

In the following sections, the combination of these three classes of BVMs with theD2 scheme of the
same order will be called D2ECDF, D2GBDF and D2GFDF, respectively. InTables 1and2, we report
the coefficients of all the formulae used for approximating the second and the first derivatives of even
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Table 1
Coefficients�i (i = 0, . . . , p) of the schemes of orderp with j initial conditions(j = 1, . . . , p/2) for the approximation of the
second derivative

p j �0 �1 �2 �3 �4 �5 �6 �7 �8

2 1 1 −2 1

4 1 11
12 −5

3
1
2

1
3 − 1

12

4 2 − 1
12

4
3 −5

2
4
3 − 1

12

6 1 137
180 −49

60 −17
12

47
18 −19

12
31
60 − 13

180

6 2 − 13
180

19
15 −7

3
10
9

1
12 − 1

15
1
90

6 3 1
90 − 3

20
3
2 −49

18
3
2 − 3

20
1
90

8 1 363
560

8
315 −83

20
153
20 −529

72
47
10 −39

20
599
1260 − 29

560

8 2 − 29
560

39
35 −331

180
1
5

9
8 −37

45
7
20 − 3

35
47

5040

8 3 47
5040 − 19

140
29
20 −118

45
11
8 − 1

20 − 7
180

1
70 − 1

560

8 4 − 1
560

8
315 −1

5
8
5 −205

72
8
5 −1

5
8

315 − 1
560

ordersp = 2k up to 8. For the second derivative, the main BVM schemes are typed bold for emphasis.
Because of the symmetry, the formulae of orderp with p− j initial conditions(j = 1, . . . , p/2− 1) are
omitted.

3. Time-reversal symmetry and conditioning analysis

In this section, we show some properties of the new methods when applied to the linear and homoge-
neous scalar problem

y′′ − 2�y′ + �y = 0, (12)

with constant real coefficients� and� and with separated boundary conditionsy(x0)=y0 andy(xf )=yf .
By assuming that� = �2 − �>0, the exact solution of (12) is given by

y(x)= c1e�1x + c2e�2x,

where�1 = � + √
� and�2 = � − √

�. The coefficientsc1 andc2 depend on the boundary conditions and
are given by

c1 = y0e�2xf − yf

e�2xf − e�1xf
, c2 = yf − y0e�1xf

e�2xf − e�1xf
.
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Table 2
Coefficients�i (i = 0, . . . , p) of the schemes of orderp with j initial conditions(j = 1, . . . , p/2) for the approximation of the
first derivative

p j �0 �1 �2 �3 �4 �5 �6 �7 �8

2 1 −1
2 0 1

2

4 1 −1
4 −5

6
3
2 −1

2
1
12

4 2 1
12 −2

3 0 2
3 − 1

12

6 1 −1
6 −77

60
5
2 −5

3
5
6 −1

4
1
30

6 2 1
30 −2

5 − 7
12

4
3 −1

2
2
15 − 1

60

6 3 − 1
60

3
20 −3

4 0 3
4 − 3

20
1
60

8 1 −1
8 −223

140
7
2 −7

2
35
12 −7

4
7
10 −1

6
1
56

8 2 1
56 −2

7 −19
20 2 −5

4
2
3 −1

4
2
35 − 1

168

8 3 − 1
168

1
14 −1

2 − 9
20

5
4 −1

2
1
6 − 1

28
1

280

8 4 1
280 − 4

105
1
5 −4

5 0 4
5 −1

5
4

105 − 1
280

By means of the change of variable� = x0 + xf − x, from (12) we obtain

u′′ + 2�u′ + �u= 0, � ∈ [x0, xf ], (13)

whereu = u(�) and the derivatives are calculated with respect to�. If we set the boundary conditions
u(x0) = u0 ≡ yf andu(xf ) = uf ≡ y0, the two parametric curvesC� : {(�, u(�)), � ∈ [x0, xf ]} and
Cx : {(x, y(x)), x ∈ [x0, xf ]} coincide. Moreover, a point that is moving forth onCx , is running back on
C� and viceversa. This property of the solutiony(x)of the BVP (12) is calledtime isotropyor time-reversal
symmetry(see [5, p. 218]). It would be important to design a method yielding a numerical solution with
this kind of invariance. For this reason, we derive a set of conditions that the coefficients of the BVMs
introduced in this paper must satisfy in order to preserve the time isotropy also in the discrete case.

