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An Extremal Problem in the Hypercube and Optimization of
Asynchronous Circuits
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We prove that ifm > 2, then the minimunk € N such that thé&-cube{O, 1}k can be decomposed
as the disjoint union ofn connected adjacent subsets satisfies 2ig- logy,logom — 1 < k <
2[log, m] — [logy logo M| + 5.
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INTRODUCTION

One of themain uses of electronic digital circuits is in implementing finite state machines.
There are two main types of digital circuits: the synchronous circuits, in which all transitions
occur in discrete time, determined byclock pulse; and the asynchronous circuits, in which
transitions may occur at any time.

In a digital circuit, the state is determined by the binary value (voltage or current) in some
components, so it can be viewed as a fixed length binary word.

In a synchronous circuit, all such bits change state at the same time in a transition, namely
the time determined by the clock pulse. In the asynchronous case, however, when there is a
transition, some bits may change faster than others, and the circuit passes through intermediate
states that do not correspond to actual intermediate states in the state machine that is being
implemented. Clearly, this problem would not occur if, in every state transition, only one bit
changes.

In general, it is not possible to assigrk#it word to each state of the machine satisfying
the condition that every transition is a 1-bit transition (e.g., complete graph with three states).
In [1], Huffmann proposed, as a solution to this problem, to assign more than one word per
state, and implement the transitions as a sequence of 1-bit transitions, such that the initial
words in this sequence correspond to the initial state of the transition and the other ones to the
final state. He proved that this could be done, for a complete state machine (complete graph),
with 2[log, m] — 1 bits, wherem is the number of states. We prove in this paper a better
bound,and prove that it cannot be significatively improved.

A more precise formulation of this problem is as follows:

e Each state is assigned to a subset of the set d-tiiewords (that can be viewed as the
k-cube(Z/27)%).

e Each 1-hit transition is an edge of the cube, so each transition can be viewed as a path
in the cube graph. The way to avoid undesired transient states is to assure that every
transition is a 1-bit transition.

We will consider the worst case, namely the complete machine state (each statnbas
tions to every other state).

So, the problem is to find the minimuknsuch that th&-cube can be decomposed as the
union of m disjoint connected subse#fy, ..., Ay such that forachi, j < mthere is a pair
of adjacent vertices, one of them A and the other one iA;.

0195-6698/00/040529 + 03  $35.00/0 (© 2000 Academic Press


https://core.ac.uk/display/82540585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

530 C. G. T. de A. Moreira and P. Emanuel
STATEMENTS AND PROOFS

DEFINITION. We say that two subse#s, B of a hypercubé0, 1}¥ are adjacent if there are
two adjacent pointg € A,y € B.

PropPoOsITIONL. If m > 2 and the k-cubg0, 1}" can bedivided as the union of m disjoint
adjacent subsets, thenk 2 log, m — log, log, m — 1.

PROOF Suppose that the-cube{0, 1}¥ can bedivided intom disjoint subset#\1, Az, . ..,
Am such that for each j < m therearex, y adjacent vertices such thate A,y € Aj.
Then there is onef the setsA; such thatA; has at most2K/m| elements and, since any
vertex has exactlk adjacent verticeand eery A;j is adjacent toA; for j # i, we have
k|2¢/m] > m—1= k-2¢> m(m— 1), and so we havk > 2log, m — log, log, m — 1
for m > 2 (sincek - 2¥ is increasing irk and, forky = 2log, m — log, log, m — 1, we hae
ko- 2K = %. (2log, m—log, log, m—1) < m(m—1). The lastinequality is true since itis

equivalent to 1- 'oggllz%“ < 1— X, which is equivalent to 2 logm < m(1+log, log, m),
but this is easily verified fom € {2, 3} and, form > 4, we havem? < 2™ = 2logym <

m < m(1 + log, log, m)). O

PROPOSITION2. Ifm > 2, then the k-cub€0, 1} can be decomposed as the disjoint union
of m connected adjacent subsets for someX{log, m] — [log, log, m] + 5.

ProoF We will present a construction of a decomposition that satisfies the conditions of
the proposition. We will repeatedly use the fact that a face of any dimension of a hypercube is
always connected.

Letn = [log,m], r = L%J and p = |log,r]. We will construct a decomposition of the
k-cube, wher&k = 4+ 2n— p < 2[log, m] — |log, log, m| + 5.

