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While reducing the burden of brain disorders remains a top priority of organizations like theWorld Health Orga-
nization and National Institutes of Health, the development of novel, safe and effective treatments for brain dis-
orders has been slow. In this paper, we describe the state of the science for an emerging technology, real time
functionalmagnetic resonance imaging (rtfMRI) neurofeedback, in clinical neurotherapeutics.We review the sci-
entific potential of rtfMRI and outline research strategies to optimize the development and application of rtfMRI
neurofeedback as a next generation therapeutic tool. We propose that rtfMRI can be used to address a broad
range of clinical problems by improving our understanding of brain–behavior relationships in order to develop
more specific and effective interventions for individuals with brain disorders. We focus on the use of rtfMRI
neurofeedback as a clinical neurotherapeutic tool to drive plasticity in brain function, cognition, and behavior.
Our overall goal is for rtfMRI to advance personalized assessment and intervention approaches to enhance resil-
ience and reduce morbidity by correcting maladaptive patterns of brain function in those with brain disorders.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license
(http://creativecommons.org/licenses/by-nc-sa/3.0/).
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1. Introduction

Researchers have recently developed neuroimaging technologies
that provide uswith powerful tools to better understand the complexity
of human brain–behavior relationships with the goal of discovering and
developing novel, safe, effective and personalized therapeutics to treat
brain disorders. Recognizing thepotential of these new tools for advanc-
ing clinical neuroscience, the European Union and United States
launched the Human Brain Project and Brain Research through Advanc-
ing Innovative Neurotechnologies (BRAIN) initiatives with estimated
budgets of $1.3 billion and $4.5 billion in research support, respectively,
to accelerate the development of such neurotechnologies (BRAIN, 2013;
Kandel et al., 2013). At the leading edge of neuroimaging technology
development is real time functional magnetic resonance imaging
(rtfMRI), which allows a non-invasive view of brain function2 in vivo
and in real time3. rtfMRI has the potential to be used as a clinical neuro-
imaging tool in diagnosis, monitoring of disease, tracking of therapeutic
response, and uniquely, in treatment itself via rtfMRI neurofeedback.
rtfMRI neurofeedback is an application of this technology that can be
used to assess and/or alter patterns of brain activity associatedwith cog-
nition or behavior while an individual is inside the MRI scanner in real
time (Birbaumer et al., 2009; Birbaumer et al., 2006; deCharms, 2008;
deCharms et al., 2004; deCharms et al., 2005; Weiskopf et al., 2007;
Weiskopf et al., 2003). The therapeutic potential for this approach
lies in its ability to alter neural plasticity and learned behavior tomodify
brain function to optimize and/or restore healthy cognition and
behavior.

Brain structure and function are modified in response to changes
within and outside the central nervous system via both normal and dis-
ordered processes (Kolb et al., 2010). Compared to standard fMRI exper-
iments in which behavior is manipulated and subsequent changes in
brain activity are measured, rtfMRI switches the direction of the rela-
tionship between brain and behavior so that we can determine if directly
changing brain function leads to changes in behavioral or experiential
outcomes (Weiskopf, 2012). This approach of facilitating specific changes
in brain function to produce changes in cognition, experience, or behavior
is theorized to occur by skill learning (Birbaumer et al., 2013) and the ac-
celeration and optimization of systems-level neuroplasticity (Sagi et al.,
2012), as has been observed with other brain-based training protocols
(Anguera et al., 2013). Other neurotherapeutic technologies, including
electroconvulsive therapy, vagus nerve stimulation, deep brain stimula-
tion, and transcranial magnetic stimulation or transcranial direct current
stimulation, are also being used or investigated for the treatment of
2 Most rtfMRI systems use blood oxygen level dependent or BOLD contrast, which is an
indirect measure of brain function with known spatial and temporal resolution
limitations.

3 Real time, in the context of real time fMRI, refers to the ability to capture a brain signal
every 1–2 swith the limitation that theBOLD response takes 2–6 s to rise to peak (LaConte,
S.M., 2011. Decoding fMRI brain states in real-time. NeuroImage 56, 440–454; Logothetis,
N.K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A., 2001. Neurophysiological investiga-
tion of the basis of the fMRI signal. Nature 412, 150–157).
brain disorders and may also produce clinical change via altered
neuroplasticity. Each of these technologies has potential benefits
and may also be limited by constraints in spatial resolution or by
their invasive nature.

Neurofeedback is a training method in which real time information
about changes in neural activity is provided to an individual to facilitate
learned self-regulation of this neural activity to produce changes in
brain function, cognition, or behavior. The earliest studies of neuro-
feedback employed electroencephalography (EEG) and demonstrated
feedback-related changes in electrical brain activity and related behav-
ior and cognition in humans (Keizer et al., 2010; Kouijzer et al., 2009;
Ros et al., 2013; Zoefel et al., 2011) and other animals (Philippens and
Vanwersch, 2010; Schafer and Moore, 2011; Sterman et al., 1969).
Brain change after EEG neurofeedback has been shown using EEG and
event related potentials (Egner and Gruzelier, 2001; Kropotov et al.,
2005). Likewise, changes in fMRI response after EEG neurofeedback
have been shown in targeted neural networks after a single 30-minute
EEG training session (Ros et al., 2013) and in specific symptom-related
brain regions of interest (ROIs) after multiple training sessions
(Levesque et al., 2006). There have been several randomized controlled
trials (RCTs) using EEG-based feedback, primarily in patients with
attention deficit hyperactivity disorder (ADHD) (Hirshberg et al.,
2005). A recent meta-analysis of existing RCTs indicates that EEG feed-
back training is associated with a reduction of ADHD symptoms with a
large effect size (Arns et al., 2009) and a large randomized, sham-
controlled trial is currently underway (LH, personal communication).
However, while EEG has superior temporal resolution compared to
standard fMRI, poor spatial resolution including the so-called ‘inverse
problem’ (Grech et al., 2008) limits the clinical utility of EEG. By con-
trast, rtfMRI can be used to target brain regions and networks with im-
proved anatomical precision beyond EEG and improved temporal
resolution beyond standard block design fMRI. Finally, rtfMRI and EEG
neurofeedback can beused simultaneously to take advantage of the spa-
tial resolution of fMRI and the temporal resolution of EEGwith the hope
that this combined approach will lead to more efficient neuroadaptive
changes and more effective clinical outcomes (Zotev et al., 2014).