The numerical approximation of (12) is

(Ã− 2�hB̃ + �h2Ĩn)Ỹ = 0, (14)

whereĨn = [0n, In,0n],0n is a null vector of lengthn, In is then × n identity matrix,Ã, B̃ andỸ are
defined in the previous section. Similarly, the numerical approximation of (13) with the same method on
the same grid is

(Ã+ 2�hB̃ + �h2Ĩn)Ũ = 0, (15)
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whereŨ = [u0, U
T, uf ]T = [u0, u1, . . . , un, uf ]T andui ≈ u(�i) for i = 1, . . . , n. The time reversal

symmetry of the discrete solution corresponds to imposing that

Ỹ = Jn+2Ũ ,

whereJn+2 is defined in (10). From (14) and (15), it is straightforward to obtain that the above property
is fulfilled if

Ã= JnÃJn+2, B̃ = −JnB̃Jn+2. (16)

These relations mean that the numerical method is isotropic when the coefficients of the matricesÃ and
B̃ satisfy, for alli = 1, . . . , n andj = 1, . . . , n+ 2:

ãij = ãn+1−i,n+3−j and b̃ij = −b̃n+1−i,n+3−j ,

that is: (i) the main scheme is symmetric for the approximation of they′′ and skew-symmetric for they′;
(ii) the same number of initial and final schemes is used, and (iii) the coefficients of theith additional
initial method are those of the(n+ 1 − i)th final method in reverse order (and also changed in sign for
the approximation ofy′).

We observe that only the D2ECDFs satisfy property (16). As a consequence, it is worth noting that the
midpoint rule, belonging to this class forp = 2, is isotropic when applied to second-order BVPs even if
it is not isotropic when applied to first-order BVPs, as outlined in[5].

In order to analyze the conditioning of the discrete problem associated to the proposed numerical
methods, we rewrite problem (12) as the equivalent first-order ODE system(

y′
z′

)
=

(
0 1
−� 2�

) (
y

z

)
,

whose coefficient matrix has eigenvalues given by�1 and�2. Since�1�2 = �, the problem is well condi-
tioned if and only if�<0 (seeFig. 1). In fact, in this case the eigenvalues have different signs and the
dichotomy holds in the space of solutions of the problem[4]. If �=0 (along the vertical axis) the problem
is said to be moderately conditioned (see[5]). On the other hand, if�>0 (and�>0) the problem is
ill- conditioned (the case�<0 corresponds to an oscillating solution and will not be considered in the
following analysis). For this reason, we are looking for methods which yield a well-conditioned discrete
problem for�<0.

From Eq. (14) the following linear system arises:

(A− 2�hB + �h2I )Y = d, (17)

whered is the vector involving the known boundary conditions andA andB are quasi-Toeplitz matrices
obtained by considering the columns from the second to the(n+1)th one ofÃ andB̃. Forn large enough,
the contribution of the initial and final methods on the condition number is in general negligible with
respect to that of the main formula (see, for example,[12] for an analysis of the matrices arising from
GBDFs applied to first-order problems and Problem 4 in the next Section 4). Moreover, the conditioning
of finite dimension Toeplitz band matrices derives from the analysis of the corresponding infinite matrices
[2]. For this reason, a simple way to study the well conditioning of the discrete problem, is to analyze the
roots of the characteristic polynomial associated to the main method (see[5]) which is given by

	(z, �h2, �h)= �(z)− 2�h�(z)+ �h2zs, (18)
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Fig. 1.(�, �)-region for the well conditioning of the continuous problem.

wheres = max(k1, k3) and

�(z)=
k2∑

j=−k1

�k1+j zs+j , �(z)=
k4∑

j=−k3

�k3+j z
s+j .

Hence, (18) is a real polynomial of degrees + r, with r = max(k2, k4). Note thats corresponds to the
number of lower diagonals of the coefficient matrix in (17) whiler is the number of upper diagonals. If

i = 
i(�h

2, �h) are the roots of (18) ordered by increasing modulus, the coefficient matrix in (17) is well
conditioned ifs roots are inside the unit circle and the remainingr roots are outside, that is|
i |<1, for
i= 1, . . . , s, and|
i |>1 otherwise. The roots
s and
s+1 are saidprincipal rootsof the polynomial (18)
since they essentially generate the numerical solution (the other ones give a negligible contribution). For
h → 0, they approximate the double root equal to 1 of the polynomial�(z).

