Embedding Witt Rings of Dedekind Domains

D. B. Coleman
Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506

Communicated by H. Zassenhaus

Received April 20, 1971

Let $W(R)$ denote Harrison's Witt ring of the commutative ring R. In case R is a field of characteristic $\neq 2$, this is the classical Witt ring based on anisotropic quadratic forms. In this note we determine under what conditions $W(R)$ is embedded in $W(S)$ for certain Dedekind domains $R \subset S$. In particular, an answer is given in case R and S are the integers in algebraic number fields K and L, respectively, with ($L: K$) odd.

Introduction

Let R be a commutative ring with identity and let $W(R)$ denote the Witt ring given by D.K. Harrison's presentation
(i) $\langle 0\rangle=0$
(ii) $\langle 1\rangle=1$
(iii) $\langle a b\rangle=\langle a\rangle\langle b\rangle$
(iv) $\langle a\rangle+\langle b\rangle=\langle a+b\rangle(1+\langle a b\rangle)$,
where the generators $\langle a\rangle=\langle a\rangle_{R}$ are taken for $a \in R$. In [1] a number of results on the structure of the ring $W(R)$ are given, including a description of the prime ideals of $W(R)$. Theorem 0.2 . and the remark at the end of this paper indicate a connection between $W(R)$ and the diagonal quadratic forms over R. See also the last section of [1].
Here we consider the following question. If $R \rightarrow S$ is a ring injection (with 1 going to 1) under what conditions is $W(R) \rightarrow W(S)$ an injection? The main result is Theorem 1.6. which answers this question in case R and S are the algebraic integers in algebraic number fields K and L, respectively, with ($L: K$) odd.

The following results will be needed.
Theorem 0.1. (O. T. Springer [See 3]) If L is a field extension of K of finite odd degree, and of characteristic $\neq 2$, then $W(K) \rightarrow W(L)$ is an injection.

Theorem 0.2. (D. Harrison [see 2]) Let R be an integral domain with field of fractions K, and let $x \in W(R)$. Then $x=0$ if and only if $W(R \rightarrow K)(x)=0$ and $W\left(R \rightarrow R / a^{2} R\right)(x)=0$ for all $0 \neq a \in R$.

Theorem 0.3. ([1]) Let J be an ideal in R and let $\langle J\rangle$ denote the ideal in $W(R)$ generated by the elements $\langle a\rangle, a \in J$. Then $W(R) /\langle J\rangle \cong W(R / J)$.

Theorem 0.4. ([1]) $W\left(R_{1} \times R_{2}\right) \cong W\left(R_{1}\right) \times W\left(R_{2}\right)$.
Theorem 0.5. ([1]) Let $I_{0}=\{x \in R:\langle x\rangle=0\}$. Then I_{0} is the largest ideal in R such that $W(R) \rightarrow W\left(R / I_{0}\right)$ is an isomorphism.

Theorem 0.6. ([1]) Let L be the ideal in R generated by elements of the form $a b(a+b)$, and let N denote the nil radical of R. Then $L N \subset I_{0} \subset N$.
\mathbf{Z} denotes the ring of integers and \mathbf{Z}_{n} denotes the integers modulo n.
All ring homomorphisms are assumed to preserve identity elements.
Let alg. int. $\{K\}$ denote the ring of algebraic integers in an algebraic number field K.

1. The Main Result

Lemma 1.1. Let R be a local ring with maximal ideal J such that J is nil and R / J has more than two elements. Then $I_{0}=J$, so that $W(R) \rightarrow W(R / J)$ is an isomorphism.

Proof. There are units a and b in R such that $a+b$ is a unit, so 0.6. applies.

Lemma 1.2. Let R be a local ring with nil maximal ideal J such that $R / J \cong J / J^{2} \cong \mathbf{Z}_{2}$ as groups. Then $I_{0}=J^{2}$, so that $W(R) \rightarrow W\left(R / J^{2}\right)$ is an isomorphism and $W(R) \rightarrow W(R / J)$ is not.