rtfMRI was developed in 1995 (Cox et al., 1995), and proof-of-
concept for rtfMRI as a potential neurotherapeutic tool for the treatment
of brain disorders was demonstrated in 2005 (deCharms et al., 2005).
There have since been substantial advancements related to rtfMRI tech-
nology and implementation (Hinds et al., 2011; LaConte, 2011;
Weiskopf et al., 2005), with reports of rtfMRI modification of function
in several brain structures. Although rtfMRI has multiple potential ap-
plications as a clinical neuroimaging tool, the research to date has
been focused on the use of rtfMRI neurofeedback to alter brain function
and behavior. From this research, several groups have reported success-
ful application of rtfMRI to modify cognitive and behavioral processes
relevant for the treatment of clinical disorders (for review of these stud-
ies see Birbaumer et al., 2009; Caria et al., 2012; Chapin et al., 2012;
deCharms, 2007; deCharms, 2008; Sulzer et al., 2013a; Weiskopf,
2012; Weiskopf et al., 2007). Studies have demonstrated promise of
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rtfMRI neurofeedback in the treatment of chronic pain (deCharms et al.,
2005), tinnitus (Haller et al., 2010), stroke (Sitaram et al., 2012), depres-
sion (Linden et al., 2012), schizophrenia (Ruiz et al., 2013), obesity
(Frank et al., 2012), and addiction (Hartwell et al., 2013; Li et al.,
2013). Given the early stage of this research, it is not surprising that
there are many limitations to these studies. Most notably, small sample
sizes (typically between 6 and12 participants) and lack of critical
control conditions limit their potential use as evidence-based interven-
tions. There are several plausible alternative hypotheses for the key
variable(s) that account for the changes observed following rtfMRI
neurofeedback training. These include, but are not limited to, effects
due to experimenter monitoring, self-monitoring, positive reinforce-
ment, cognitive and emotion regulation strategies, enhanced self-
efficacy and motivation to change due to successful performance, and
placebo response. To date, there have been no large RCTs of rtfMRI
neurofeedback. RCTs involve random allocation of participants to treat-
ment and control groups, minimizing bias in treatment assignment and
facilitating concealment of treatment assignment to experimenters and
participants (Schulz and Grimes, 2002). RCTs are the gold standard for
‘rational therapeutics’ in clinical medicine (Meldrum, 2000) and
are critical for establishing an evidence-based clinical practice (The
Cochrane Collaboration, 2011). Nevertheless, this important early
work supports the investment in RCTs of rtfMRI for the treatment of
some brain disorders.

The aimof this paper is to defineguidelines to establish the therapeutic
utility of rtfMRI neurofeedback by emphasizing clinical issues that should
be considered beyond the technical considerations that have been the pri-
mary focus of more recent reviews (Birbaumer et al., 2013; Sulzer et al.,
2013a). Although the guidelines were developed with regard to the use
of rtfMRI neurofeedback to treat brain disorders, resolution of these issues
is also necessary to advance development of rtfMRI as a tool in clinical
neuroimaging more generally. For each guideline, we delineate the chal-
lenges and potential limitations of rtfMRI that need to be addressed to ad-
vance development of this neurotechnology, and outline a research
strategy to address these challenges and limitations including potential
experimental and neuroinformatics approaches.

2. Guidelines for establishing real time fMRI as a
neurotherapeutic tool

Several technical, neuroscientific, and clinical issues must be ad-
dressed before rtfMRI neurofeedback can advance as a clinical neuroim-
aging tool, and in particular for direct therapeutic applications. Due to
the complexity of rtfMRI neurofeedback experiments, it is advisable to
have considered these issues and have solutions in place in order to
maximize the likelihood that the experiment will be a success. We
have outlined the issues we felt are most critical to clinical applications
of rtfMRI neurofeedback and have offered potential solutions to help
guide researchers.

2.1. Guideline 1: the rtfMRI signal is accurate and reliable

Necessary preconditions for any successful rtfMRI experiment are
that the brain state of an individual is detectable and can be reliably
and reproducibly converted into a feedback signal over the time-scale
in question. Here we propose possible metrics that can be used to eval-
uate these prerequisites.

Fromamethodological perspective, the neurofeedback signal is gen-
erally derived from fMRI paradigms of two broad categories: general
linear model (GLM)-based methods, and more recently, multivariate
pattern analysis (MVPA)methods. For recent reviews of thesemethods,
see Sulzer et al. (2013a) and LaConte (2011), respectively. GLM-based
methods define an a priori ROI, either anatomically (using anatomical
landmarks or atlas-based techniques) or with a functional localizer.
The GLM is used to regress out nuisance parameters, and the resulting
BOLD signal at each voxel in the ROI is combined into a neurofeedback
signal using either averaging or a weighted average based on the stan-
dard deviation of the residual of the GLM in each voxel (Hinds et al.,
2011). MVPAmethods use supervised learning techniques, usually sup-
port vector machines, to determine the optimal set of weights (from
either the whole brain or a restricted ROI) used to combine the BOLD
signal across voxels into a single neurofeedback score.

In the context of rtfMRI, ‘real time’ is often used to describe both
neurofeedback signals estimated from a single brain volume acquisition
(Hinds et al., 2011) and across several brain volume acquisitions (Cox
et al., 1995; Johnson et al., 2012; Yoo et al., 1999) to mitigate the contri-
bution of noise in the BOLD signal. In order to estimate a reliable BOLD
signal in a single measurement, it is important for models to include a
moment-to-moment estimate of noise. One example of this approach
is the incremental GLMmethod described inHinds et al. (2011) and im-
plemented inmurfi2, software that is freely available on Github (http://
github.com/gablab/murfi2).

Regardless of whether a GLM- or MVPA-based model is used to com-
pute the neurofeedback signal or whether the signal is estimated in a sin-
gle brain volume acquisition or across several acquisitions, the signal is a
one-dimensional, usually linear combinationof the BOLD signal across the
brain. We can use the signal-to-noise ratio (SNR) to compute how well
the neurofeedback signal conforms to the experimental design.