To yield the counterpart ofFig. 1in the discrete case, we can find a(�h2, �h)-region of well conditioning
of the discrete problem. For this reason, we solve for|ẑ|=1 the equation	(ẑ, �h, �h2)=0 in order to obtain
the boundaries separating the regions of well conditioning from those of ill conditioning. Therefore, since
the polynomial (18) is linear with respect to�h and�h2, the boundaries are indeed straight lines and they
can be identified by the analysis of the following three cases:

• z=1: since the consistence of the schemes implies�(1)=�(1)=0, the line�h2=0 must be considered;
• z= −1: the equation to be analyzed is

�h2 − 2�̂�h+ �̂ = 0, (19)

where�̂ = �(−1)/(−1)s and �̂ = �(−1)/(−1)s . By simple calculations, we have that�̂<0 for all
the methods of any order. Moreover, the value of�̂ is positive for the D2GBDFs and negative for
the D2GFDFs. The intersection of line (19) with the�h2-axis is given by−�̂>0. For the D2ECDFs,
we have�̂ = 0 and then this line is parallel to the vertical axis and it is given by�h2 = |�̂|. For the
D2GBDFs and D2GFDFs, we have�̂ �= 0 and then this line intercepts the vertical axis inq = �̂/(2�̂).
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Fig. 2.(�h2, �h)-regions for the well conditioning of the D2ECDFs, D2GBDFs, D2GFDFs of orders 4, 6 and 8.

• z (and its conjugate) is a complex root such that|z|=1: it is possible to show that�(z)−zs�(z)/zs=0.
The polynomial	(z, �h, �h2)=0 reduces to�h2−�(z)/zs that covers the segment between the points
(0,0) and(0, |�̂|).

The shaded regions inFig. 2represent the values of(�h2, �h) such that the coefficient matrices are well
conditioned for D2ECDFs, D2GBDFs and D2GFDFs of orders 4, 6 and 8.

The D2ECDFs always yield well-conditioned matrices for�<0. Therefore, generalizations of the
midpoint rule are unstable for initial value problems (see[5]) and BVPs of first order, but they are stable
if applied to BVPs of second order. On the other hand, the discrete problem associated to the D2GBDFs
and the D2GFDFs could be ill-conditioned for some values of(�h2, �h) with �<0. In fact, a restriction
on the stepsizeh can arise by solving the Eq. (19). If�̂ = (��̂)2 − �̂�, the two roots of (19) are

h1 = ��̂ +
√

�̂

�
, h2 = ��̂ −

√
�̂

�
.

Since �̂�>0, no restriction on the stepsize arises when�̂<0 or ��̂�0. The D2ECDFs havê� =
0 and this justifies the above well conditioning result independently from the value of�. On the
other hand, real positive values ofh1 and h2 (h1<h2) exist for the D2GBDFs and D2GFDFs if
and only if �̂>0 and ��̂<0. Under this hypothesis the stepsize restrictionh�h1 arises for
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Table 3
Maximum value of|�|h required to obtain well-conditioned matrices from D2GBDFs(�<0) and D2GFDFs(�>0)

Order 4 6 8 10

|q| 1 17
12

16
9

21
10

D2GBDFs when�<0 and for D2GFDFs when�>0. Moreover, if�̂� is much smaller than(��̂)2, then
the previous restriction may be simplified as follows:

h�
�̂

2��̂
≡ q

�
.

This condition is sufficient to have well-conditioned matrices associated to the two methods. InTable 3,
we report the values ofq that give a measure of this restriction which only depends on the orderp of the
method. Note that the value ofq increases when the order increases, that is the well-conditioning regions
tend to become wider.

