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SUMMARY

Meaningful social interactions modify behavioral re-
sponses to sensory stimuli. The neural mechanisms
underlying the entrainment of neutral sensory stimuli
to salient social cues to produce social learning
remain unknown. We used odor-driven behavioral
paradigms to ask if oxytocin, a neuropeptide impli-
cated in various social behaviors, plays a crucial
role in the formation of learned associations between
odor and socially significant cues. Through genetic,
optogenetic, and pharmacological manipulations,
we show that oxytocin receptor signaling is crucial
for entrainment of odor to social cues but is dispens-
able for entrainment to nonsocial cues. Furthermore,
we demonstrate that oxytocin directly impacts the
piriform, the olfactory sensory cortex, to mediate
social learning. Lastly, we provide evidence that
oxytocin plays a role in both appetitive and aversive
social learning. These results suggest that oxytocin
conveys saliency of social stimuli to sensory repre-
sentations in the piriform cortex during odor-driven
social learning.

INTRODUCTION

Animals continuously interact with conspecifics throughout their

lifetime. Some of these interactions, like mating and aggression,

are crucial for the survival of an individual and the propagation of

species, while other interactions are behaviorally insignificant.

However, how animals classify these social events as salient

has not been extensively explored.

A set of sensory stimuli elicits stereotyped innate behaviors

(Tinbergen, 1951). These stimuli are thought to be processed

through developmentally determined, highly specific neural

pathways connecting sensory inputs to behavioral outputs

(Choi et al., 2005; Dulac and Wagner, 2006; Haga-Yamanaka

et al., 2014; Holy et al., 2000; Hong et al., 2014; Li and Liberles,

2015; Stowers et al., 2002). Behavioral significance can also be

imposed on sensory stimuli through experience. Learned behav-

iors, especially in social contexts, may be as important as innate
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behaviors, as they allow animals tomaximize their chance of sur-

vival and reproduction (Beny and Kimchi, 2014; Pfaus et al.,

2001). For instance, it would be crucial to remember cues predic-

tive of encountering potential mates or aggressive individuals.

Oxytocin (Oxt) is a neuropeptide produced by neurons in the

paraventricular nucleus (PVH), the medial preoptic nucleus

(MPO), and the supraoptic nucleus (SON) of the hypothalamus

(Landgraf and Neumann, 2004; Sofroniew, 1983; Swanson and

Sawchenko, 1983). There is a single known oxytocin receptor

(Oxtr), a seven-transmembrane protein, that is functionally

coupled to Gq/11a (Gimpl and Fahrenholz, 2001). Oxt is released

into the circulatory system and promotes contractions of the

uterus during parturition and milk production. Oxt is also directly

released within the brain, where it has been implicated in various

social behaviors (Insel, 2010; Lee et al., 2009; Ross and Young,

2009; Stoop, 2012). Genetically removing or pharmacologically

inactivating the Oxt-Oxtr pathway produces deficits in maternal

behavior (Bosch and Neumann, 2012; Pedersen and Prange,

1979; Takayanagi et al., 2005), social recognition (Ferguson

et al., 2000; Ferguson et al., 2001; Lee et al., 2008; Takayanagi

et al., 2005), and social reward (Dölen et al., 2013). Despite its

expansive involvement in social behaviors, whether Oxt plays a

crucial role in associative learning in social contexts has not

been addressed.

The ubiquity of olfactory-guided social behaviors across verte-

brate (Isogai et al., 2011;Kauret al., 2014; Leypoldet al., 2002; Lib-

erles, 2014; Lin et al., 2005; Pfaus et al., 2001; Stowers et al., 2002)

and invertebrate species (Li and Liberles, 2015; Michener, 1974;

Sokolowski, 2010; Suh et al., 2004) strongly suggests that olfac-

tory systems are important for recording and processing social in-

formation. Thus, in this study,weusedodor-drivenbehavioral par-

adigms that capture the essence of social learning—the pairing of

an olfactory conditioned stimulus (CS)with a social unconditioned

stimulus (US)—to investigate the role of Oxt in social learning. Our

experiments reveal that Oxt is selectively required for social

learningbut isdispensable for learning tasks thatdonot involveso-

cial cues. Also, optogenetic activation of Oxt+ neurons promotes

social learning with a nonsalient social stimulus. Furthermore, we

show that Oxtr signaling in the piriform, the olfactory sensory cor-

tex, is necessary to entrain initially neutral sensory representations

to social cues. Finally, we demonstrate that Oxt is required for

aversive as well as appetitive social learning. These results sug-

gest thatOxt conveyssaliencyof social stimuli (US) tosensory rep-

resentations (CS) in the piriform cortex during social learning.
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Figure 1. Oxytocin Receptor Signaling Is

Required for Social Learning

(A) Schematic of the odor-driven appetitive social

learning paradigm. During training, the CS+ odor

(purple shade) was presented when the male

subject approached the wire cage containing a

female (\), while the CS� odor (orange shade) was

presented when the subject approached the

empty wire cage. During testing, the CS+ or the

CS� odor was presented without females when

the subject entered the randomly predetermined

CS+/CS� chamber.

(B) Time spent in each chamber during the 5 min

testing period after training with proestrus and

estrus (P/E) or diestrus females (D) as uncondi-

tioned stimuli. **p < 0.01 by Tukey HSD post hoc

test.

(C) Preference score (difference in time spent in the

CS+ and CS� compartments) for data presented

in (B). **p < 0.01 by Student’s t test.

(D) Time spent in each chamber for subjects in-

jected with saline before training and testing (S-S),

with Oxtr antagonist (OTA) before training and

testing (OTA-OTA), or with saline before training

and OTA before testing (S-OTA). HBT, habituation.

**p < 0.01 by Tukey HSD post hoc test.

(E) Preference score for data presented in (D).

*p < 0.05 and **p < 0.01 by Tukey HSD post hoc

test. Data are presented as mean ± SEM.
RESULTS

Oxytocin Receptor Signaling Is Required for
Social Learning
In order to assess the role of Oxt in social learning, we used an

odor-driven appetitive social learning paradigm (Choi et al.,

2011) in which an initially neutral odor served as a conditioned

stimulus (CS) and was paired with a socially rewarding uncondi-

tioned stimulus (US). During training, male mice were allowed to

explore a three-chambered arena, housing a female in a wire

cage on one side and an empty wire cage on the other side (Fig-

ure 1A). CS+ odor or CS� odor was delivered when the subjects

explored the female-containing wire cage or the empty cage,

respectively. The subject’s preference for the CS+ or CS�
odor was subsequently tested in the same arena in the absence

of a female.