Let F represent the (stochastic) neurofeedback signal and X the
(deterministic) experimental design vector. Under the standard GLM
assumptions (Monti, 2011) SNR can be calculated by:

SNRF ¼ corrðF;XÞ2
1−corrðF;XÞ2

where corr(F,X) represents the Pearson correlation coefficient of
vectors F and X. This quantity can be used to estimate how many repe-
tition times (TRs) the neurofeedback signal would need to be averaged
over to ensure it is accurate with a confidence level of (1− αF).

After theoretical modeling, we arrived at an equation that relates
three key quantities: the confidence in the neurofeedback signal (1 −
αF), the signal to noise ratio (SNRF), and the number of TRs used to com-
pute the neurofeedback signal (n). The relationship between these 3
variables is:

α F ¼ 1−PðSNRF

ffiffiffiffiffiffi

2n
p

N 0Þ

where P() is the standard cumulative normal distribution and n is
the length (in TRs) of both the task and fixation blocks.

Using this formula, we can determine the block length necessary to
estimate an accurate neurofeedback signal with 95% confidence. We
tested this formula using three rtfMRI feedback paradigmswith regional
ROIs with small (ventral striatum or VS), medium (fusiform face area
and parahippocampal place area or FFA/PPA), and large (somatomotor
cortex or SMC) expected SNR values. The results are illustrated in
Fig. 1 and summarized in Table 1.

Equally important to a detectable signal is a reproducible signal. Here
the concordance correlation coefficient can be used to determine the re-
producibility of the rtfMRI signal for a given subject from one run to the
next, given the model employed. The concordance correlation coefficient
is a simple metric that has been applied to fMRI to evaluate repeatability
of various models (Lange et al., 1999). Let W1 and W2 represent the
weights used to aggregate the feedback signal (derived from either a
GLM orMVPA-basedmodel) from runs 1 and 2, respectively. The concor-
dance correlation coefficient between these weight vectors is then:

ρc ¼ 2covðW1 ;W2Þ
varðW1ÞþvarðW2Þþð �W1− �W2Þ2

where cov(.) represents the covariance of the weight vectors, var(.)
represents the variance and �W1 represents the mean.

http://github.com/gablab/murfi2
http://github.com/gablab/murfi2
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From this work, we determined that the FFA/PPA and SMC ROIs
were feasible as neurofeedback brain regions to target, but VS with
low SNRwas not feasible. It should be emphasized that detection of ac-
tivation in FFA/PPA and SMC ROIs is feasible relative to the VS ROI; how-
ever, there are still substantial challenges in estimating neural activity
froma single noisy BOLDvolume (Hinds et al., 2011) that should be con-
sidered when deciding whether moment-to-moment neurofeedback
from an ROI, set of ROIs, or components will produce the intended
study outcome. At a minimum, it is recommended that researchers es-
tablish the quality of the neurofeedback signal in an independent
dataset using either the SNR and concordance coefficient approach de-
scribed above or some analogous method. If an experimenter finds
that a signal does not meet these minimum standards, efforts should
be made to optimize the experimental parameters and/or target
ROI(s) before collecting data for a larger planned study. In cases
where neurofeedback occurs from a region or network with low SNR,
e.g., (Sulzer et al., 2013b), reporting SNR andmethods used to optimize
SNR, will help guide future researchers targeting these brain areas for
neurofeedback.
2.2. Guideline 2: rtfMRI neurofeedback leads to learning

One use of rtfMRI is to provide feedback aimed at inducing learning
that is difficult to achieve, or is less efficient, using other methods. This
can be contrasted with alternative uses of rtfMRI, such as triggering
task events or optimizing task parameters, where the goal is not neces-
sarily to produce a lasting learning effect. To understand the learning in-
duced by rtfMRI neurofeedback, three aspects of this process should be
considered: (1) How is learningmeasured? (2)Which mechanisms are
responsible? and (3) Howmeaningful or lasting are the effects?Wewill
describe these three aspects followed by a case study.

Learning can be said to occur when experience influences behavior
and/or alters brain structure or function. In the case of rtfMRI neuro-
feedback, the relevant experience can consist of elements of the task,
feedback about regional brain activation, multivariate patterns of brain
activity, or connectivity, and cognitive processes that arise due to the
task, feedback, or attempts to control feedbackwith strategies. The con-
sequences of this experience can be assessed using various dependent
Table 1
The relationship between signal-to-noise ratio (SNR) and block length (n) required for a
type I error rate (α) less than 0.05 for three ROIs.

ROI SNR n required for α b 0.05

SMC 1.581 1
VS 0.0685 289
FFA/PPA 0.4668 7
measures linked to learning in more standard experiments in cognitive
psychology and neuroscience. In behavior, learning can be reflected in
improved perception (Fahle, 2002), memory recall and recognition
(Yonelinas, 2002), anticipation/prediction (Bubic et al., 2010), priming
(Tulving and Schacter, 1990), and motor action (Stadler and Frensch,
1998). In the brain (particularly fMRI), learning can be reflected in en-
hanced (Schwartz et al., 2002) or attenuated activation within sensory
systems (Grill-Spector et al., 2006; Turk-Browne et al., 2008), activation
in learning and memory systems (Brewer et al., 1998; Poldrack et al.,
2001;Wagner et al., 1998), changes to themultivariate representational
space of brain regions (Folstein et al., 2013; Schapiro et al., 2013),
changes to functional connectivity (Buchel et al., 1999), increased gray
matter volume (Draganski et al., 2004), and alterations in white matter
(Zatorre et al., 2012). All of these measures are potential targets for
rtfMRI studies seeking to induce learning with neurofeedback.

These changes in behavior and the brain reflecting learning can arise
from different mechanisms. One proposed mechanism is reward-based
skill learning via cortical-basal ganglia brain networks (Birbaumer et al.,
2013). Feedback from a brain region may produce a type of instrumen-
tal conditioning, whereby activation of that region becomes rewarding.
An increase in the activity of the region, and possibly additional inputs
from the reward system and regions involved in cognitive control,
may induce local plasticity. This plasticity could be reflected in alter-
ations of the selectivity and circuitry of neurons in that region (Sur
and Rubenstein, 2005). There may also be larger-scale consequences.
The region/representation used as the basis for feedback may become
more involved in general, or more selective for an ongoing task. This
could be analogous to establishing a compensatory mechanism, as
occurs naturally after brain damage or in aging (Bedny et al., 2011;
Heuninckx et al., 2008). However, the region(s) being “compensated”
for (i.e., initially involved but not used for neurofeedback) remain intact,
and could possibly be recruited less over time. Other regions that imple-
ment cognitive strategies for controlling feedbackmay become engaged
in addition to the region being targeted for neurofeedback and the other
brain areas recruited by this target region(s).