Proof. Let $x \in J$. Then $x(x+1) \in L$ and $x+1$ is a unit, so $x \in L$. Thus $J \subset L$ and we have $J^{2} \subset L J \subset I_{0}$ by 0.6.
We now produce a mapping $t: R \rightarrow \mathbf{Z}_{2}\left(C_{2}\right)$ that vanishes precisely on J^{2} and such that $t(0)=0, t(1)=1, t(x y)=t(x) t(y)$ and $t(x)+t(y)=$ $t(x+y)(1+t(x y))$. A mapping satisfying these four definitive properties is called and H-map in [1]. $\mathrm{Z}_{2}\left(C_{2}\right)$ denotes the group ring of the group $C_{2}=\{1, g\}$ over \mathbf{Z}_{2}. Since I_{0} is the intersection of the "kernels" of all H-maps, the lemma will follow. Define t as follows:

$$
t(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \in J^{2} \\
1+g & \text { if } & x \in J-J^{2} . \\
1 & \text { if } & x \neq J
\end{array}\right.
$$

The verification that t is an H-map is routine. The requirement that $J / J^{2} \cong \mathbf{Z}_{2}$ is used for the fourth condition in case x and y are both in $J-J^{2}$. It is easy to see that the homomorphism induced by t is an isomorphism, so in fact $W(R) \cong \mathbf{Z}_{2}\left(C_{2}\right)$ in this case.

Lemma 1.3. Let R and S be Dedekind domains with fields of fractions K and L, respectively, with $R \subset S$, and suppose that $W(K) \rightarrow W(L)$ is injective. Then the following statements are equivalent:
(1) $\sigma: W(R) \rightarrow W(S)$ is injective.
(2) $\sigma^{-1}\left(\left\langle a^{2}\right\rangle_{S} W(S)\right)=\left\langle a^{2}\right\rangle_{R} W(R)$ for all $0 \neq a \in R$.
(3) For each prime ideal P of $R, P S \neq S$, and if Q_{1}, \ldots, Q_{k} are the primes of S that lie over P, then $W\left(R / P^{2}\right) \rightarrow \prod_{i} W\left(S / Q_{i}{ }^{2}\right)$ is injective.

Proof. If $x \in W(R), x \notin\left\langle a^{2}\right\rangle_{R} W(R)$, and if $\sigma(x) \in\left\langle a^{2}\right\rangle_{S} W(S)$, then since $\left\langle a^{2}\right\rangle_{S}$ is idempotent (see [1]) it follows that $x\left(1-\left\langle a^{2}\right\rangle_{R}\right)$ is a nonzero member of the kernel of σ. Hence (1) implies (2).
(2) implies (1). Suppose (2) holds and let $x \in \operatorname{Ker}(\sigma)$. Then by hypothesis $x \in\left\langle a^{2}\right\rangle_{R} W(R)=\operatorname{Ker}\left(W(R) \rightarrow W\left(R / a^{2} R\right)\right)$ for all $0 \neq a \in R$. Since $W(K) \rightarrow W(L)$ is injective it follows that $x \in \operatorname{Ker}(W(R) \rightarrow W(K))$. Hence by $0.2, x=0$.
Using 0.3 it is easy to see that condition (2) is equivalent to

$$
W\left(R / a^{2} R\right) \rightarrow W\left(S / a^{2} S\right) \text { is injective for all } 0 \neq a \in R .
$$

We show the equivalence of (2^{\prime}) and (3). For $0 \neq a \in R, a$ not a unit, write $a^{2} R=P_{1}^{\alpha_{1}} \cdots P_{n}^{\alpha_{n}}$, where the P_{i} are prime ideals in R and each $\alpha_{i} \geqslant 2$. For each i, if $P_{i} S \neq S$ write $P_{i} S=Q_{i 1}^{\beta_{i 1}} \cdots Q_{i k_{i}}^{\beta_{i} k_{i}}$, where the $Q_{i j}$ are primes in S. Suppose we have arranged the primes P_{i} such that for some $0 \leqslant m \leqslant n, P_{i} S \neq S$ if $1 \leqslant i \leqslant m$ and $P_{j} S=S$ if $m<j \leqslant n$. We have by the Chinese Remainder Theorem, 0.4 and Lemmas 1.1 and 1.2 that $W\left(R / a^{2} R\right) \cong \Pi_{i} W\left(R / P_{i}{ }^{2}\right)$. And if $m>0$,

$$
W\left(S / a^{2} S\right) \cong \prod_{\substack{i<m \\ i \leqslant \ll k_{i}}} W\left(S / Q_{i j}^{2}\right)
$$

