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a b s t r a c t

Numerical methods for solving Ordinary Differential Equations (ODEs) have received
considerable attention in recent years. In this paper a piecewise-linearized algorithmbased
on Krylov subspaces for solving Initial Value Problems (IVPs) is proposed.MATLAB versions
for autonomous and non-autonomous ODEs of this algorithm have been implemented.
These implementations have been compared with other piecewise-linearized algorithms
based on Padé approximants, recently developed by the authors of this paper, comparing
both precisions and computational costs in equal conditions. Four case studies have been
used in the tests that come from stiff biology and chemical kinetics problems. Experimental
results show the advantages of the proposed algorithms, especially when the dimension is
increased in stiff problems.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Many scientific and engineering problems are described by ODEs where the analytic solution is unknown. In recent
years many review articles and books have appeared on numerical methods for integrating stiff ODEs. Stiff problems are
very common problems in many fields of the applied sciences: control theory, biology, chemical kinetics, electronic circuit
theory, fluids, etc. There exist numerous one-step algorithms for solving stiff ODEs based on the implicit Runge–Kutta
methods [1–3]. Another popular family of algorithms for solving these problems are the multistep algorithms based on the
BDF method [4–7]. In this paper we have developed a one-step method based on a piecewise-linearized method [8]. These
methods solve an IVP by approximating the right hand side of the corresponding ODE by a Taylor polynomial of degree 1.
The resulting approximation can be integrated analytically to obtain the solution in each subinterval and yields the exact
solution for linear problems. In [8,9] an exhaustive study of this method is introduced. The proposed method requires a
non-singular Jacobian matrix on each subinterval.

In [10] the authors presented a piecewise-linearizedmethod for solving ODEs. Thismethod uses a theoremproved in that
article, which enables the approximate solution to be computed at each time step by a block-oriented approach based on
diagonal Padé approximations. In this work another approach based on the piecewise-linearized method is introduced. In
this case, the matrix–vector product eAv, which appears in these methods, is computed by a Krylov subspace approach. The
computational costs and precisions of the algorithms are compared in equal conditions. The paper is structured as follows.
The new approach for solving ODEs based on the Krylov subspace approach is presented in Section 2. The experimental
results are shown in Section 3. Finally, conclusions and future expectations are given in Section 4.
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2. A piecewise-linearized algorithm for solving ODEs based on the Krylov subspace approach

In [10] the authors presented a piecewise-linearized method for solving ODEs, based on the following theorem which
enables the approximate solution to be computed at each time step by a block-oriented approach based on diagonal Padé
approximations.

Theorem 1 ([10]). Let

ẋ(t) = f (t, x(t)), t ∈ [t0, tf ], (1)

be an ODE with initial value

x(t0) = x0 ∈ Rn,

such that the first-order partial derivatives of f (t, x) are continuous on [t0, tf ] × Rn. Given a mesh t0 < t1 < · · · < tl−1 <
tl = tf , ODE (1) can be approximated by a set of LDEs obtained as a result of a linear approximation of f (t, x(t)) on each
subinterval [9,11],

ẏ(t) = fi + Ji(y(t) − yi) + gi(t − ti), t ∈ [ti, ti+1], (2)
y(ti) = yi, i = 0, 1, . . . , l − 1.

The solution of (2) is

y(t) = yi + E(i)
12(t − ti)fi + E(i)

13(t − ti)gi, (3)

where E(i)
12(t − ti) and E(i)

13(t − ti) are blocks (1, 2) and (1, 3) of E = eCi(t−ti), where

Ci =

 Ji In 0n
0n 0n In
0n 0n 0n


. �

If t is replaced by ti+1 in (3), the approximate solution of ODE (1) at ti+1, i = 0, 1, . . . , l − 1, is given by

yi+1 = yi + E(i)
12(1ti)fi + E(i)

13(1ti)gi, 1ti = ti+1 − ti. (4)
In this work, another approach based on the piecewise-linearized method is introduced as follows.
From [10, p. 716], eCi1ti can be expressed aseJi1ti E(i)

12(1ti) E(i)
13(1ti)

0n In In1ti
0n 0n In

 ,

whereas the approximate solution yi+1 given in (4) can be obtained by adding to yi the first n components of a vector

eCi1tivi, (5)
where

Ci =

 Ji In 0n
0n 0n In
0n 0n 0n


, vi =

0n×1
fi
gi


.