The above result on the conditioning is not entirely surprising because the D2GBDF can be seen
as a high-order extension of the well-known backward finite differences that are used only when the
coefficient� of the first derivative (velocity) in (12) is positive. Conversely, the D2GFDF can be seen
as a high-order extension of the forward finite differences that are used when�<0. We remark that
the D2GBDFs and D2GFDFs could be combined to yield a well-conditioned method without stepsize
restrictions that corresponds to a high (even)-order extension of theupwind method. In fact, the upwind
scheme (of first-order) uses the forward differences when�<0 and the backward differences when�>0
(see e.g.[10], p. 153ff and[4], p. 434ff). A more detailed study of this method will be the subject of future
research.

4. Numerical examples

The main goal of this section is to compare the convergence behavior of the proposed schemes for two
test problems given in the “BVP software page”[6] of J. Cash. To this aim, we use a constant stepsize and
we consider only mildly stiff examples. The first linear problem allows us to emphasize the restrictions
required on the stepsize when the first derivative is approximated by the GBDFs. A similar result could be
shown for the D2GFDFs by considering an analogous BVP with the coefficient of the first derivative of
opposite sign. The second nonlinear problem is useful to underline some connections between the linear
and the nonlinear case. Since the analytic solution is known for both tests, all tables and figures in this
section report the absolute error (in the infinity norm). The continuous lines in theFigs. 3and5 represent
the theoretical convergence orders. All tests were performed with Matlab 6.5.

4.1. Test problem 4 by Cash

Let us consider the linear problem

�y′′ + y′ − (1 + �)y = 0,
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Fig. 3. Problem 4 for� = 0.1: convergence behavior of D2ECDFs, D2GBDFs and D2GFDFs on a uniform meshgrid.

in [−1,1] with known boundary conditions. The exact solution

ye(x)= exp(x − 1)+ exp(−(1 + �)(1 + x)/�)

has a boundary layer inx = −1. We solve this problem for� = 0.1 and� = 0.01.
For � = 0.1, the absolute errors of the three methods are plotted inFig. 3. All the methods exhibit

a behavior in line with the corresponding expected order. In particular, we observe that the D2ECDFs
of orders 4 and 6 have an error smaller than the other formulae when equal order and equal number of
meshpoints are considered. Moreover, all the methods are unable to attain accuracy up to the machine
precision because of the conditioning of the corresponding discrete problem.

For � = 0.01, we report the absolute errors given by the three methods inTable 4. For large values of
n the error of each method decreases according to the theoretically predicted order. For small values of
n the obtained results lead to some interesting considerations.

First of all, we note that the solution computed withn = 49 (h = 2
50) by using the D2GBDF of any

order is completely different from the theoretical one. This result agrees with the conditioning analysis
of the previous section. In fact, from (12) we have� = −(1+ �)/�<0 and� = −1/(2�)<0. This means
that we expect an ill-conditioned discrete problem when we use D2GBDF with the stepsizesh>2.02e-2
(n<99) for the order 4,h>2.87e-2(n<69) for the order 6 andh>3.63e-2(n<55) for the order 8.
Note that these bounds forh essentially correspond to those inTable 3. Actually, as reported inFig. 4,
the condition number of the coefficient matrices associated to the D2GBDFs seems to grow quadratically
whenn is less then the previous critical values and linearly for larger ones (inFig. 4the continuous lines
are used to connect the condition numbers computed for the D2GBDFs). Therefore, the theoretical results
concerning the conditioning analysis of Section 3 are indeed supported by the numerical ones.

As shown inTable 4, the drawback associated to the D2GBDFs is avoided when the D2GFDFs are used
even if, as for D2ECDFs, fromn = 49 to 99 the error does not decrease according to the expected rate.
This bad behavior is due to the small number of points in the boundary layer. In particular, the D2ECDFs
exhibit a solution with small oscillations. These oscillations have been observed in correspondence of
centered schemes of order two by several authors (see, for example,[16]). They arise when the principal
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Table 4
Problem 4 for� = 0.01: convergence behavior of D2ECDFs, D2GBDFs and D2GFDFs on a uniform meshgrid

D2ECDF D2GBDF D2GFDF

p n Error Rate Error Rate Error Rate

4 49 5.06e-02 9.51e+00 5.40e-02
99 3.10e-02 0.70 4.29e-02 7.79 1.48e-02 1.87

199 8.79e-03 1.82 8.23e-03 2.38 3.44e-03 2.10
399 9.81e-04 3.16 8.55e-04 3.27 4.91e-04 2.81
799 6.30e-05 3.96 6.99e-05 3.61 5.09e-05 3.27