These learning effects differ in severalways that will impact the like-
lihood of obtaining an effect, where the effect will be observed in the
brain, and whether the effect will be manifested in behavior. Several
characteristics of learning will determine the feasibility of an rtfMRI
study. For instance, learning occurs over a range of timescales, from im-
mediately in the case of priming to over weeks in the case of perceptual
learning. Relatedly, effects persist for different durations depending on
the type of learning and brain system involved, from milliseconds for
adaptation in the visual system (Grill-Spector et al., 2006) to years for
episodic memories consolidated in the association cortex (McClelland
et al., 1995). Finally, learning procedures vary in terms of whether the
effects generalize to other contexts, from being hyperspecific to the
training context (Jiang and Song, 2005) to more flexible (Turk-Browne
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and Scholl, 2009). Considering these parameters when designing a
study will be important for its success.

These three aspects of learning – dependentmeasures, neuralmech-
anisms, and timing/generalization properties – allow rtfMRI neuro-
feedback studies to be classified, and opportunities for new research
to be identified. Take, for example, a study of perceptual learning in-
duced by rtfMRI (Shibata et al., 2011). The dependent measures in this
study were improved (1) accuracy in identifying a trained visual target
orientation and (2) multivariate classification of this orientation from
early visual cortex. The proposedmechanism is that rtfMRI feedback en-
couraged participants to generate orientation-specific neural activity
patterns in this region, which resulted in local plasticity. The properties
of learning in this task are that it took 5–10 sessions of training over a
month, the effects lasted at least that long, and the benefit of training
was specific to one orientation at a particular contrast. Various aspects
of this classification could be investigated in future studies, such as
what other brain systems are responsible for creating the activity pat-
terns in the visual cortex, and whether other forms of perceptual learn-
ing (e.g., Xiao et al., 2008) could lead to more generalized benefits.
2.3. Guideline 3: the training protocol is optimized for rtfMRI-based
neurofeedback and learning

A variety of approaches have been used for training subjects to con-
trol their brain patterns via rtfMRI neurofeedback. As it is yet unclear
which approach yields optimal learning, more work is needed to pro-
vide evidence-based guidelines for clinical trial design. In most studies,
the nature of the neurofeedback signal is made explicit to the subject,
but there have also been paradigms where training occurs covertly
(Bray et al., 2007; Shibata et al., 2011). Some studies present feedback
while subjects are processing auditory, visual, or tactile stimuli (Bruhl
et al., 2014; deCharms et al., 2005; Scheinost et al., 2013; Yoo et al.,
2007) or while they are performing an assigned cognitive task (Chiew
et al., 2012). Other rtfMRI studies employ an unconstrained paradigm
in which the neurofeedback and the cues to increase or decrease brain
activity are the only stimuli provided and the subjects are free to use a
variety of cognitive strategies to control brain function and
neurofeedback (Caria et al., 2007; Hampson et al., 2011; Rota et al.,
2009). The optimal approach is likely dependent upon the application.

One open question is the importance of providing initial support
(e.g., neurostimulation, pharmacotherapy, computerized cognitive
training, and/or cognitive strategies) to subjects that will enable them
to exert some initial level of control over the relevant brain activity
patterns. Early reports suggested that learning was greatly facilitated
by providing cognitive strategies to the subjects before they began
neurofeedback (Caria et al., 2007; deCharms et al., 2005). Generally,
rtfMRI neurofeedback studies have either provided all subjects with
strategies or have not provided any subjects with strategies, making it
impossible to determine the degree to which discussing strategies
with subjects before they began neurofeedback helped the subjects to
gain control over their patterns of brain activity. There have been no
published studies to date that have used neurostimulation, pharmaco-
logical aids, or computerized cognitive training to enhance subjects3
ability to utilize rtfMRI feedback, which may be an important avenue
for future studies to explore.

It is not always necessary to provide initial strategies to subjects in
order to achieve learning. Successful learning was achieved in subjects
who were trained using instrumental conditioning (Bray et al., 2007)
or were not provided with any initial strategies (Shibata et al., 2011).
Further, subjects who have learned to control their brain activity pat-
terns via rtfMRI neurofeedback have not always been consciously
aware of the mental functions that were being molded by the training,
even after completion of the neurofeedback (Shibata et al., 2011).
These data imply that rtfMRI neurofeedback can induce subconscious
learning. Although this is encouraging in terms of the potential utility
of rtfMRI for training mental function, it also has ethical implications
that must be carefully considered.

It is also important to consider the schedule of delivery of neuro-
feedback, whether it is continuous or intermittent, in order to optimize
learning. Continuous neurofeedback or feedback delivered as soon as
data is acquired, generally every TR (~1–2 s), has the advantage of deliv-
ering somewhat immediate (relative to the 2–6 s hemodynamic delay)
feedback, which may be important to aid in efficient learning. For
continuous rtfMRI neurofeedback the hemodynamic delay must be
accounted for in the feedback display or explained to subjects. A disad-
vantage of continuous neurofeedback is that single measurements are
often noisy, leading to the potential for inaccurate feedback if delivered
on a TR-by-TR basis.

With continuous neurofeedback, subjects are asked to simulta-
neously attend to the task and the feedback signal, which increases cog-
nitive load for the subject, and may disrupt optimal learning (van
Merriënboer and Sweller, 2005). Other brain systems will be engaged
by feedback that may be unrelated or even counterproductive to the
task or training. For example, in a study by Greer et al. (2014), subjects
were better able to use neurofeedback to increase nucleus accumbens
activity by visualizing exciting events than to decrease activity by visu-
alizing boring events. Subjectsmay have been less capable of decreasing
nucleus accumbens activity with neurofeedback because the reward re-
sponse to successful self-regulation of brain activity conflicted with the
concurrent task of visualizing neutral or non-arousing events. In such
cases, it could be advantageous to delay neurofeedback.