We initially asked if females in estrus phase serve as a more

potent (attractive) social cue. Subject males were entrained to

either females in reproductively receptive (proestrus or estrus,

P/E) or nonreceptive phases (diestrus phase, D). During testing,

males trained with proestrus/estrus females (P/E) preferred the

chamber with the CS+ odor 3-fold more than the CS� chamber

(Figures 1B and 1C) (CS+ chamber = 189.34 ± 20.74 s; center =

50.56 ± 13.22 s; CS� chamber = 60.13 ± 11.68 s, n = 6). On the

other hand, males trained with diestrus females (D) spent an

approximately equal amount of time in the CS+ and CS� cham-

bers (Figures 1B and 1C) (CS+ chamber = 101.46 ± 13.62 s;
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center = 65.57 ± 9.58 s; CS� chamber =

132.88 ± 15.21 s, n = 7). This could not

be attributed to any differences in the
time spent investigating estrus versus diestrus females during

training, since males spent a similar amount of time investigating

females regardless of their estrus phase (see Figure S1A avail-

able online) (for P/E, female = 16.23 ± 1.25 s, empty = 5.26 ±

0.53 s, n = 4; for D, female = 18.10 ± 2.12 s, empty = 2.60 ±

0.78 s, n = 4). Thus, estrus phase does not influence innately

driven approach behavior toward females, but impacts socially

learned approach behavior toward the conditioned stimulus.

Wenextasked ifoxytocin receptor (Oxtr) signaling is required for

social learning using estrus females as a social cue. We blocked

Oxtr signaling by administering L-368,899, a nonpeptidergic

Oxtr antagonist that penetrates the blood-brain barrier (OTA,

5 mg/kg, intraperitoneally) (Boccia et al., 2007; Williams et al.,

1994), before training and/or testing. Males injected with saline

(Figures 1D and 1E) (S-S: CS+ chamber = 184.07 ± 13.79 s;

center = 36.73 ± 8.79 s; CS� chamber = 79.10 ± 9.11 s, n = 7)

or the antagonist before testing only (S-OTA: CS+ chamber =

163.61 ± 11.96 s; center = 52.58 ± 12.48 s; CS� chamber =

82.37 ± 4.99 s, n = 6) maintained a preference for the CS+ cham-

ber.On the contrary, subject animals injectedwithOxtr antagonist

before both training and testing failed to exhibit a preference and

spent a similar amount of time in theCS+andCS� chambers (Fig-

ures1Dand1E) (OTA-OTA:CS+chamber=109.26±17.96s; cen-

ter = 78.69± 22.57 s;CS� chamber = 112.08± 20.19 s, n = 6). This

deficit does not reflect potential effects of oxytocin recep-

tor antagonist on innately driven approach behavior toward

social cues. Animals treated with saline (S-S) or antagonist
–163, July 1, 2015 ª2015 Elsevier Inc. 153



Figure 2. Oxytocin Receptor Signaling Is

Dispensable for Nonsocial Learning

(A) Schematic of the odor-driven nonsocial appe-

titive learning paradigm. For water-restricted

animals, 10% sucrose solution was used as a

reward. For animals fed ad libitum, palatable food

was used as a reward. During training, presenta-

tion of the CS+ odor (purple shade) was paired

with reward presented on a wire cage. The CS�
odor (orange shade) was paired with an empty wire

cage. For testing, the CS+ or the CS� odor was

presented without reward when the subject

entered the randomly predetermined CS+/CS�
chamber.

(B) Time spent in each chamber for saline (S-S) or

OTA (OTA-OTA)-injected mice in the sucrose-

reward scheme. **p < 0.01 by Tukey HSD post hoc

test.

(C) Preference score for data presented in (B).

p = 0.84 by Student’s t test.

(D) Time spent in each chamber for S-S or OTA-

OTA mice in the food-reward scheme. **p < 0.01

by Tukey HSD post hoc test.

(E) Preference score for data presented in (D).

p = 0.39 by Student’s t test.

(F) Schematic of the aversive nonsocial learning

paradigm. During training, the CS+ odor was pre-

sented on the side where the subject was located,

followed by application of a mild foot shock. Dur-

ing testing, the CS+ odor was presented in the

absence of shock.

(G) Percentage of flight behavior displayed by S-S

or OTA-OTA mice in response to the CS+ pre-

sentation. p = 0.33 by Student’s t test. Data are

presented as mean ± SEM.
(OTA-OTA) spent an approximately equal amount of time

investigating females (Figure S1B) (average investigation time

per trial: for S-S, female = 14.15 ± 1.85 s/trial, empty = 4.67 ±

0.71 s/trial; for OTA-OTA, female = 16.58 ± 1.08 s/trial, empty =

4.38 ± 0.54 s/trial, n = 6 each). Animals in both groups also

traveled a similar distance during testing (Figure S1C) (for S-S,

2.01 ± 0.23 m; for OTA-OTA, 2.12 ± 0.37 m, n = 6 each). These

data demonstrate that Oxtr signaling is necessary for association

of an initially neutral odor with a rewarding social cue.

Oxytocin Receptor Signaling Is Dispensable for
Nonsocial Learning
We next asked if Oxtr signaling is also required for association

of odor with a rewarding nonsocial cue. The social learning

paradigm was modified such that males were exposed to the

CS+ odor in the presence of a nonsocial reward: sucrose solu-
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tion or palatable food (Figure 2A). In the

scheme with sucrose solution as the

reward, saline-injected animals spent

2.5-fold more time in the CS+ chamber

than in the CS� chamber (Figures 2B

and 2C) (S-S: CS+ chamber = 172.22 ±

26.15 s; center = 58.41 ± 22.29 s; CS�
chamber = 68.17 ± 13.23 s, n = 7). This

preference was maintained in animals
treated with Oxtr antagonist (OTA-OTA: CS+ chamber =

160.78 ± 11.43 s; center = 53.06 ± 8.61 s; CS� chamber =

86.17 ± 12.30 s, n = 7). Similarly, in the scheme with palatable

food as the reward, the treatment with Oxtr antagonist did not

impair the learned preference toward the CS+ chamber (Figures

2D and 2E) (S-S: CS+ chamber = 115.25 ± 8.00 s; center =

62.22 ± 8.57 s; CS� chamber = 62.53 ± 6.50 s, n = 7; OTA-

OTA: CS+ chamber = 123.92 ± 19.59 s; center = 64.10 ±

18.50 s; CS� chamber = 52.18 ± 6.25 s, n = 5).

We also asked if Oxtr signaling is required for association of

odor with an aversive nonsocial cue. During training, delivery of

the CS+ odor was followed by a mild foot shock presented

only on the side where the subject was located, allowing the

subject to escape toward the opposite side of the chamber (Fig-

ure 2F). During testing, flight behavior in response to the CS+

odor was measured in the absence of shock. Both saline- and



Figure 3. Stimulation of Oxytocin-Produc-

ing Neurons Facilitates Odor-Driven Social

Learning

(A) Strategy for targeting Oxt locus. Gray boxes

indicate coding regions. Solid bar represents

probe for Southern blot. 30 UTR, 30 untranslated
region.