The matrix–vector product eCi1tivi can be obtained by a Krylov subspace method [12,13]. Given A ∈ Rn×n and v ∈ Rn, it is
possible to compute an approximation to vector eAv by using the Arnoldi method. This approximation is given by

eAv ∼= vopt = βVpeHpe1, (6)
whereHp = (hij) ∈ Rp×p is theHessenbergmatrix obtained from theArnoldimethod andVp = [v1, v2, . . . , vp] ∈ Rn×p, with
{vi}i=1,2,...,p an orthonormal basis of the Krylov subspace Kp = span{v, Av, . . . , Ap−1v}, β = ‖v‖2 and e1 = [1, 0, . . . , 0]T .

In order to reduce computational and storage costs when we want to compute vector yi+1, it is necessary to modify the
classical Arnoldi algorithm without explicitly forming the matrix Ci1ti. Algorithm 1 solves IVPs for non-autonomous ODEs
by the above piecewise-linearized method based on a Krylov subspace approach. This algorithm uses Algorithm 2, which
computes the approximate solution at ti+1 of IVP (1) for non-autonomous ODEs, obtained after the piecewise-linearized
process, by a block-oriented implementation of the Krylov subspace approach. Its computational cost is 2n2p + 6np(p +

1) + 2(q + jHp + 1/3)p3 flops, where jHp = max(0, 1 + int(log2(‖Hp‖))). It is possible to reduce the computational and
storage costs of Algorithm 1 when IVP (1) is autonomous.

3. Experimental results

The main objective of this section is to compare the MATLAB implementations of algorithm developed in Section 2 with
the implementations developed by the authors of this paper in [10].
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Algorithm 1 Solves IVP (1) by a piecewise-linearized method based on a Krylov subspace approach.
Function y = inolkr(t, data, x0, p, tol, q)
Inputs: Time vector t ∈ Rl+1; function data computes f (τ , y) ∈ Rn, J(τ , y) ∈ Rn×n and g(τ , y) ∈ Rn (τ ∈ R, y ∈ Rn);
vector x0 ∈ Rn; dimension p ∈ N of the Krylov subspace; tolerance tol ∈ R+; order q ∈ N of the diagonal Padé
approximation of the exponential function
Output:Matrix Y = [y1, . . . , yl] ∈ Rn×l, yi ∈ Rn, i = 1, 2, . . . , l

1: Compute the vectors c1 and c2 that contain the coefficients of terms of degree greater than 0 in the diagonal Padé
approximation of the exponential function

2: y0 = x0
3: for i = 0 : l − 1 do
4: [Ji, fi, gi] = data(ti, yi)
5: 1ti = ti+1 − ti
6: yi+1 = inlbkr(Ji, fi, gi, yi, 1ti, p, tol, c1, c2) (Algorithm 2)
7: end for

Algorithm 2 Computes the approximate solution at ti+1 of IVP (1) for non-autonomous ODEs, obtained after the piecewise-
linearized process, by a block-oriented implementation of the Krylov subspace approach.