Additional brain regions appear to be recruited related to neuro-
feedback itself which have not yet been well-characterized. A study by
Haller et al. (2013) reported increased functional connectivity during
neurofeedback between an auditory target region and low level visual,
insula, and working memory networks that was not found during a
transfer phase with no feedback. Another study found activations in a
broad frontoparietal and insula network aswell as a broadly distributed
negative networkwhen subjects controlled neurofeedback as compared
to viewing the feedback with no control (Papageorgiou et al., 2013).
Control over feedback was further associated with improved whole-
brain task signal-to-noise and increased pattern classification accuracy.
Whether additional brain regions activated during neurofeedback are
related to attention, control of feedback, or other factors such as learn-
ing and memory, has yet to be determined, including how these brain
regions interact to produce neurofeedback-related brain changes. This
work highlights the need for studies which investigate brain changes
during continuous neurofeedback to consider the confounding effects
of the neurofeedback (and learning) itself. Finally, there is evidence
that continuous feedback may interfere with the consolidation of a
learned response. Animal and human studies of operant learning have
shown improved learning when subjects are provided with a period of
delay after reward for “post-reinforcement synchronization” (Sherlin
et al., 2011).

Intermittent neurofeedback or neurofeedback delivered after data
acquisition over several TRs, generally between 8 and 60 s, allows for av-
eraging of the feedback signal to improve SNR and accommodate the
hemodynamic delay, and also minimizes cognitive load and other po-
tential confounds by separating task strategy from the evaluation of
feedback. Johnson and colleagues found that subjects were better able
to manipulate activity in the premotor cortex when imagining move-
ments with intermittent neurofeedback (at the end of each 20 s block)
as compared to continuous neurofeedback (Johnson et al., 2012). How-
ever, the optimal delivery of neurofeedback likely depends on the spe-
cific application. While intermittent neurofeedback might be more
effective by reducing cognitive load in studies in which individuals are
provided with specific practice strategies, continuous neurofeedback
might be useful to train individuals to fine-tune cognitive strategies re-
lated to specific patterns of brain activity.

Finally, it is important for researchers to consider human–computer
interface design principles, especially as they relate to the display of the
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neurofeedback signal in order to aid in effective learning. This is a critical
consideration as a poor human–computer interface design alone could
lead to failed trials, or in some cases, adverse consequences such as in-
creased frustration, confusion, and/or fatigue. No studies have been con-
ducted to evaluate or optimize an rtfMRI neurofeedback interface
design. A review of the human–computer interface design is beyond
the scope of this paper (see Brown, 1998 for a general overview of this
topic; Wickens et al., 2004); however, one area where a human–
computer interface design may be helpful is choosing the optimal mo-
dality for delivering neurofeedback. Most rtfMRI neurofeedback para-
digms, to date, have used visual feedback, but some subjects and
populations may benefit from auditory, haptic, virtual reality/immersion,
or some combination of these modalities for neurofeedback. In one
application, an EEG-based neurofeedback signal was displayed on a
participant3s head using 3-dimensional cameras and a mirror to create a
more realistic individualized display of brain function in real time
(Mercier-Ganady et al., 2014). Future studies might query user experi-
ence (e.g., by questionnaires) to evaluate the functionality of the
neurofeedback and the ease to which the user could learn to control
the feedback signal, and compare this with a measure of accuracy
with which the user could control the feedback, i.e., performance.

2.4. Guideline 4: there is an appropriate test of training success

It is also important to establish guidelines for how best to assess
rtfMRI training success. To date, there have been two common
approaches: subjects show improved (1) control of brain activity
while receiving neurofeedback and/or (2) control of brain activity
without neurofeedback (i.e., by comparing brain regulation without
neurofeedback before and after training with feedback). A few studies
have tested for transfer from training runs in which cognitive strategies
were provided to control the feedback, to transfer runs in which cogni-
tive strategies were used to control brain activity without any fMRI in-
formation. Young and colleagues reported that after several runs of
neurofeedback training to increase activity in the left amygdala, subjects
were able to significantly increase activity in the left amygdala using
only cognitive strategies without neurofeedback (Young et al., 2014).
In another recent study, Robineau et al. (2014) trained subjects to
control interhemispheric visual cortex balance over 3 hour-long
neurofeedback training sessions comprised of both feedback and trans-
fer runs. They found that participants who learned to control the feed-
back signal were able to maintain control during transfer runs with no
neurofeedback. In other studies, subjects had success self-regulating
brain activity with the aid of neurofeedback, but they were not able to
significantly self-regulate activity when no longer receiving
neurofeedback (Berman et al., 2013; Caria et al., 2007; Greer et al.,
2014; Hamilton et al., 2011). When creating an operational definition
for training success, it will be important to consider: the expected time-
scale of training effects, expected pattern of change (e.g., linear or non-
linear, monotonic or non-monotonic), and how best to account for indi-
vidual differences. For example, training effectsmay be observed imme-
diately or following some delay depending on the type and nature of
learning impacting or impacted by training. Successful training may
occur via gradual, incremental improvement characterized by a linear,
monotonic function or trial-and-error testing characterized by a non-
linear, non-monotonic function. It is also unclear whether the experi-
menter should fix the training interval or allow for adaptive training
based on individual differences in optimal learning strategies and per-
formance. Finally, the experimenter will need to design the study to ad-
equately capture potential brain changes related to training over time,
which could include reduced activity in the target ROI(s), change in
the extent of activation within the ROI(s), and/or recruitment of differ-
ent neural systems to support improved performance. The experiment-
er could consider including a resting state fMRI scan before and after
training as one strategy for capturing complex brain changes over
time (Hampson et al., 2011; Scheinost et al., 2013).
In order to determine whether rtfMRI neurofeedback training-
induced changes are clinically significant, it will be important to intro-
duce a metric of change such as the reliable change index (Jacobson
and Truax, 1991) that accounts for measurement error and determines
how functioning compares to a normative sample. This is often used
in clinical and neuropsychological assessments/studies where clinical
significance is a question. Neuropsychological and clinical measures
used for this type of an assessment typically have established psycho-
metric properties (normative data, test–retest reliability, etc.), which
make calculating reliable change indices possible. As the Human
Connectome Project and other large neuroimaging databases are devel-
oped and data is shared, normative databases could be developed for
fMRI data in order to calculate a reliable change index for neuroimaging
data.