(B–E) Validation of OxtCre knockin mouse line. (B)

Strategy for optogenetic activation of Oxt+ neu-

rons in the paraventricular nucleus of the hypo-

thalamus (PVH). OxtCre/+ mice injected with AAV

encoding Cre-dependent ChR2:EYFP into the

PVH were stimulated with 405 nm laser at 30 Hz

pulse frequency. (C) Immunostaining for EYFP

(green) and OXT (red) in the PVH. (D) Immuno-

staining for EYFP (green) and c-Fos (red) in the

PVH after photostimulation. Scale bars in (C andD)

represent 50 mm. (E) Percentage of EYFP+ neu-

rons expressing c-Fos upon photostimulation in

the PVH. **p < 0.01 by Student’s t test.

(F) Schematic of odor-driven social learning with

diestrus females supplemented with optogenetic

stimulation of Oxt+ neurons. During training,

photostimulation was applied to the animal upon

entrance into the randomly predetermined

CS+ chamber. In conjunction with the photo-

stimulation, the CS+ odor (purple shade) was

presented when male subject approached the

wire cage containing a diestrus female (\). The

CS� odor (orange shade) was presented, in the

absence of photostimulation, when the subject

approached the empty wire cage. During testing,

the CS+ or CS� odors were presented without

females or photostimulation, when the subject

entered the randomly predetermined CS+/CS�
chamber.

(G) Time spent in each chamber for OxtCre/+ mice

expressing ChR2 (ChR2) and EYFP (EYFP).

***p < 0.001, *p < 0.05 by Tukey HSDpost hoc test.

(H) Preference score for data presented in (G).

*p < 0.05 by Student’s t test.

(I) Schematic demonstrating real-time place pref-

erence test.

(J) Time spent in each chamber during 20 min

testing period for ChR2 and EYFP animals. p =

0.53 by Student’s t test. Data are presented as

mean ± SEM.
OTA-injected animals robustly avoided the CS+ odor (Figure 2G)

(S-S: 86.0% ± 7.1%, n = 10; OTA-OTA: 75.6% ± 8.7%, n = 9).

These results collectively suggest that Oxtr signaling is required

for social learning but is dispensable for other associative

learning tasks that do not involve social cues.

Optical Activation of Oxt+ Neurons in the PVH Promotes
Social Learning
We next asked if stimulation of Oxt+ neurons is capable of pro-

moting social learning. We generated a knockin mouse line to

gain genetic access to Oxt+ neurons, by targeting Cre recombi-

nase to the 30 end of the Oxt coding sequence (Figure 3A). To

exogenously activate Oxt+ neurons in these OxtCre/+ mice, we

then delivered adeno-associated virus (AAV) driving Cre-depen-

dent ChR2 fused to EYFP (ChR2:EYFP) under control of the EF1a
promoter into the PVH (Figure 3B), a major source of centrally

releasedOxt (Landgraf andNeumann, 2004). Double labeling ex-

periments confirmed that Cre expression recapitulates endoge-

nous expression of Oxt; the majority of ChR2:EYFP-expressing

neurons coexpressed OXT (Figure 3C) (91.5% of 255 cells from

two mice). Furthermore, analysis of c-Fos expression, a marker

of neuronal activation, confirmed photostimulation-dependent

activation of ChR2-expressing neurons. We observed that

�42% of cells expressing ChR2:EYFP also expressed c-Fos

(Figures 3D and 3E) (ChR2: 42.46% ± 5.23%, n = 6), whereas

�9% of cells expressing EYFP were positive for c-Fos in control

animals (EYFP: 9.72% ± 7.98%, n = 4).

We asked if diestrus females, which are normally incapable

of driving learning in our behavioral scheme (Figures 1B and 1C),

canserveasaneffectiveUSwhensupplementedwithoptogenetic
Neuron 87, 152–163, July 1, 2015 ª2015 Elsevier Inc. 155



Figure 4. The Piriform Cortex Expresses

Oxtr and Receives Projections from Hypo-

thalamic Oxt+ Neurons

(A–D) In situ hybridization forOxtrmRNA (red) in (A)

the piriform cortex (Pir), (B) the main olfactory bulb

(MOB), (C) the olfactory tubercle (Tub), and (D) the

cortical amygdala (CoA). Counterstained with

40,6-diamidino-2-phenylindole (DAPI, blue). Scale

bars in (A)–(D) represent 50 mm.

(E–G) Anterograde tracing of Oxt+ neurons to the

piriform cortex. (E) AAV encoding Cre-dependent

ChR2:EYFP was injected into the PVH of an

OxtCre/+mouse. (F and G) EYFP+ fibers in sections

of the piriform cortex counterstained with NT

(blue). Scale bars in (E) represent 200 mm and in

(F and G) represent 50 mm.

(H–J) Hypothalamic regions enriched in Oxt+

neurons, in mice injected with retrograde tracer

cholera toxin B subunit (CTB) in the piriform.

(H) The anterior PVH (aPVH) and the medial preoptic area (MPO), (I) the posterior PVH (pPVH), and (J) the supraoptic nucleus (SON) were stained for CTB (green)

and OXT (red) and counterstained with NT (blue). Arrowheads indicate colabeled neurons. Scale bars in (H)–(J) represent 50 mm.
stimulation of Oxt+ neurons in subject animals. In this experiment,

photostimulation of Oxt+ neurons was applied during training

whenanimalswereexposed toadiestrus female in theCS+cham-

ber. Testing was performed in the absence of both the female and

photostimulation (Figure 3F). ChR2-expressing animals spent

substantially more time in the CS+ chamber than in the CS�
chamber (Figures 3G and 3H) (ChR2: CS+ chamber = 181.53 ±

18.57 s; center = 39.21 ± 7.03 s; CS� chamber = 78.73 ±

12.69 s, n = 8). In contrast, EYFP-expressing animals failed to

exhibit a significant preference for the CS+ chamber (Figures 3G

and 3H) (EYFP: CS+ chamber = 126.95 ± 10.84 s, center =

54.77 ± 9.97 s; CS� chamber = 112.30 ± 14.99 s, n = 8). Stimula-

tion of Oxt+ neurons did not enhance investigation time toward

diestrus females during training (Figure S2) (ChR2: female =

14.35 ± 1.97 s/trial, empty = 5.40 ± 1.44 s/trial, n = 7; EYFP: fe-

male = 18.53 ± 0.90 s/trial, empty = 5.47 ± 1.17 s/trial, n = 6).