1599 3.20e-06 4.30 4.94e-06 3.82 4.18e-06 3.61

6 49 1.07e-02 7.38e+00 1.47e-02
99 9.67e-03 0.15 1.50e-02 8.94 1.50e-02 −0.03

199 1.89e-03 2.36 2.48e-03 2.60 2.56e-03 2.55
399 8.88e-05 4.41 1.11e-04 4.48 1.15e-04 4.48
799 1.78e-06 5.64 2.20e-06 5.66 2.25e-06 5.67

1599 2.26e-08 6.30 2.78e-08 6.31 2.81e-08 6.32

8 49 1.02e-02 1.04e+00 7.17e-03
99 8.86e-03 0.20 7.96e-03 7.03 8.18e-03 −0.19

199 8.37e-04 3.40 7.73e-04 3.36 8.02e-04 3.35
399 1.49e-05 5.82 1.39e-05 5.80 1.43e-05 5.81
799 9.34e-08 7.31 8.81e-08 7.30 8.98e-08 7.32

1599 3.33e-10 8.13 3.15e-10 8.13 3.19e-10 8.14
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Fig. 4. Problem 4 for� = 0.01: 2-norm condition number for the matrices associated to D2ECDFs, D2GBDFs and D2GFDFs.
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Table 5
Problem 4 for� = 0.01: convergence behavior of ETRs and TOM on a uniform meshgrid

ETR4 TOM6 ETR8

n Error Rate Error Rate Error Rate

49 1.21e-01 6.75e-02 4.28e-02
99 3.28e-02 1.88 1.34e-02 2.34 6.32e-03 2.76

199 4.28e-03 2.94 9.15e-04 3.87 2.32e-04 4.77
399 3.10e-04 3.79 2.56e-05 5.16 2.53e-06 6.52
799 1.52e-05 4.35 3.97e-07 6.01 1.24e-08 7.67

1599 9.68e-07 3.98 4.42e-09 6.49 3.92e-11 8.31

roots of (18) have different sign, that is when|�h|?|�h2|?0 and the polynomial (18) is approximated
by �(z), whose principal roots are equal to 1 and−1. Viceversa, if�h and�h2 are small (n is large), the
principal roots can be approximated by those of�(z), both equal to 1. For this reason, the oscillations are
reduced when the number of meshpoints increases.

In order to complete our analysis, we apply the BVM schemes[5] to solve the first order system
equivalent to the Problem 4. Here, we have used the ETRs of order 4 and 8 and the TOM of order 6 with
GAMs as initial and final methods[5]. The computed errors reported inTable 5show that, in general,
these methods behave like the new formulae. We only observe that, due to a better conditioning of the
discrete problem, a greater precision of these schemes holds when a large number of points is used. For
example, in the case of order 8 on a mesh of 1599 points, the matrix associated to the ETR8 has both the
size and the number of nonzero diagonals doubled with respect to D2ECDF8, but its condition number
is �(ETR8) = 3.5e3, while�(D2ECDF8) = 8.1e4.

4.2. Test Problem 20 by Cash

The nonlinear BVP

�y′′ + (y′)2 = 1

in [0, 1] with exact solution

ye(x)= 1 + � log

(
cosh

(
x − 0.745

�

))
,

is considered by Cash for� = 0.5, 0.3 and 0.06. The solution has a corner layer in the pointx = 0.745.
We have solved Problem 20 for� = 0.1 and 0.01. The obtained nonlinear system is solved by means of
the Newton method withtol = 1e-12 as the stopping criterion on the residual and the Newton direction
in the Euclidean norm.

For � = 0.1, we have used the segment connecting the boundary conditions as starting approximation.
In Fig. 5, we report the absolute error for the methods of orders 4, 6 and 8 in the three classes considered.
We observe that for each order all methods have very similar error behaviors, attaining their expected rate
of convergence. It is worth noting that, as in the linear example, the three methods are not able to give
a solution with accuracy up to the machine precision, because of the conditioning of the corresponding
discrete problem.
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Fig. 5. Problem 20 for� = 0.1: convergence behavior of D2ECDFs, D2GBDFs and D2GFDFs on a uniform meshgrid.
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Fig. 6. Problem 20 for�=0.01: convergence behavior of D2ECDFs, D2GBDFs and D2GFDFs of order 4 on a uniform meshgrid.