Function yi+1 = inlbkr(Ji, fi, gi, yi, 1ti, p, tol, c1, c2)
Inputs: Matrix Ji ∈ Rn×n; vector fi ∈ Rn; vector gi ∈ Rn; vector yi ∈ Rn; step size 1ti ∈ R; dimension p ∈ N of the
Krylov subspace; tolerance tol ∈ R+; vectors c1, c2 ∈ Rq with the coefficients of terms of degree greater than 0 in the
diagonal Padé approximation of the exponential function
Output: Vector yi+1 ∈ Rn given by expression (5)

1: V (1 : n, 1) = 0n
2: V (n + 1 : 2n, 1) = fi
3: V (2n + 1 : 3n, 1) = gi
4: β = ‖V (n + 1 : 3n, 1)‖2
5: if β = = 0 then
6: yi+1 = yi
7: Return
8: end if
9: V (n + 1 : 3n, 1) = V (n + 1 : 3n, 1)/β

10: for j = 1 : p do
11: w(1 : n) = JiV (1 : n, j) + V (n + 1 : 2n, j)
12: w(n + 1 : 2n) = V (2n + 1 : 3n, j)
13: w(1 : 2n) = 1tiw(1 : 2n)
14: w(2n + 1 : 3n) = 0n
15: for i = 1 : j do
16: H(i, j) = wTV (1 : 3n, i)
17: w = w − H(i, j)V (1 : 3n, i)
18: end for
19: s = ‖w‖2
20: if s < tol then
21: p = j
22: Leave for loop
23: end if
24: H(j + 1, j) = s
25: V (1 : 3n, j + 1) = w/s
26: end for
27: computes E = eHp

28: yi+1 = yi + βV (1 : n, 1 : p)E(1 : p, 1)

As test battery, four case studies of stiff ODEs, which come from stiff biology and chemical kinetics problems, were
considered. Numerous tests were made on them. For each case study and algorithm, the characteristic parameters were
varied, although only the parameters which offered the same accuracy for the two implementations with the lower
computational cost are presented.

What follows is a short description of the implemented algorithms and the characteristic parameters:

• iaolwp and inolwp solve IVPs for ODEs by a piecewise-linearized approach and a block-oriented version without
scaling–squaring implementation of the diagonal Padé approximation method:
– Order q = 2 of the diagonal Padé approximation of the exponential function.
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Table 1
Relative error (Er ) with t = 10 and 1t variable (case study 1).

Er 1t = 0.1 1t = 0.05 1t = 0.01 1t = 0.005 1t = 0.001

iaolwp 2.809e−04 7.523e−05 2.390e−06 5.840e−07 2.366e−08
iaolkr 2.348e−04 6.928e−05 2.759e−06 6.423e−07 2.399e−08

Table 2
Execution time (Te) in seconds with t = 10 and 1t variable (case study 1).

Te 1t = 0.1 1t = 0.05 1t = 0.01 1t = 0.005 1t = 0.001

iaolwp 0.014 0.021 0.114 0.257 6.231
iaolkr 0.025 0.048 0.201 0.428 6.802

Table 3
Relative error (Er ) 1t = 0.01 and t variable (case study 1).

Er t = 20 t = 30 t = 40 t = 50 t = 60

iaolwp 2.015e−06 1.744e−06 1.537e−06 1.374e−06 1.240e−06
iaolkr 2.327e−06 2.013e−06 1.775e−06 1.585e−06 1.431e−06

Table 4
Relative error (Er ) with 1t = 0.1 and t variable (case study 2).

Er t = 15 400 t = 16 400 t = 17 400 t = 18 400 t = 19 400

inolwp 4.410e−14 8.833e−14 1.431e−13 1.980e−13 2.528e−13
inolkr 4.410e−14 8.833e−14 1.431e−13 1.980e−13 2.528e−13

• iaolkr and inolkr solve IVPs for ODEs by a piecewise-linearized method based on Krylov subspaces:
– Dimension p = 4 of the Krylov subspace. In Ref. [12] there is an exhaustive study of the computation of the product

of the exponential of a matrix and a vector by using Krylov subspaces. We have proved experimentally that when
considering low or medium dimension matrices, it is only necessary to consider a very much reduced subspace
dimension. In this work p = 4.