Furthermore, photostimulation of Oxt+ neurons did not generate

reward-related effects in a real-time place preference test

(RTPP) (Stamatakis and Stuber, 2012). In the RTPP arena, Oxt+

neuron stimulation occurred when animals were in one, but not

in the neighboring, compartment (Figure 3I). Both ChR2-and

EYFP-expressing animals spent a similar amount of time in the

stimulated and unstimulated compartments (Figure 3J) (ChR2:

stimulated = 640.00 ± 55.75 s, unstimulated = 560.04 ± 55.75 s,

n = 10; EYFP: stimulated = 696.27 ± 68.73 s, unstimulated =

503.12 ± 68.62 s, n = 8), suggesting that stimulation of Oxt+ neu-

rons in the PVH does not elicit approach or avoidance behavior.

The foregoing experiments demonstrate that stimulation of Oxt+

neurons in the PVH facilitates entrainment of odor to a nonsalient

social cue.

Oxt Neurons Project to the Piriform Cortex
Anatomical, physiological, and behavioral studies have sug-

gested that the piriform cortex serves as a likely neural substrate

for odor-driven associative learning (Choi et al., 2011; Ghosh

et al., 2011; Illig and Haberly, 2003; Miyamichi et al., 2011; Poo

and Isaacson, 2009; Sosulski et al., 2011; Stettler and Axel,

2009). We carried out fluorescent in situ hybridization for Oxtr
156 Neuron 87, 152–163, July 1, 2015 ª2015 Elsevier Inc.
mRNA to determine if Oxt acts on the piriform cortex. Dense

Oxtr expression was observed in all three layers of the piriform

cortex (Figure 4A) (layer 1 = 24%±6%of total DAPI+ nuclei; layer

2 = 64% ± 4%; layer 3 = 48% ± 2%, n = 3), in accordance with a

previous autoradiography study (Yoshida et al., 2009). Oxtr

expression was also evident in other olfactory centers, such as

the glomerular layer of themain olfactory bulb (MOB) (Figure 4B),

the olfactory tubercle (Tub) (Figure 4C), and the cortical amyg-

dala (CoA) (Figure 4D).

We next asked if Oxt+ neurons in the hypothalamus directly

project to the piriform cortex.We labeled Oxt+ neurons by inject-

ing AAV encoding Cre-dependent ChR2:EYFP into the PVH of

OxtCre/+ mice (Figure 4E) and examined the piriform cortex for

the presence of labeled fibers. In these animals, sparse EYFP+

fibers originating from Oxt+ neurons were found in the piriform

cortex (Figures 4F and 4G). We also injected cholera toxin B sub-

unit (CTB), a retrograde tracer, into the piriform (Figure S3). CTB

was detected in Oxt+ neurons in the anterior PVH (aPVH) and the

medial preoptic area (MPO) (Figure 4H), but not in Oxt+ neurons

in the posterior PVH (pPVH) (Figure 4I) or the supraoptic nucleus

(SON) (Figure 4J). These results demonstrate that the piriform

cortex contains a dense population of Oxtr-expressing neurons

and receives direct input from Oxt+ neurons in the aPVH/MPO.

Oxtr Expression in Piriform Ensembles Is Necessary for
Appetitive Social Learning
Based on the foregoing observations in conjunction with the sug-

gested role of the piriform in odor-driven learning, we hypothe-

sized that Oxtr signaling in the piriform is involved in entrainment

of odor to social cues. However, the large size of the brain struc-

ture and lack of piriform-specific Cre driver lines pose a technical

challenge to interrogating its function in social learning. Thus, we

used exogenously activated piriform neural ensembles (Choi

et al., 2011) to ask if Oxtr expression is required in the piriform

cortex for odor-driven social learning. Activation of these ensem-

bles expressing ChR2, like odorants, can be entrained to elicit

appetitive or aversive behavior when associated with reward or

punishment.



Figure 5. Oxtr Expression in ChR2-Express-

ing Piriform Ensembles Is Necessary for

Entrainment to Social Cues

(A) Strategy to generate Oxtr (green dot)-intact or

Oxtr-deficient ensembles. Red circles indicate

individual piriform neurons. Dual virus strategy

employs lentivirus encoding Cre from the human

Synapsin1 promoter (hSyn) and AAV encoding

Cre-dependent ChR2:tdTomato to generate

Oxtr-intact ensembles in wild-type mice (WT-

ChR2) but Oxtr-deficient ensembles in Oxtrf/f mice

(Oxtrf/f-ChR2).

(B and C) Expression of c-Fos in piriform ChR2-

ensembles after photostimulation. Coronal sec-

tions of WT-ChR2 (B) or Oxtrf/f-ChR2 (C) were

stained for c-Fos (green) and tdTomato (red) and

counterstained with NT (blue). Scale bars in (B) and

(C) represent 50 mm.

(D) Schematic of social learning with activation of

piriform ChR2-ensembles as the CS. The subjects

were injected with saline (S) or Oxtr antagonist

(OTA) before training. During training, photo-

stimulation, instead of odor, was applied as the

CS+when the subject was in the vicinity of the wire

cage containing a female (\). For testing, photo-

stimulation was applied when the subject was in

the randomly predetermined CS+ chamber.

(E) Female in proestrus or estrus phase was used

as US. Time spent in each chamber for WT-ChR2

mice injected with saline (S) or Oxtr antagonist

(OTA), and Oxtrf/f-ChR2 mice injected with saline.

**p < 0.01 by Tukey HSD post hoc test.

(F) Preference score for data presented in (E). **p <

0.01 by Tukey HSD post hoc test.

(G) Palatable food was used as US. Time spent in

each chamber for WT-ChR2 mice injected with S

or OTA, andOxtrf/f-ChR2mice injected with S. *p <

0.05 and **p < 0.01 by Tukey HSD post hoc test.

(H) Preference score for data presented in (G).

Data are presented as mean ± SEM.
We virally introduced ChR2 in layer 2 and 3 of the piriform cor-

tex. We coinjected AAV driving Cre-dependent ChR2:tdTomato

with lentivirus encoding Cre from the human Synapsin1 pro-

moter. This dual virus strategy was applied to either wild-type

(WT) orOxtrf/f mice, in which the Oxtr coding region is condition-

ally deleted in a Cre-dependent manner (Lee et al., 2008). This

generated Oxtr-intact ChR2-expressing ensembles in WT (WT-

ChR2) and Oxtr-deficient ChR2-ensembles in Oxtrf/f mice

(Oxtrf/f-ChR2), respectively (Figure 5A). In Oxtrf/f-ChR2 mice,
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the level of Oxtr mRNA was significantly

reduced in ChR2-expressing neurons

(ChR2+) compared to neighboring nonin-

fected neurons (ChR2�) (Figures S4A and

S4B) (normalized intensity of Oxtr mRNA:

ChR2� = 100.00 ± 9.24; ChR2+ = 37.08 ±

3.84, n = 167 cells from three mice for

ChR2� and 72 cells from three mice for

ChR2+). ChR2 expression was detected

in approximately 5%–10% of the neurons

in a localized region (Figures 5B and 5C)
(percentage of ChR2-expressing neurons: WT = 6.32% ±

1.35%; Oxtrf/f = 4.53% ± 1.18%, n = 11 for WT and 6 for Oxtrf/f).