2.5. Guideline 5: rtfMRI neurofeedback leads to behavioral change

The behavioral effects of rtfMRI training may be manifest in
improvement on the task used during rtfMRI neurofeedback training,
improvement on related tasks or on the same task in other contexts,
or improvement that generalizes to real-world outcomes (for review,
see Ruiz et al., 2014).

In some studies, subjects have been trained to self-regulate brain
activity by manipulating the neurofeedback signal and a behavioral
response to some other, often concurrent stimulus. For example,
deCharms and colleagues reported that training self-regulation of activity
in the dorsal anterior cingulate cortex, a brain region implicated in pain
perception and regulation, led to a corresponding change in the percep-
tion of pain caused by a noxious thermal stimulus as well as in spontane-
ous pain perception in patientswith chronic pain (deCharms et al., 2005).

Another approach is to assess behavioral change before and after
rtfMRI feedback training. For example, Zhang and colleagues trained
subjects to increase activation in the left dorsolateral prefrontal cortex,
a brain region involved in working memory, and reported improve-
ments on digit span and letter memory tasks across training, indicating
improved verbal working memory with rtfMRI neurofeedback training
(Zhang et al., 2013). However, another study by Lawrence and col-
leagues found that although rtfMRI feedback could be used to train sub-
jects to increase activity in the right anterior insula, training did not lead
to changes in skin conductance response nor subjective valence ratings
across pre- and post-training affective probes (Lawrence et al., 2013).
Because so few evidence-based guidelines exist for rtfMRI studies, it is
difficult to determine whether a lack of behavioral change is related to
the specific brain–behavior relationship tested, or to methodology,
such as only one rtfMRI training session in that study.

There has been limited work in non-clinical populations targeting
emotional brain regions and function. Rota and colleagues have shown
improved detection of emotional tone with rtfMRI training from the
right inferior frontal gyrus in healthy participants (Rota et al., 2009).
On the other hand, another study (Johnston et al., 2011) found that
rtfMRI training from brain regions involved in positive emotions failed
to improve mood ratings in healthy participants. Although methodolo-
gymust be considered, the authors suggest that rtfMRI training of emo-
tional control to enhance mood may be most effective in individuals
with abnormal emotional control (as in their prior study in depression,
Linden et al., 2012), and less effective in individuals who are capable of
normal mood regulation (but see Allen et al., 2001, for a study demon-
strating improved mood in healthy controls using EEG neurofeedback).
A recent study of individuals with major depressive disorder (Young
et al., 2014) found that rtfMRI neurofeedback training to increase activ-
ity in the amygdala during positive autobiographical memory recall led
to improved self-reported mood post-scan compared to controls.

There is limited evidence of behavioral change from rtfMRI that has
generalized to other tasks or real-world outcomes. Prior studies in
clinical populations have shown decreased pain ratings in individuals
with chronic pain (deCharms et al., 2005), decreased symptoms in
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individuals with tinnitus (Haller et al., 2010), decreased craving ratings
and physiological response to smoking cues in nicotine-dependent indi-
viduals (Canterberry et al., 2013; Hanlon et al., 2013), decreased mood
symptoms in people with depression (Linden et al., 2012), increased
motor speed and clinical ratings of motor symptoms in individuals
with Parkinson3s disease (Subramanian et al., 2011), and decreased con-
tamination anxiety in people with sub-clinical anxiety (Scheinost et al.,
2013). However,with one exception (Scheinost et al., 2013), these stud-
iesmeasuredbehavior at the timeof the rtfMRI study, did not test reten-
tion, and, with few exceptions (Scheinost et al., 2013; Subramanian
et al., 2011) the dependent measure of behavioral change with rtfMRI
was assessed with self-report measures that may reflect non-specific
training effects.

Moving forward, it will be important for experimenters to show a
causal link between the brain region(s) trained and the behavior targeted
formodification in order to establish that specific brain–behavior changes
account for any observed clinical changes and are not simply epiphenom-
ena. It is a challenge to demonstrate cause-and-effect beyond correlation
between rtfMRI neurofeedback training andbehavioral change. Related to
this, researchers should consider the specificity of the hypothesized rela-
tionship between the brain activation pattern(s) trained and behavioral
changes. In the study by Shibata et al. (2011) described above, for exam-
ple, causality was established between rtfMRI neurofeedback training
from the early visual cortex corresponding to a specific visual orientation
and improved accuracy in identifying the target orientation as compared
to untrained orientations. In such studies the specific brain activation
pattern related to behavior must first be determined, for example using
multivariate pattern analysis as in Shibata et al., (2011) and as described
above (LaConte, 2011). In another recent study, Zhao et al. (2013) used
dynamic causal modeling with rtfMRI to measure causal interactions be-
tween the dorsal premotor cortex target region and other motor regions
during a motor imagery task with neurofeedback. The experimental
group showed increased interactions from the target brain region to the
other regions across four training sessions as compared to a sham control
group. The experimental group also showed improved performance on
the motor imagery task. rtfMRI methods need to be further refined to es-
tablish causality not only between neurofeedback training and changes in
behavior, but also between changes in the specific neurofeedback signal
and other brain changes.

2.6. Guideline 6: an appropriate rtfMRI neurofeedback-based clinical trial
design is in place

Despite important early work suggesting that it is possible to use
rtfMRI as a non-invasive brain-based clinical tool, to our knowledge
there has been only one RCT, recently completed, that has investigated
the efficacy of rtfMRI neurofeedback to effectmeaningful clinical change
(CH, personal communication). Several methodological considerations
for the design of rtfMRI studies and clinical trials remain open questions
that likely depend on the specific application.