Thus $W\left(R / a^{2} R\right) \rightarrow W\left(S / a^{2} S\right)$ is injective if and only if $m=n$ and for each i, $W\left(R / P_{i}^{2}\right) \rightarrow \Pi_{1 \leqslant \leqslant \leqslant k_{t}} W\left(S / Q_{i j}^{2}\right)$ is injective. That is, that condition (3) holds for each P_{i}. Since all primes P occur over some such $a \in R$, the equivalence of (2^{\prime}) and (3) follows.

Lemma 1.4. Let R, S, K, L be as in Lemma 1.3 and suppose further that L / K is a separable extension of odd degree. Then $W(R) \rightarrow W(S)$ is injective if and only if (a) $P S \neq S$ for each prime P of R and (b) if P is a
prime of R that contains 2 , and if Q_{1}, \ldots, Q_{k} are the primes of S lying over P, then $W\left(R / P^{2}\right) \rightarrow \Pi W\left(S / Q_{i}{ }^{2}\right)$ is injective.

Proof. Let P be a prime of R not containing 2 such that $P S \neq S$. Letting $P S=Q_{1}^{e_{1}} \cdots Q_{k}^{e_{k}}$ and ($S / Q_{i}: R / P$) $=f_{i}$ we have by separability that $(L: K)=\sum e_{i} f_{i}$. Since this degree is odd, one of the f_{i} must be odd, say f_{1}. Since $2 \notin P$ we have by 0.1 and Lemma 1.1, monomorphisms $W\left(R / P^{2}\right) \rightarrow W(R / P) \rightarrow W\left(S / Q_{\mathrm{J}}\right) \rightarrow W\left(S / Q_{1}{ }^{2}\right)$. Hence

$$
W\left(R / P^{2}\right) \rightarrow \prod_{i} W\left(S / Q_{i}^{2}\right)
$$

is a monomorphism. We are done by Lemma 1.3.
Corollary 1.5. Let L be a separable field extension of K of odd degree, let R and S be Dedekind domains with fields of fractions K and L, respectively, and let $R \subset S$. If 2 is a unit in R, then $W(R) \rightarrow W(S)$ is injective if and only if $P S \neq S$ for each prime P of R.

Theorem 1.6. Let K and L be algebraic number fields with $K \subset L$ and $(L: K)$ odd, and let $R=$ alg. int. $\{K\}, S=$ alg. int. $\{L\}$. Then $W(R) \rightarrow W(S)$ is injective if and only if for each prime ideal P of R such that $R / P \cong \mathbf{Z}_{2}$, there is a prime Q of S lying over P such that $R / P^{2} \rightarrow S / Q^{2}$ is an isomorphism.

Proof. Suppose P is a prime in R such that R / P is of characteristic 2 and contains more than two elements. Then for each Q_{i} over $P, S / Q_{i}$ has more than two elements, so by Lemma 1.1 we have isomorphisms $W\left(R / P^{2}\right) \rightarrow W(R / P)$ and $W\left(S / Q_{i}{ }^{2}\right) \rightarrow W\left(S / Q_{i}\right)$. The Witt ring of a finite field of characteristic 2 is isomorphic with \mathbf{Z}_{2}, so each $W\left(R / P^{2}\right) \rightarrow$ $W\left(S / Q_{i}{ }^{2}\right)$ is an isomorphism. Hence by Lemma 1.4, $W(R) \rightarrow W(S)$ can fail to be injective if and only if there is a prime P such that $R / P \cong \mathbf{Z}_{2}$ and $W\left(R / P^{2}\right) \rightarrow \Pi_{i} W\left(S / Q_{i}{ }^{2}\right)$ is not injective. (Since S is integral over R we do not have to contend with condition (a) of Lemma 1.4).

Now consider primes P with $R / P \cong \mathrm{Z}_{\mathrm{g}}$. If $R / P^{2} \rightarrow S / Q_{i}{ }^{2}$ is an isomorphism for some Q_{i}, then surely $W\left(R / P^{2}\right) \rightarrow \Pi W\left(S / Q_{i}{ }^{2}\right)$ is injective. Hence the condition is sufficient.