Analysis of c-Fos expression revealed that ChR2 ensembles

both in WT and Oxtrf/f mice were activated upon photostimula-

tion (Figures 5B and 5C) ([c-Fos+ ChR2+]/[ChR2+]: WT-ChR2 =

60.73% ± 4.52%; Oxtrf/f-ChR2 = 66.26% ± 5.06%, n = 11 for

WT-ChR2 and 6 for Oxtrf/f-ChR2).

We first confirmed that ChR2-expressing piriform ensembles,

just like odorants, require Oxtr signaling for social learning by
–163, July 1, 2015 ª2015 Elsevier Inc. 157



entraining these ensembles in the presence or absence of Oxtr

antagonist. During training, we replaced theCS+odorwith photo-

stimulationsuch thatChR2ensembleswereactivatedwhenmales

investigated the females (Figure 5D). Males injected with saline

prior to training spent significantly more time in the CS+ chamber

(Figures 5E and 5F) (CS+ chamber = 220.53 ± 22.16 s; center =

25.94 ± 9.31 s; CS� chamber = 53.08 ± 15.24 s, n = 5). The

observed preference for CS+ chamber was independent of the

anterior-posterior position of the ChR2-ensemble within the piri-

form (Figure S4C). Males injected with Oxtr antagonist, however,

failed to exhibit preference for the CS+ chamber and spent a

similar amount of time in the CS+ and CS� chambers (Figures

5E and 5F) (CS+ chamber = 97.60 ± 18.62 s; center = 76.29 ±

17.73 s; CS� chamber = 126.15 ± 10.71 s, n = 6).

We next asked if Oxtr expression is required in the piriform

ChR2-ensembles for entrainment to social cues. Unlike WT

animals,Oxtrf/fanimals harboringOxtr-deficient ensembles spent

a similar amount of time in the CS+ and CS� chambers (Figures

5E and 5F) (CS+ chamber = 108.62 ± 35.03 s; center = 44.17 ±

14.15 s; CS� chamber = 147.23 ± 30.52 s, n = 6). Our results

are not explained by deficits intrinsic to Oxtrf/f mice, since Oxtrf/f

animals injected with control virus encoding EGFP were still

capable of odor-driven social learning (Figures S4D and S4E)

(CS+ chamber = 170.15 ± 3.18 s; center = 45.40 ± 11.19 s; CS�
chamber = 82.87 ± 11.43 s, n = 4). In contrast to entrainment to

social cues, entrainment of ChR2-expressing ensembles to

nonsocial cues (i.e., palatable food) was affected neither by sys-

temic Oxtr signaling blockade nor by ChR2-ensemble specific

knockout of Oxtr (Figures 5G and 5H) (WT-ChR2-S: CS+ cham-

ber = 121.09 ± 5.78 s; center = 42.62 ± 8.53 s; CS� chamber =

76.29 ± 8.21 s, n = 8; WT-ChR2-OTA: CS+ = 125.97 ± 13.84 s;

center = 53.66 ± 11.78 s; CS� chamber = 60.37 ± 7.40 s, n = 7;

Oxtrf/f-ChR2-S: CS+ = 135.06 ± 15.74 s; center = 30.56 ±

8.45 s; CS� chamber = 74.38 s, n = 5). Therefore, these results

demonstrate that representations in the piriform cortex require

Oxtr expression specifically for entrainment to social cues.

Oxytocin Receptor Signaling Is Required for Aversive
Social Learning
Our data suggest that Oxt is crucial for appetitive social learning.

We next asked if Oxt is also required for learning with aversive

social cues.We designed an odor-driven aversive social learning

paradigm, in which odor served as a CS and was paired with an

aversive social US (Figure 6A). Prior to training, male mice were

introduced into the home cage of a CD1 male, an aggressive

strain of mouse, and allowed to interact in a resident-intruder

scheme. This social encounter was characterized by frequent

attacks directed toward the intruding subject mouse. During

training, subjects were confined to one of the side compartments

in the three-chambered arena, while they were exposed to odor

in the presence or absence of the previously encountered CD1

male. After interleaved CS+ (CS+ odor with the CD1 male in a

wire cage) and CS� trials (CS� odor with an empty wire cage),

the subjects were tested in the same arena, which contained

only the CS+ and CS� odors. Subjects that directly interacted

with an aggressive CD1 prior to training avoided the CS+ cham-

ber (Figures 6B and 6C) (CS+ chamber = 53.28 ± 4.42 s; center =

101.58 ± 10.66 s; CS� chamber = 138.37 ± 12.65 s, n = 7), while
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the subjects that had not been exposed to the CD1 prior to

training spent an approximately equal amount of time in the

CS+ and CS� chambers (Figures 6B and 6C) (CS+ chamber =

93.52 ± 15.47 s; center = 96.05 ± 17.31 s; CS� chamber =

100.74 ± 10.05 s, n = 6). Thus, odor can be entrained to an aver-

sive social stimulus to produce avoidance behavior, and this

learning requires an aggressive encounter prior to training in

our behavioral scheme.

We next asked if Oxtr signaling is required for aversive social

learning. Subjects were injected with either saline or Oxtr antag-

onist after interaction with the CD1, but before training. While

subjects injected with saline avoided the CS+ chamber (Figures

6D and 6E) (CS+ chamber = 63.57 ± 4.10 s; center = 91.04 ±

9.34 s; CS� chamber = 144.39 ± 11.00 s, n = 7), animals injected

with antagonist did not exhibit avoidance of the CS+ chamber

(Figures 6D and 6E) (CS+ chamber = 108.96 ± 14.95 s; center =

80.74 ± 8.43 s; CS� chamber = 106.18 ± 18.01 s, n = 6). We

quantified the fraction of time the subject spent away from the

pencil cup to assess avoidance of the CD1 during training.

Avoidance of the CD1 was indistinguishable between animals

injected with saline or Oxtr antagonist (Figure S5) (S: avoidance

score = 0.82 ± 0.03, n = 7; OTA: avoidance score = 0.78 ± 0.06,

n = 6). These results suggest that Oxtr signaling does not influ-

ence the avoidance of the CD1, but rather it is necessary for

entrainment of odor to an aversive social cue.