In order to solve the problem for�=0.01, we need to identify a good starting guess for the convergence
of the Newton method. For this reason, a continuation technique for� = 0.1, 0.05 and 0.025 has been
applied.Fig. 6 shows the absolute errors for all the methods of order 4, but similar behavior has been
obtained also for orders 6 and 8. We observe that only the D2ECDFs exhibit their expected order for all
the values ofn. All the other methods converge with their predicted order only for values ofn larger than
a critical valuen∗ that decreases when the order increases. The worst case holds for the order 4 where
n∗ � 100. Moreover, for some values ofn�n∗ and for both the D2GBDFs and D2GFDFs the Newton
method does not converge within the required precision in spite of the careful choice of the initial solution
(these values ofn are represented as the largest errors inFig. 6). In these cases no convergence holds even
if the exact solution or the one obtained by the D2ECDF of the same order is used as starting guess. We
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can deduce that the iterative method, even if very efficient in the other cases, has a very small convergence
domain.

We suppose that the bad behavior observed forn<n∗ is in some sense connected with the ill-
conditioning of these formulae outlined by the linear analysis and by the results of Problem 4. In particular,
since the ill-conditioning areas are reduced when the order increases, this link could explain why more
accurate formulae have a smaller critical thresholdn∗.

5. Application to elliptic PDEs

Let us consider the solution of a two-dimensionalelliptic PDE formulated as:

F(x, y, u, ux, uy, uxx, uyy, uxy)= 0, (x, y) ∈ ,
u(x, y)= g(x, y) on�

(20)

where = [x0, xf ] × [y0, yf ]. In this section, we show how the new schemes can be applied along each
space dimension and then combined to yield a high-order extension of classical second-order methods
for elliptic PDEs based on central and upwind differences (see, for example,[10,16]). For this aim, also
classical BVMs have been used in[17], but they show a high cost due to the double size of the discrete
problem for each dimension and a loss of symmetry in the schemes.

The discretization of by means of different stepsizeshx=(xf−x0)/(n+1)andhy=(yf−y0)/(m+1)
yields the unknown vector

U = (U1, U2, . . . , Um)
T, Uj = (u1j , . . . , unj ),

of the discrete solutionuij ≈ u(xi, yj ) in the internal points(xi, yj ), for j = 1, . . . , m, i = 1, . . . , n. We
introduce the following approximations for the derivatives in (20):

Ux(x, y) ≈ 1

hx
(Ĩm ⊗ B̃n)Ũ , Uy(x, y) ≈ 1

hy
(B̃m ⊗ Ĩn)Ũ ,

Uxx(x, y) ≈ 1

h2
x

(Ĩm ⊗ Ãn)Ũ , Uyy(x, y) ≈ 1

h2
y

(Ãm ⊗ Ĩn)Ũ ,

Uxy(x, y) ≈ 1

hxhy
(B̃m ⊗ B̃n)Ũ ,

whereUd(x, y), d ∈ {x, y, xx, yy, xy} represents the exact derivatives in the internal points,Ĩr =
[0r , Ir ,0r ] and 0r is a vector ofr zeros.Ãr and B̃r are the same matrices of dimensionr × (r + 2),
defined in Section 2.̃U also contains the boundary values and it is defined as

Ũ = (Ũ0, Ũ1, . . . , Ũm+1)
T, Ũj = (u0j , . . . , un+1,j ).

6. Conclusions

The formulae introduced in this paper seem to be promising to solve both BVPs for second-order ODEs
and elliptic PDEs on a regular domain without doubling the number of unknowns and the size of the
discrete problem. Numerical tests on uniform meshes exhibit good results also on nonlinear problems.
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Forn large enough, all the methods show essentially the same behavior. We note that, the D2GBDFs and
D2GFDFs could require a restriction on the choice of the stepsize, for this reason the D2ECDFs could
be preferable.

Future developments of this research concern the generalization of these schemes to a non uniform
mesh and then a suitable strategy of mesh variation. Good insights in this direction can be given by
[15], where the D2ECDF of order two have been applied with variable stepsize to second-order singular
perturbation ODEs.
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