To demonstrate behavioral change that is directly related to rtfMRI
feedback training and establish causality, studies must implement im-
portant control conditions. Most studies that have included a control
condition have either used false feedback or no feedback. False feedback
can involve providing subjects with arbitrary feedback not related to
brain function, actual neurofeedback from a brain region or network
theoretically unrelated to the experimental variables of interest either
within-group (e.g., Garrison et al., 2013a) or between groups (e.g.,
Lawrence et al., 2013; Young et al., 2014), or yoked neurofeedback
from a matched subject (e.g., Hampson et al., 2012). In a recent study,
false feedback based on a recording of EEG neurofeedback was found
to engage a broad network of frontal, parietal and cingulate regions in-
volved in cognitive control (Ninaus et al., 2013). In another study, fixed
randomized feedback not based on an actual fMRI signal was compared
to no feedback as a control for training self-regulation of activity in the
premotor cortex (Johnson et al., 2012). False feedback again produced
awidespread pattern of activation involving frontal, temporal, and pari-
etal regions, whichwas distinct from themore localized activation asso-
ciated with actual neurofeedback. In addition, subjects reported more
frustration with the task in the false feedback group as compared to
the no feedback or actual neurofeedback groups. Based on these find-
ings, the authors reasoned that the negative impact of false feedback
runs made it a less suitable control group than no feedback. However,
the drawbacks to providing no feedback are first that it is unlikely to
be as engaging as a feedback task, and second, that it does not control
for the perception of success that subjects experience when they do
well in controlling their brain patterns. These differences between a
neurofeedback group and a no feedback control group can lead to
false positives related to unmatchedmotivation and placebo effects. An-
other option is to deliver control feedback using more cost-effective
methods such as autonomic biofeedback (deCharms et al., 2005).

Other important design considerations for rtfMRI clinical trials in-
clude the optimal number of rtfMRI sessions, number of neurofeedback
runs per session, appropriate timing between sessions if multiple ses-
sions are used, and the combination of rtfMRI training with behavioral
or other interventions. There is little data available to guide optimiza-
tion of these parameters for clinical trials. A recent study addressed a
number of these issues by tracking change across three rtfMRI sessions
in which nicotine-dependent individuals were trained to reduce activa-
tion in the anterior cingulate cortex and reduce smoking cue-related
craving (Canterberry et al., 2013). Of 15 enrolled smokers, 60% complet-
ed three 1-hour rtfMRI sessions, 1–2 weeks apart. Within each rtfMRI
session, subjects completed three 10-minute feedback runs. Reduced
anterior cingulate cortex activity and reduced self-reported craving
were evident at the first rtfMRI session and consistent across sessions
and runs. The reduction in cue-induced craving with rtfMRI neuro-
feedback was significant at the third session, indicating that at
least two feedback sessions were necessary to see any effect of
neurofeedback, and more than two sessions may be needed to ob-
serve clinical improvement.

Finally, it will be critical to compare the effects of rtfMRI-based
neurofeedback to existing therapies or biofeedback using more cost-
effective neuroimaging tools such as EEG in order to demonstrate the
value added by rtfMRI-based neurofeedback above other treatment
options.

2.7. Guideline 7: sharing resources and using common standards

In a domain where reproducibility has been a non-trivial goal, there
is a need for consensus on common standards and sharing of data, par-
adigms, software, and analytic tools. Thiswill provide an additional ben-
efit of lowering the barrier to entry for researchers to use rtfMRI, which
will also help generate new research questions and the development of
novel algorithms, solutions, and tools to advance the field.

One area of importance is the creation of an open rtfMRI communi-
cation protocol. Although Digital Imaging and Communications in
Medicine (DICOM) is a standard for communicating imaging data to
the Picture Archiving and Communication System (PACS) andother sys-
tems, many scanners do not have the capability to reconstruct and send
DICOM images as they are acquired. As such there is no common stan-
dard across scanners to communicate rtfMRI data from the scanner to
an analysis or presentation computer. In the absence of such standards,
several existing software packages rely onmonitoring the file system to
detect reconstructed images.While simpler to set up, this can introduce
unnecessary delays and limit the possibilities of neurofeedback para-
digms. In scanners manufactured by Siemens (http://www.siemens.
com) and Philips (http://www.philips.com), users can transmit data
over the network. In recent work published openly on Github (http://
github.com/gablab/murfi2), a formal specification for rtfMRI communi-
cation has been developed to describe a set of information necessary
to be transmitted from the scanner to an analysis or presentation com-
puter. Software developers can use this standard to create both new

http://www.siemens.com
http://www.siemens.com
http://www.philips.com
http://github.com/gablab/murfi2
http://github.com/gablab/murfi2
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sequences on scanners aswell as new analysis platforms that communi-
catewith these sequences. However, if manufacturers were able to send
DICOM images in real time, it would benefit from an established
protocol.

Alongwith available standards, a repository for or notification of the
availability of such resources is needed. A common neuroinformatics
portal for rtfMRI coupled with question–answer sites (e.g., http://
neurostars.org) and code repositories (e.g., GitHub, http://github.com)
can significantly simplify the dissemination of information and allow
for community discussion of approaches and issues. With the increased
focus on data sharing and reproducibility of imaging studies, it is critical
to utilize such resources to increase sharing of rtfMRI data, experimental
paradigms, and software.

3. Potential impact of real time fMRI for clinical neurotherapeutics

A primary goal of current research using rtfMRI neurofeedback is to
aid in the development of safe, effective and personalized therapies for
many brain related disorders including: pain, addiction, phobia, anxiety,
and depression. rtfMRI neurofeedback has direct clinical application as a
standalone treatment or as an augmentation strategy for interventions
that work by training volitional control of brain activity. As described,
rtfMRI neurofeedback has been used to train individuals to self-
regulate brain activation patterns related to basic and clinical processes,
and RCTs are in progress to corroborate potential clinical outcomes.
rtfMRI may be especially effective as targeted neurofeedback in con-
junction with behavioral interventions based on brain–behavior rela-
tionships. Additionally, and on the other end of the central nervous
system disease spectrum, there is the potential application of rtfMRI
neurofeedback to enhance performance (Gruzelier et al., 2006), learn-
ing (Yoo et al., 2012), and perception (Scharnowski et al., 2012), or to
promote wellness optimization.

In clinical neurotherapeutics, improvements in our understanding of
theneural underpinnings of psychiatric disorders have yieldedpotential
neural targets for rtfMRI interventions. For example, dysfunction of the
subgenual cingulate has been implicated in refractory depression, and
deep brain stimulation targeted to that brain region has shown prelim-
inary efficacy for the treatment of depression (Mayberg et al., 2005). As
testing the efficacy of deep brain stimulation is invasive, it is possible
that rtfMRImay be used for targeted neurofeedback to test this hypoth-
esis prior to more invasive procedures. More generally, rtfMRI has the
potential to test the robustness of neurobiological hypotheses prior to
more invasive procedures.