To testwhetherOxtr signaling in the piriform is involved in aver-

sive social learning, we entrained Oxtr-intact (WT-ChR2) and

Oxtr-deficient (Oxtrf/f-ChR2) ChR2 ensembles to a CD1. Males

injected with saline avoided the CS+ chamber (Figures 6F and

6G) (CS+ chamber = 110.37 ± 6.73 s; center = 44.12 ± 7.63 s;

CS� chamber = 144.02 ± 7.37 s, n = 10), although to a lesser

extent than what was observed with odor. However, subjects

injected with Oxtr antagonist, rather than avoiding the CS+

chamber, spent more time in the CS+ chamber (CS+ chamber =

148.45±12.12 s; center = 32.70 ±8.82 s;CS�chamber = 94.49±

9.78 s, n = 6). Furthermore, Oxtrf/f animals harboring Oxtr-defi-

cient ensembles failed to avoid the CS+ chamber (Figures 6F

and 6G) (CS+ chamber = 133.92 ± 7.91 s; center = 48.18 ±

6.83 s; CS� chamber = 115.67 ± 6.93 s, n = 7). These results

demonstrate that representations in the piriform cortex require

Oxtr expression for entrainment to aversive social stimuli.

DISCUSSION

We asked if Oxt plays a crucial role in promoting odor-driven

social learning by pairing an initially neutral olfactory stimulus

with social cues. We show that Oxt is required for entrainment

of odor to salient social cues, and capable of promoting

entrainment of odor to nonsalient social cues. Oxtr signaling

carries out these functions by acting on the piriform cortex.

Furthermore, we show that Oxtr signaling is required for aver-

sive as well as for appetitive social learning. Taken together,

these results suggest that Oxt conveys social saliency of un-

conditioned stimuli to sensory representations in the piriform

cortex during odor-driven social learning (Figure 7).

Oxt has been widely viewed as a molecule promoting proso-

cial behaviors or transmitting positive value of social interactions

(Insel, 2010; Lee et al., 2009; Ross and Young, 2009). Consistent



Figure 6. Oxtr Signaling Is Required for

Aversive Social Learning

(A) Schematic of odor-driven aversive social

learning. After resident-intruder interaction, sub-

jects were confined to one side chamber and

presented with the CS+ odor and the wire cage

containing the CD1 (_) that served as resident. The

CS� odor was presented with an empty wire cage.

For testing, the CS+ or the CS� odor was pre-

sented, without the CD1, when the subject entered

the randomly predetermined CS+/CS� chamber.

(B) Time spent in each chamber during testing,

with resident-intruder pretraining (RI), or without

pretraining (No RI). ***p < 0.001 by Tukey HSD post

hoc test.

(C) Preference score for data presented in (B).

**p < 0.01 by Student’s t test.

(D) Time spent in each chamber for subject mice

injected with saline (S) or with OTA (OTA).

(E) Preference score for data presented in (D).

*p < 0.05 by Student’s t test.

(F) Time spent in each chamber for WT-ChR2mice

injected with S or OTA, and Oxtrf/f-ChR2 mice

injected with S. *p < 0.05, **p < 0.01 by Tukey HSD

post hoc test.

(G) Preference score for data presented in (F).

*p < 0.05 by Tukey HSD post hoc test.
with these notions, we show that Oxt is required for entrainment

of an odor to an appetitive social cue. The role of Oxt is not

limited to appetitive social learning, but rather it is also involved

in entrainment of an odor to an aversive social cue. Our results

indicate that Oxt mediates social learning of opposing valence,

depending on the context. This is consistent with previous ob-

servations that Oxt is released by both mating and aggressive

encounters in rodents (Ebner et al., 2000; Engelmann et al.,

1999; Waldherr and Neumann, 2007).

Behavioral changes as a consequence of learning occur

following conspicuous social interactions; females in estrus,
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but not in diestrus, served as an effective

US in our learning paradigm. Further-

more, CD1 stimulus males, when pre-

sented without prior resident-intruder

encounter, failed to drive learning in our

aversive social scheme. However, fe-

males in diestrus, when supplemented

with optogenetic activation of Oxt+ neu-

rons in the subject animals, were capable

of producing learned approach behavior.

These data, taken together with the

observation that Oxt mediates social

learning of opposing valence, suggest

that Oxtmay convey saliency of social en-

counters. Thismodel may explain the par-

adoxical observations made in humans

that exogenous administration of Oxt

improves social cognition and increases

prosocial behavior in positive contexts

(Guastella et al., 2008; Kosfeld et al.,

2005; Rimmele et al., 2009) but promotes
antisocial effects in negative contexts (Bartz et al., 2011; Bartz

and Hollander, 2006; Heinrichs et al., 2009).

The notion that Oxt may facilitate opposing behavioral re-

sponses dependent upon the appetitive or aversive nature of

the US raises the question of how Oxt accomplishes this

context-dependent function. In one model, context of social

encounter may be conveyed through distinct neural pathways

(Gunaydin et al., 2014), parallel to the Oxt system. In an alterna-

tive but not mutually exclusive model, Oxt itself may provide

contextual information by acting on distinct brain regions. For

instance, the resident-intruder encounter assay has been shown
–163, July 1, 2015 ª2015 Elsevier Inc. 159



Figure 7. Model for Entrainment of Odor to Social Cues of Opposing

Valence

Associative learning transforms initially neutral olfactory representations (CS)

in the piriform cortex to produce learned behavioral responses. Oxytocin,

representing saliency of social cues of both appetitive and aversive nature

(US), modulates this process by directly impacting the piriform cortex.
to induce Oxt release into the septum (Ebner et al., 2000), while

Oxt in the ventral striatum has been shown to encode positive

value of social interactions (Dölen et al., 2013). In the latter

scenario, the Oxt+ neuronal population could be comprised of

heterogeneous subpopulations that differentially process either

positive or negative social stimuli.

If Oxt conveys saliency of social encounters, it may be

dispensable for learning that involves nonsocial unconditioned

stimuli. This stimulus selectivity is observed upon inhibiting

Oxtr signaling; Oxtr antagonist treatment impairs entrainment

of odor to males and females, but not to sucrose solution,

palatable food, or mild foot shock. These results are consis-

tent with social-specific effects of Oxt previously reported in

other rodent studies (Dölen et al., 2013; Ferguson et al.,

2000). Moreover, in humans, intranasal administration of Oxt

improved memory of faces, but not of nonsocial objects (Rim-

mele et al., 2009). These observations suggest that the social-

specific effect of Oxt may be conserved across mammalian

species.

Where doesOxt operate to permit odor-driven social learning?