– Tolerance tol = 10−6
∈ R+.

– Order q = 2 of the diagonal Padé approximation of the exponential function.

For each test, the following results are shown:
• Tables which contain the relative error

Er =
‖x − x∗‖∞

‖x‖∞

,

where x∗ is the computed solution and x is the analytic solution (case study 2) or the solution computed by the MATLAB
function ode15s with a vector of relative error tolerances rtol = 10−13 and a vector of absolute error tolerances
atol = 10−13 [14].

• Tables/figures with the execution time.

The algorithms were implemented in MATLAB 7.9 and tested on an Intel Core 2 Duo processor at 2.66 GHz with 2 GB
main memory. Several tests have been developed in order to determine the accuracy and efficiency of the algorithms. The
implemented algorithms are available online at http://www.grycap.upv.es/odelin.

3.1. Case study 1 (the pollution problem [15])

This case study corresponds to a stiff IVP of dimension 20. The problem describes a chemical process consisting of 25
reactions and 20 species. The following tests were done:
• First test (Tables 1 and 2): t = 10 and 1t variable.
• Second test (Table 3 and Fig. 1): 1t = 0.01 and t variable.

3.2. Case study 2 (the EMEP problem [15])

In this case study a stiff IVP for ODEs of dimension 66 is solved. The problem describes a problem which consists of 66
chemical species and about 140 reactions. The following tests were done:
• In the first test t = 14 450 was considered. With 1t = 0.1 the relative errors of the three implementations were equal

to 2.219 · 10−15, with executions times equal to 1.290 (inolwp) and 0.266 (inolkr) seconds.
• Second test (Tables 4 and 5, and Fig. 2): 1t = 0.1 and t variable.

http://www.grycap.upv.es/odelin
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Fig. 1. Execution time in seconds of the MATLAB implementations considering 1t = 0.01 and varying t (case study 1).

Table 5
Execution time (Te) in seconds with 1t = 0.1 and t variable (case study 2).

Te t = 15 400 t = 16 400 t = 17 400 t = 18 400 t = 19 400

inolwp 52.830 157.465 316.257 529.469 790.217
inolkr 26.547 102.401 227.630 400.672 623.248

Fig. 2. Execution time in seconds of the MATLAB implementations considering 1t = 0.1 and varying t between 15400 and 19400 (case study 2).

3.3. Case study 3 (the Medical Akzo Nobel problem [15])

This case study corresponds to a stiff non-autonomous ODE [15] of variable dimension 2N . This problem studies the
penetration of radio-labeled antibodies into tissue infected by a tumor.

The following tests were made:
• First test (Tables 6 and 7): n = 100 (N = 50), t = 1 and 1t variable.
• Second test (Tables 8 and 9): 1t = 0.001, t = 1 and varying n from 50 to 250 (N = 25 to 125).

3.4. Case study 4 (the Brusselator problem) [1, pp. 6]

This case study corresponds to a stiff non-autonomous ODE of variable dimension N . This problem comes from chemical
kinetics where the model of Lefever and Nicolis [16] is used and the method of lines is applied on a grid of N points:
• First test (Tables 10 and 11): n = 100 (N = 50), t = 1 and 1t variable.
• Second test (Tables 12 and 13, and Fig. 3): t = 1, 1t = 0.001 and n variable.
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Table 6
Relative error (Er ) considering n = 100, t = 1 and 1t variable (case study 3).

Er 1t = 0.01 1t = 0.001 1t = 0.0001 1t = 0.00001

inolwp 1.572e−02 1.726e−03 1.741e−04 1.742e−05
inolkr 1.663e−02 1.728e−03 1.741e−04 1.742e−05

Table 7
Execution time (Te) in seconds considering n = 100, t = 1 and 1t variable (case study 3).