Looking forward, there is a clear need for cost-effective therapies. At
this time, rtfMRI neurofeedback is costly. However, rtfMRI research can
inform the development of more cost-effective and scalable clinical
tools, such as EEG or functional near-infrared spectroscopy (fNIRS). A
translational step is to test multimodal approaches such as simulta-
neous rtfMRI-EEG. In a recent study using this approach, participants
were able to simultaneously increase BOLD signal in the amygdala and
frontal high-beta EEG asymmetry when provided both modes of
neurofeedback during a positive emotion induction task (Zotev et al.,
2014), a technique which may help improve mood regulation in indi-
viduals with major depressive disorder (Young et al., 2014). The com-
bined rtfMRI-EEG approach may provide more efficient training based
on improved temporal and spatial resolution compared to either
modality alone. The concurrent use of these modalities may also
help to translate rtfMRI neurofeedback into more feasible EEG or
other imaging applications (e.g., fNIRS) by characterizing the EEG
(or fNIRS) signal correlated to the fMRI signal of interest to be
used for neurofeedback.

4. Real time fMRI in clinical neuroimaging beyond neurotherapeutics

Resolution of the issues outlined herewill contribute to the develop-
ment and use of rtfMRI as a clinical neuroimaging tool beyond the direct
therapeutic applications of rtfMRI neurofeedback that are the focus of
current rtfMRI research and likewise of this paper. In addition to the
use of rtfMRI as a tool for treatment via neurofeedback, rtfMRI has po-
tential utility in exploring the nature of the pathological condition,
and in clinical diagnosis, monitoring disease course, and tracking thera-
peutic response (including the effects of neurofeedback). rtfMRI offers a
significant new opportunity for understanding and addressing these
broad clinical problems.

At the basic or translational level, rtfMRI can be used to clarify brain–
behavior relationships critical to the understanding and treatment of
brain disorders. In particular, rtfMRI can be used to improve our under-
standing of how cognitive processes are represented in the brain and
how cognition is related to behavior in real time. For example, subjec-
tive information can help to elucidate cognition (or disordered cogni-
tion), yet traditional self-report measures have limitations. rtfMRI can
be used to relate subjective experience to objective neuroimaging data
to gain a more complete understanding of these brain–behavior rela-
tionships, including in individual subjects. A recent study by Garrison
et al. (2013a; 2013b) used rtfMRI in thisway to link the subjective expe-
rience of focused attention to brain activity in the defaultmode network
in experienced meditators. Short fMRI task runs and immediate self-
report were paired with offline feedback (shown after self-report),
real time feedback, or volitional manipulation of the feedback stimulus.
Meditators reported that their subjective experience correspondedwith
feedback, and showed a significant percent signal change in the target
brain region upon volitional manipulation, confirming their reports.
This approach obviates the problem of reverse inference whereby
cognitive processes are inferred from brain activity (Poldrack, 2006),
and reduces the opacity of cognitive strategy in fMRI studies. However,
as meditators have been shown to be more accurate at introspection
than non-meditators (Fox et al., 2012), the accuracy of self-report
must be considered when determining these brain–behavior relation-
ships in other groups, including clinical populations. Nevertheless,
rtfMRI may be used in this way to help determine the specific brain ac-
tivation pattern(s) related to cognitive processes or behaviors of inter-
est. This approach may aid in rtfMRI neurofeedback training and
provide insight into the mechanisms of treatment in RCTs using rtfMRI
neurofeedback. More generally, this use of rtfMRI may further our un-
derstanding of cognitive processes including those relevant to clinical
applications.

As a tool in clinical neuroimaging, rtfMRI neurofeedback has the po-
tential to be used to inform clinical diagnosis, track the natural history of
disease, track treatment progress, and provide more specific and effec-
tive treatments. The use of rtfMRI neurofeedback could lead to individ-
ualized brain-based treatment by clarifying the neural underpinnings of
disordered behavior in an individual through real time testing. This
could be accomplished by: (1) manipulating different cognitive pro-
cesses that may be disrupted in a given disorder to observe the change
in brain function in real time; (2) presenting a cognitive task when dif-
ferent patterns of brain function are observed in real time; or (3) alter-
ing brain function in different regions with reversible brain
stimulation tools such as transcranial magnetic stimulation (TMS)
to determine the effects on brain function, cognition, and clinical
symptomatology. rtfMRI neurofeedback may then be used to modify
these disordered individual patterns of brain activation toward a
more normative state, potentially leading to more healthy, adaptive
brain function. rtfMRI neurofeedback may be calibrated to the
individual3s current state, for example, to enhance learning as an in-
dividual improves across an intervention. Likewise, interventions
may be tailored to the specific strategies found to be useful for the
individual in rtfMRI neurofeedback studies (Lawrence et al., 2011).
Further, behavioral interventions may be augmented by targeted
neurofeedback of a brain activation pattern or cognitive process of
interest. Finally, rtfMRI may be used to find predictors of not only
clinical outcomes, but also of responsiveness to rtfMRI neuro-
feedback training.

http://neurostars.org
http://neurostars.org
http://github.com
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5. Conclusions

This paper recommends issues for consideration in studies of rtfMRI
neurofeedback for clinical therapeutics. Research contributing to
evidence-based guidelines is sorely needed for clinical trials of rtfMRI
neurofeedback. As outlined, researchers must establish that the rtfMRI
signal is accurate and reliable, rtfMRI neurofeedback leads to learning,
there is an appropriate test of training success, rtfMRI neurofeedback
leads to clinically meaningful changes in cognition and behavior, an ap-
propriate clinical trial design is in place, and rtfMRI resource sharing
protocols and tools are established to allow for efficient advancement
toward the urgent clinical goals discussed in this paper. Important be-
ginning work in these areas has been conducted, contributing to an
overall promising outlook for the application of rtfMRI neurofeedback
to develop novel, safe, and effective treatments for brain disorders.
The ultimate goal is for this tool to assist clinicians and patients in de-
signing personalized assessment and intervention approaches that
may enhance resilience in at-risk populations by correcting knownmal-
adaptive patterns of brain function in advance of developing a disorder,
accelerating adaptive compensatory neuroplastic changes in thosewith
brain disorders, and/or directly targeting the disrupted brain region or
system underlying brain disorders in order to restore healthy brain–
behavior function. Overall, rtfMRI offers the opportunity to further our
understanding of how the brain works and pushes the limits of our po-
tential for self-directed healing and change.
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