Let us write a typical element of tHecube asu = ajaxbc X% X1 y, whereay, az, b andc
are bits xp € {0,1}), x; € {0,1}"" andy € {0, 1}"~P. B

Ther-cube{0, 1) can be regarded as ardimensional vector space ov&y2Z with the
canonical basige;, e, ..., &}, wheree; is the vector that has thigh coordinate equal to 1
and all the other coordinates equal to 0. Sigce< log,r, we have 2 < r so there is a
surjective functionf : {e;, e, ..., &} — (Z/2Z)P that extends in a unique way #linear
function f: (Z/2Z) — (Z/2Z)P. It follows that givenv € (Z/2Z) andw € (Z/27Z)P
there is an elemers; of the canonical basis @fZ/27)" such thatf (v + ej) = w (note that
v+ej is adjacent t@). Sincen—r > r we have a linear functiog: (Z/2Z)"" — (Z/2Z)P
analogous tdf .

We may now define a functioR : (Z/2Z)X — (Z/2Z)" in the following way: foru =
ajapbc o x1 y € (Z/ZZ)" we look at the three bita;, ap andb*, whereb* is the sum
modulo 2 of all the bits ofi. If at least two of these three bits are equal to 0 we sayutigt
of type | and defind-(u) = Xp x1; otherwise we say thatis of type Il and define

f(xo)y, ifc=0

gxpy, ifc=1

We claim that the 2 setsF ~1(x), x € (Z/2Z)" are disjoint, connected and adjacent, so,
given a bijectionh: (2/2Z)" — {1,2,...,2"} (for instanceh(o1,09,...,0) = 1+
Sho1 ogz‘f—l), the decomposition afZ/27)X asA1U AoU- - -U Am whereA; = (ho F)~1(i)
forl<i<m, Am= szm(h o F)~1(j) satisfies the conditions of our problem.

F(g)={
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To prove this let us first verify that for each y in (Z)27)" there are adjacent vertices
ui € F i) anduz € F(y). If x =% %1 € (Z)2Z)" = (ZJ2Z) x (Z/2Z)"" we can
takea; = 0, a, = 1 andb such thab* = 0, andy € (Z/2Z)"~P equal to the projection
of y in the lastn — p coordinates. We will havd?(OlbOxo X1 y) = X, and we can tak&o’
adjacent toko such thatf (xo') is the projection o§/ in the firstp coordinates, so 0Dxy’ X1 Y
is adjacent to 0d0%o X1 Y andF(O]bOx0 X1y =

Now we will prove that the set&~ l(5) are connected. We can decompdsel(x) as
Bx U Cx where

By = {ue F1(x) | uis of type I}

and
Cx = {ue F1(x) | uis of type II}.

The previous argument can be used to show Bjatnd Cx are adjacent since there are
adjacent elements; € By andu € Cy. Itis enough to prove thay andCy are connected.

If u=ajahc x X1 y € By, thenu is equal or adjacent to’ = 00bc % X1 y € By, and
the setBX of theu' e By; such thata; = a = 0 is clearly connected, since it is equal to
{u' = 00bc % X1 ¥ | Xo X1 = X}, that is, a face of the hypercu@, 1}.

If u= ajaohc X X1y €Cy, thenu is equal or adjacent to” = 11bc % x1 y € Cx. The
setC>< = {u” € Cx | a1 = ap = 1} can be decomposed & U Ex whereDy = {u” e Cx |
a; = a» = landc = O} andEyx = {u” € Cx | a1 = a» = 1 andc = 1}. To prove thaf:5
(and soCy) is connected, it is enough to show that any elemgn¢ Dy can be joined by a
path in@ to any elementi; € Ex . This is a consequence of the following facts:

e u; = 1100 %5 %1 ¥ belongs to the connected detu;) contained inDx defined as
L(up) = {1100 xo x1 y € Dx [ Xo = %0, y = ¥}.

e Up = 1101 x¢’ x1" ¥ belongs to the connected Sdt(up) contained inEy defined as

M(Uz) = {11bl Xo X1 ¥ | X1 = X1, y = ¥}-
e (1100 % x1' ¥) € L(uz) and(11b1 Ko X1’ §) € M(up) are adjacent. |
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