Te 1t = 0.01 1t = 0.001 1t = 0.0001 1t = 0.00001

inolwp 0.301 4.926 144.484 6362.490
inolkr 0.036 0.538 50.044 5263.304

Table 8
Relative error (Er ) considering 1t = 0.001, t = 1 and n variable (case study 3).

Er n = 50 n = 100 n = 150 n = 200 n = 250

inolwp 1.636e−03 1.726e−03 1.746e−03 1.743e−03 1.736e−03
inolkr 1.637e−03 1.728e−03 1.752e−03 1.763e−03 1.781e−03

Table 9
Execution time (Te) in seconds considering 1t = 0.001, t = 1 and n variable (case study 3).

Te n = 50 n = 100 n = 150 n = 200 n = 250

inolwp 0.720 3.531 20.863 63.944 143.920
inolkr 0.288 0.482 0.740 1.159 1.367

Table 10
Relative error (Er ) considering n = 100, t = 1 and 1t variable (case study 4).

Er 1t = 0.01 1t = 0.001 1t = 0.0001 1t = 0.00001

inolwp 2.162e−02 3.673e−04 3.715e−05 3.719e−06
inolkr 2.263e−02 3.672e−04 3.715e−05 3.719e−06

Table 11
Execution time (Te) in seconds considering n = 100, t = 1 and 1t variable (case study 4).

Te 1t = 0.01 1t = 0.001 1t = 0.0001 1t = 0.00001

inolwp 0.140 1.688 55.297 4106.738
inolkr 0.031 0.465 38.122 3710.951

Table 12
Relative error (Er ) considering 1t = 0.001, t = 1 and n variable (case study 4).

Er n = 50 n = 100 n = 150 n = 200 n = 250

inolwp 5.033e−04 3.673e−04 3.308e−04 3.170e−04 3.108e−04
inolkr 5.033e−04 3.672e−04 3.307e−04 3.169e−04 3.107e−04

Table 13
Execution time (Te) in seconds considering 1t = 0.001, t = 1 and n variable (case study 4).

Te n = 50 n = 100 n = 150 n = 200 n = 250

inolwp 0.521 1.894 2.988 7.616 16.391
inolkr 0.279 0.506 0.701 0.963 1.256

4. Conclusions and future work

In this work a new piecewise-linearized approach for solving ODEs based on Krylov subspaces has been presented.
Two algorithms based on this approach (inolkr and iaolbk) have also been proposed and compared to the piecewise-
linearized algorithms iaolwp and inolwp based on Padé approximants developed by the authors of this paper in [10].

Numerous test have been made on four case studies that come from stiff biology and chemical kinetics problems.
Experimental results show the advantages of the proposed algorithms, especially when they are integrating stiff problems.
According to the experimental results, the new algorithms offer in general similar precision and smaller computational
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Fig. 3. Execution time in seconds of the MATLAB implementations considering 1t = 0.001 and varying t between 50 and 250 (case study 3).

cost when the problem size is increased. For example, Algorithm 1 (inolkr) was up to 111 times faster than inolwp for
n = 250 and t = 1 in case study 3. This is because in the new approach the vector eAv, A ∈ Rn×n, v ∈ Rn, is approximated
by the expression βVpeHpe1, where p ≪ n. Nevertheless, when the problems are of small dimension, the computational
costs of piecewise-linearized algorithms based on diagonal Padé approximants are smaller than the computational costs of
piecewise-linearized algorithms based on Padé approximants. In general, all algorithms offer accuracy and good behaviour
with stiff problems.

As future work new improvements will be developed such as:

1. Implementing algorithms based on the piecewise-linearized approach with error control in order to vary the step size
dynamically. The tests reported here considered constant step size. It is possible to improve the algorithms developed,
using a variable step size which can be used to estimate the error committed in each iteration [9].

2. Carrying out parallel implementation of the algorithms presented in this work in a distributed memory platform, using
the message passing paradigm MPI [17] and BLACS [18] for communications, and PBLAS [19] and ScaLAPACK [20] for
computations.
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