Now suppose $R / P \cong \mathbf{Z}_{2}$ and no $R / P^{2} \rightarrow S / Q_{i}{ }^{2}$ is an isomorphism. If S / Q_{i} has more than two elements then $W\left(S / Q_{i}{ }^{2}\right) \cong W\left(S / Q_{i}\right) \cong \mathbf{Z}_{2}$ by Lemma 1.1, so that the image of $W\left(R / P^{2}\right) \rightarrow W\left(S / Q_{i}{ }^{2}\right)$ is a copy of \mathbf{Z}_{2}. If $S / Q_{i} \cong \mathbf{Z}_{2}$ then since $R / P^{2} \rightarrow S / Q_{i}{ }^{2}$ is not an isomorphism, it follows that $R / P^{2} \cong \mathbf{Z}_{4}$ and $S / Q_{i}{ }^{2} \cong \mathbf{Z}_{2}\left(C_{2}\right)$. For each of R / P^{2} and $S / Q_{i}{ }^{2}$ must be one of these two rings with four elements and $\mathbf{Z}_{2}\left(C_{2}\right)$ cannot be mapped nontrivially into \mathbf{Z}_{4}. Hence the image of $R / P^{2} \rightarrow S / Q_{i}{ }^{2}$ is in this case a copy of \mathbf{Z}_{2}, as is the image of $W\left(R / P^{2}\right) \rightarrow W\left(S / Q_{i}{ }^{2}\right.$. Thus the assumption
that none of the $R / P^{2} \rightarrow S / Q_{i}{ }^{2}$ is an isomorphism implies that the image of $\mathbf{Z}_{2}\left(C_{2}\right) \cong W\left(R / P^{2}\right) \rightarrow \Pi W\left(S / Q_{i}{ }^{2}\right)$ is a product of copies of \mathbf{Z}_{2}. Since $\mathbf{Z}_{2}\left(C_{2}\right)$ is local, the map cannot be injective and we are done by Lemma 1.4.

$$
\text { 2. } W(\mathbf{Z}) \rightarrow W(R) \text {. }
$$

Let R be any Dedekind domain and let $\mathbf{Z} \rightarrow R$ be given by $n \mapsto n \cdot 1$. Let $\sigma: W(\mathbf{Z}) \rightarrow W(R)$. There is only one ideal of $W(\mathbf{Z})$ properly above $\langle 4\rangle W(\mathbf{Z})$, namely $\langle 2\rangle W(\mathbf{Z})$; hence $\sigma^{-1}\left(\langle 4\rangle_{R} W(R)\right)=\langle 4\rangle W(\mathbf{Z})$ if and only if $\langle 2\rangle_{R} \neq\langle 8\rangle_{R}$. For odd prime $p, \sigma^{-1}\left(\left\langle p^{2}\right\rangle_{R} W(R)\right)=\left\langle p^{2}\right\rangle W(\mathbf{Z})$. So using the proofs of Lemma 1.3 and Theorem 1.6 we have the following lemma, even though $\mathbf{Z} \rightarrow R$ is not necessarily injective.

Lemma 2.1. Let R be a Dedekind domain. Then $\langle 2\rangle_{R}=\langle 8\rangle_{R}$ if and only if there is no prime ideal P of R such that $R / P^{2} \cong \mathbf{Z}_{4}$.

Thus by Theorem 1.6 we obtain
Theorem 2.2. Let K be an algebraic number field with $(K: Q)$ odd and let $R=$ alg. int. $\{K\}$. Then the following statements are equivalent.
(1) $W(\mathbf{Z}) \rightarrow W(R)$ is injective.
(2) $\langle 2\rangle_{R} \neq\langle 8\rangle_{R}$.
(3) There is a prime ideal P of R such that $R / P^{2} \cong \mathbf{Z}_{4}$.

The kernel of $W(\mathbf{Z}) \rightarrow W(R)$ is as expected.
Theorem 2.3. Let $R=$ alg. int. $\{K\}$ with $(K: \mathbf{Q})$ odd. If $W(\mathbf{Z}) \xrightarrow{\sigma} W(R)$ is not injective, then $\operatorname{Ker}(\sigma)=(\langle 2\rangle-\langle 8\rangle) W(\mathbf{Z})$.