Anatomical and physiological studies have suggested that the

piriform cortex, one of the recipients of olfactory information, is

a neural substrate for odor-driven associative learning (Ghosh

et al., 2011; Illig and Haberly, 2003; Miyamichi et al., 2011; Poo

and Isaacson, 2009; Sosulski et al., 2011; Stettler and Axel,

2009; Giessel and Datta, 2014). Consistent with this notion, op-

togenetic activation of arbitrarily chosen ensembles of piriform

neurons, just like odorants, could be entrained to various uncon-

ditioned stimuli to produce both aversive and appetitive learned

behaviors (Choi et al., 2011). These results demonstrate that rep-

resentations in the piriform cortex are sufficient to drive learned

behaviors. On the other hand, another recipient of olfactory infor-

mation, the cortical amygdala, recently has been identified as a

neural substrate for odor-driven innate behaviors (Root et al.,

2014). We show here that ChR2-expressing piriform ensembles

require Oxtr expression for entrainment to social cues. This

observation, in conjunction with the tracing experiments (Figures

4E–4J), suggests that Oxt directly impacts the piriform cortex to

permit odor-driven social learning. Considering the neuromodu-
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latory action of Oxt and the distribution of oxytocin receptor re-

ported in other brain regions (Owen et al., 2013; Marlin et al.,

2015), Oxt’s role in social learning may be generalized across

different sensory modalities.

Oxtr is expressed at multiple nodes along both the main

and accessory olfactory pathways, as well as in brain regions

implicated in generation of motivated behaviors (Stoop, 2014).

It is plausible that Oxtr operates at additional nodes of the

olfactory pathways to support odor-driven social learning.

For example, Oxt has been shown to act on the medial amyg-

dala to mediate social recognition (Ferguson et al., 2001). In

general, Oxt is poised to influence social learning at multiple

loci from perception of both conditioned and unconditioned

stimuli to behavioral output. How Oxt coherently orchestrates

these distributed circuits to produce social learning remains

to be determined.

EXPERIMENTAL PROCEDURES

Stereotaxic Injection and Fiber Optic Implantation into the

Mouse Brain

Strains of mice used for experiments were wild-type C57BL/6J, CD-1, OxtCre/+,

andOxtrf/f. The surgeries were carried out using aseptic techniques. Stereotaxic

injections of viruses were made at the rate of <0.1 ml/min at layers 2 and 3 of the

piriform cortex (AP = �0.6 mm, ML = ±3.8 mm from bregma, DV = �4.0 mm

from brain surface; for the anterior piriform cortex: AP = +1.54 mm,

ML = ±2.80 mm, DV = �3.50 mm; for the posterior piriform cortex: AP =

�2.06 mm, ML = ±4.20 mm, DV = �4.10 mm) or the PVH (AP = �1.0 mm,

ML=0.0mm,DV=�3.9mm). The tip of the fiberoptic implantwas subsequently

placed 300–400 mm above the virus injection site. All animal procedures were

approved by the Committee on Animal Care of Massachusetts Institute of

Technology.

Tissue Slice Preparation and Immunohistochemistry

The prepared slices were labeled with the following primary antibodies:

chicken anti-GFP (Abcam, ab5450, 1:1,000), goat anti-c-Fos (Santa Cruz,

sc-52-G, 1:300), rabbit anti-c-Fos (Santa Cruz, sc-7270, 1:500), rabbit anti-

DsRed (Clontech, 632496, 1:500), goat anti-CTB (List Biological laboratories,

703, 1:500), mouse anti-oxytocin (Millipore, MAB5296, 1:1,000), and rabbit

anti-oxytocin (Millipore, AB911, 1:1,000). The following fluorophore-conju-

gated secondary antibodies were used: Alexa 488 goat anti-chicken (Invitro-

gen, A11039), Alexa 633 donkey anti-goat (Invitrogen, A21082), Alexa 488

donkey anti-goat (Invitrogen A11055), Alexa 647 donkey anti-mouse (Invitro-

gen, A31571), Alexa 633 goat anti-rabbit (Invitrogen, A21071), and Alexa 568

goat anti-rabbit (Invitrogen, A11036). All secondary antibodies were diluted

1:250. The slices were counterstained with NeuroTrace (NT) fluorescent Nissl

stain (Invitrogen, N-21479 or N-21483). All images were taken using a Zeiss

LSM-710 confocal microscope system.

For quantitative analysis of photostimulation-dependent activation of

ChR2- and EYFP-expressing neurons in OxtCre/+ mice, animals were photo-

stimulated (30 s per min for 10 min) 1 hr before they were sacrificed. Brain

slices were double-labeled for c-Fos and EYFP. The percentage of neurons

expressing c-Fos was obtained by dividing the number of EYFP+ c-Fos+

cells by the number of EYFP+ cells within the area beneath the optical fiber

placement.

Quantitative analysis of piriform ensemble images was carried out as previ-

ously described (Choi et al., 2011). Briefly,WT-ChR2 orOxtrf/f-ChR2micewere

photostimulated (30 s per min for 10 min) 1 hr before they were sacrificed.

Brain slices were double-labeled for c-Fos and DsRed. The percentage of neu-

rons expressing ChR2 was obtained by dividing the number of ChR2+ NT+

cells by the number of NT+ cells within a 5003 500 mm area around the center

of injection site. The number of c-Fos+ ChR2+ neurons was counted within the

same 500 3 500 mm area. The neurons were counted at least three different

anterior-posterior levels and averaged for each animal.



Tracing Studies

For anterograde tracing, Cre-dependent ChR2 fused to EYFP was targeted to

the PVH (AP,�1.0mm;ML, 0.0 mm; DV,�3.9mm) of adult maleOxtCre/+mice.

Following a 2 week survival time, 100 mm sections were cut and stained with

antibodies against GFP and counterstained with NT. For retrograde tracing,

we injected 0.5% cholera toxin B subunit (CTB) at three points along the ante-

rior-posterior extent of the piriform of male wild-type animals. Injections were

targeted to the anterior (AP, +1.5 mm; ML, +2.5 mm; DV, �3.5 mm), middle

(AP, �0.7 mm; ML, +3.5 mm; DV, �4.4 mm), and posterior (AP, �1.8 mm;

ML, +3.85 mm; DV, �4.1 mm) aspects of the piriform. After 4 days of survival

time, 50 mm sections were cut and costained for CTB and Oxt for 48 hr. Sec-

tions were counterstained with secondary antibodies and with NT for 24 hr.