Proof. Using 0.4 it is easy to see that in applying 0.2 to Z one need only check the conditions for primes a. Let $x \in \operatorname{Ker}(\sigma)$; since $W(\mathbf{Q}) \rightarrow W(K)$ is injective by 0.1 , it follows that $W(\mathbf{Z} \rightarrow \mathbf{Q})(x)=0$. If p is an odd prime, then $x \in \sigma^{-1}\left(\left\langle p^{2}\right\rangle_{R} W(R)\right)=\left\langle p^{2}\right\rangle W(\mathbf{Z})(=\langle p\rangle W(\mathbf{Z}))$ as before. So by 0.2 and the remarks at the beginning of the proof, $\langle 4\rangle x=0$. Hence $(\langle 2\rangle-\langle 8\rangle) W(\mathbf{Z}) \subset \operatorname{Ker}(\sigma) \subset(1-\langle 4\rangle) W(\mathbf{Z})$. But since

$$
\frac{(1-\langle 4\rangle) W(\mathbf{Z})}{(\langle 2\rangle-\langle 8\rangle) W(\mathbf{Z})} \cong \mathbf{Z}_{\mathbf{2}}
$$

and since $\langle 4\rangle_{R} \neq 1$ (because Z_{4} is a homomorphic image of R by Theorem 2.2) the result follows.

Remark. Kenneth Kubota has pointed out to me that R and S need not be integrally closed for Lemma 1.3 to hold. For a field F, let $F^{*}=F-\{0\}$ and let $F^{* 2}$ denote the squares in F^{*}. Let S be an integral extension of R, where R and S are one-dimensional Noetherian domains with fields of fractions K and L, respectively. Suppose further that each residue class field R / P is finite. Then using a generalization of Lemma 1.3 Kubota proves that $W(R) \rightarrow W(S)$ is injective if and only if the following conditions hold. (i) $W(K) \rightarrow W(L)$ is injective. (ii) For each prime P of R, with $2 \in P$, there is a prime Q of S lying over P such that $(S / Q)^{* 2} \cap R / P=(R / P)^{* 2}$. (iii) For each prime P of R such that $R / P \cong \mathbf{Z}_{2}$, there is a prime Q of S lying over P such that $R / P^{2} \rightarrow S / Q^{2}$ is an isomorphism.

Remark. Suppose S is an R-algebra with an augmentation $\rho: S \rightarrow R$; that is ρ is a ring homomorphism and $\rho \mid R$ is an isomorphism. Then since W is a functor it follows that $W(R) \rightarrow W(S)$ is injective. In particular if S is a group ring over R, this is the case.

Remark. It has been suggested by Harrison that the relation $\langle a\rangle=$ $\left\langle a^{3}\right\rangle$, which holds in $W(R)$ in many cases, might be added to the defining relations, and that the resulting ring, $\bar{W}(R)$, might be of interest. For example, 0.2 translates as follows for $R=\mathbf{Z}$. Let a_{1}, \ldots, a_{n} be nonzero integers. Then $\left\langle a_{1}\right\rangle+\cdots+\left\langle a_{n}\right\rangle=0$ in $\bar{W}(\mathbf{Z})$ if and only if the quadratic form $a_{1} x_{1}{ }^{2}+\cdots+a_{n} x_{n}{ }^{2}$ is a sum of hyperbolic planes over \mathbf{Q} and over \mathbf{Z}_{p} for all odd primes p, and an even number of the a_{i} are odd. Other remarks on $\bar{W}(R)$ are found in [1].

It is easily seen that if R and S are algebraic integer rings as in 1.6 , then $\bar{W}(R) \rightarrow \bar{W}(S)$ is always injective.

Acknowledgment

Thanks are due to Joel Cunningham for helpful conversations.

References

1. D. Coleman and J. Cunningham, Harrison's Witt ring of a commutative ring, J. Algebra 18 (1971), 549-564.
2. D. Coleman and J. Cunningham, Comparing Witt Rings, J. Algebra 28 (1974), 296-303.
3. F. Lorenz, "Quadratische Formen über Körpern," Lecture Notes in Mathematics No. 130, Springer-Verlag, Berlin, 1970.