Behavioral Analysis

Social Appetitive Learning Paradigm

Behavioral training and testing were carried out in a custom-built three-cham-

bered arena with modifications from a previously established paradigm (Choi

et al., 2011). The middle chamber included two 10 cm-wide openings in each

long wall, allowing free movement between all three chambers. One or two

days before the experiment, subject males were singly caged and habituated

for 15–20 min to the arena containing empty wire cages (11 cm height,

10.5 cm bottom diameter, bars spaced 1 cm apart), that were to be used later,

in each side chamber.C57BL/6J femaleswere transferred to a cleancage1 day

before the experiment andexamined for their estrus phaseby vaginal smear ex-

amination on the experiment day. During training, a wire cage containing a

C57BL/6J female was placed in one side chamber, while an empty wire cage

was placed in the opposite side chamber. An odor set comprised of orange

and anise extracts or another set comprised of octanol and ethyl acetate was

randomly chosen for experiments. Individual odors were randomly designated

as either CS+ or CS� odors. At the beginning of each trial, subject males were

placed in themiddle chamber. Odor was perfused into the wire cage only when

the center point of the male subject entered approximately 3 cm proximity

(trainingzone) to thewirecage.Each femalewasused for twoconsecutive trials,

and placement of the female-containing cage was alternated every other trial.

Ten trials were completed during training, with an intertrial interval of 2.5 min.

Wire cages and side chambers were thoroughly cleaned with paper towel and

70% ethanol in between trials. During testing, in the absence of a female,

odor was delivered when the male was in one of the arbitrarily chosen side

chambers (CS+chamber).Odorpresentationwascontrolledusingcustom-built

olfactometers and automated tracking software (EthoVision XT) during training

and testing. Time spent in each chamber was quantified by the software, and

investigation time during training was manually counted. The preference score

was obtained by subtracting the time spent in the CS� chamber from the time

spent in theCS+chamber. The subjects that spentmore thanhalf of testing ses-

sion (150 s) in the center chamber were excluded from analysis.

For optogenetic stimulation of Oxt+ neurons, OxtCre/+ male mice were in-

jected with virus encoding either Cre-dependent ChR2 fused to EYFP, or

Cre-dependent EYFP, into the PVH. After 2 weeks of recovery, animals were

trained in our social-appetitive learning paradigm. During training, laser stim-

ulation (405 nm, 30 Hz, 30% duty cycle) (Knobloch et al., 2012) was triggered

upon the subject animal entering the CS+ compartment containing a female in

diestrus. Photostimulation was controlled by a waveform generator and Etho-

vision XT. All other conditions were the same as described earlier for the appe-

titive social learning paradigm.

For ensemble-driven social appetitive learning, photostimulation (405 nm,

7.5–8 mW, 20 Hz, 50% duty cycle) was applied, instead of odor, when the

center point of the male subject entered training zone. Oxytocin receptor

antagonist (L-368,899) was purchased from Tocris and prepared in saline as

25 mg/mL stock solution. The stock solution was further diluted with saline

tomake 0.625mg/mLworking solution. The subjects were briefly anesthetized

with isoflurane for intraperitoneal (i.p.) injection of 5 mg/kg of antagonist.

Nonsocial Learning Paradigm

For entrainment to sucrose solution, subject males were water restricted for

2 weeks before the experiment. Two days before the experiment, subjects

were singly housed. One day before the experiment, subjects were habituated

for 15–20 min to the arena and to wire cages carrying six drops of tap water

(20 ml total) on their wires. During training, a wire cage carrying 8–12 drops
of 10% sucrose solution, instead of female, was placed in one side chamber,

while an empty wire cage was placed in the opposite side chamber. Pairing

and testing were performed in the same way as with the appetitive social

learning paradigm. For entrainment to food, males fed ad libitum were trained

with palatable foods (white chocolate, peanut butter mixed with Nutella, and

NUTRI-CAL for ferrets) applied on the wire cage. During the first three trials

of training, one type of food was used for each trial. For the first six trials,

each food was presented twice in random order. For the seventh and eighth

trials, the two foods that were highly investigated during previous trials were

sequentially used as the US. If mice investigated both cues during the seventh

and the eighth trials, the same foods were used during the ninth and the tenth

trials in the same order. Otherwise, the food that was investigated the most

during the seventh and the eighth trials was used for the final two trials. Testing

was carried out for 4 min. Nonsocial aversive learning paradigm was per-

formed as previously described (Choi et al., 2011).

Social Aversive Learning Paradigm

The three-chambered arena used for appetitive learning wasmodified for aver-

sive learning. Sidechamberswere constrained (22.003 17.753 30.00cm), and

the center chamber was constrained (14.003 17.753 30.00 cm) using acrylic

dividers. All subject mice were group housed prior to training. Prior to training,

subject mice were exposed to a sexually experienced CD1 male for 5 min. If

the CD1 did not initiate attack before 1.5 min, subject mice were placed in the

homecage of a differentCD1. Immediately followingCD1exposure, the subject

mice were confined to the center of the three-chamber arena for 5 min before

training began. Training consisted of ten trials lasting 1 min each. During each

trial, the subjects were confined to one side of the three-chamber arena with

either the CS+ odor perfusing through the wire cage containing the previously

encountered CD1, or the CS� odor perfusing through the empty wire cage.

Each trial type alternated sides of the arena every trial. Immediately following

training, animals were confined to the center chamber for 5 min. Animals were

then assayed for odor preference in the samemanner as in our appetitive social

learningparadigm.Animals that spentgreater thanhalf of the test session (150s)

in the center compartmentwere excluded fromanalysis. Avoidance scores dur-

ing training were calculated by dividing the amount of time in the half of the

training compartment away from the wire cage by the total trial duration. Trials

inwhichphotostimulationwasusedas aCSutilized a narrowedcenter chamber

(5.003 17.753 30.00 cm). Side chambers were constrained (13.003 17.753

30.00 cm) during training using acrylic dividers. Training consisted of 16 trials

lasting 40 s each. Baseline and testing trials were unchanged. Animals that

spent greater than 100 s in the center compartment were excluded from anal-

ysis. The ROUT method (with Q set to 5%) was used to detect outliers (n = 2).

Real-Time Place Preference

Weuseda custom-built chamber (103 10 cm, red acrylic sheet) divided into two

equal compartments. Presence in one compartment triggered onset of laser

stimulation. Presence in the other compartment was unstimulated. Trials lasted

for 20min. We used 30 Hz, 30% duty cycle laser stimulation. Tracking and laser

stimulation triggering were accomplished using Ethovision XT software.

Statistics

Group differences in either social appetitive or aversive learning were evalu-

ated by two-way analysis of variance (ANOVA) followed by Tukey HSD post

hoc test. Group differences in preference toward CS+ were evaluated by

Student’s t test or one-way ANOVA followed by Tukey HSD post hoc test.

Investigation time during training along trial was evaluated by repeated-mea-

sures ANOVA (RM-ANOVA) followed by Bonferroni post hoc tests.
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