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D-Alanylation of lipoteichoic acids plays an important role in modulating the properties of
Gram-positive bacteria cell walls. The D-alanyl carrier protein DltC from Bacillus subtilis has been
solved in apo- and two cofactor-modified holo-forms, whereby the entire phosphopantetheine
moiety is defined in one. The atomic resolution of the apo-structure allows delineation of
alternative conformations within the hydrophobic core of the 78 residue four helix bundle. In
contrast to previous reports for a peptidyl carrier protein from a non-ribosomal peptide synthetase,
no obvious structural differences between apo- and holo-DltC forms are observed. Solution NMR
spectroscopy confirms these findings and demonstrates in addition that the two forms exhibit
similar backbone dynamics on the ps–ns and ms timescales.
� 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Modification of lipoteichoic acids influences the net charge of
the cell wall in Gram-positive bacteria, and as such plays a role
in adaptation to changing environmental conditions [1]. The most
common modification, the covalent linkage of a D-alanine,
decreases susceptibility to cationic antimicrobial peptides, gly-
copeptides and lytic enzymes produced by neutrophils [2–4].

D-alanylation is accomplished by proteins of the dlt-operon [5];
the free amino acid D-alanine is activated by the enzyme DltA in
an ATP consuming reaction and transferred to the free thiol group
of a 40-phosphopantetheine (ppant) cofactor attached to the carrier
protein DltC. The thioester-linked D-alanine is subsequently
transported over the membrane to be incorporated in lipoteichoic
acids by an as yet unknown mechanism.

DltC is closely related to the acyl and peptidyl carrier proteins
(ACPs and PCPs, respectively) [6], which play crucial roles in the
biosynthesis of fatty acids (FAs), polyketides (PKs) and
non-ribosomal peptides (NRPs), respectively. ACPs and PCPs may
be found as individual domains within large modular polypeptides
(type I carrier proteins) or as stand-alone domains (type II carrier
proteins). Despite diverse sequences and participation in a wide
range of reactions, carrier proteins share a common four helix
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bundle fold as well as the coenzyme A-derived posttranslational
modification ppant, which is covalently attached to a conserved
serine residue (Ser36 in DltC from B. subtilis) near the
N-terminus of helix II by phosphopantetheinyl transferases such
as the acyl carrier protein synthase (ACPS) or Sfp (surfactin syn-
thase activating enzyme)-like enzymes (for PCPs). In the biosyn-
thesis of FAs, PKs and NRPs, the growing product chain in each
case becomes covalently bound to the cofactor thiol group of a cor-
responding carrier protein for transfer between the contributing
catalytic centres within the molecular assembly line. Carrier pro-
teins must therefore interact in a specific order with diverse
enzymes (or domains) to direct correct product synthesis. With a
size of around 80 amino acids, the surface available for potential
interactions is obviously limited, raising questions as to how this
can be accomplished.

Two theories in particular have been discussed in the literature
for natural product assembly line synthesis [7]: (i) the enzymes
interact directly with the substrate bound ppant cofactor, with
the protein itself playing only a minor role (e.g. the swinging arm
hypothesis in FA synthesis), or (ii) conformational changes upon
cofactor/substrate attachment facilitate specific interactions with
alternative binding partners (as suggested for NRP biosynthesis)
[8,9]. ACPs, responsible for the exchange of growing acyl chains
between active centers within the FA and PK synthetases, can
accommodate intermediary acyl-chains with a size of up 10 carbon
atoms [10] through burial within the hydrophobic core, accompa-
nied by small rearrangements in secondary structure dominated
by a repositioning of helix III [11,12]. A minor shift in helix III
has also been reported prior to substrate loading in the acti-
norhodin PK synthase ACP upon charging apo-ACP to generate
the holo-form [13,14].

Due to the more hydrophilic character of amino acid/peptide
intermediates, it is unlikely that thiol-linked intermediates are
buried in PCPs [15]. Although methodologies have recently been
developed for the study of substrate loaded PCPs [16], no
structures have been reported so far. On the other hand, major
structural differences in solution have been claimed between the
apo- and holo-forms of the type I peptidyl carrier protein
TycC3-PCP (excised from the tyrocidine NRP synthase) [8]. Three
distinct conformations were described: an A-form for apo-PCP in
absence of the ppant cofactor, an H-form for holo-PCP in presence
of the cofactor, and a so-called A/H-conformation adopted by both
the apo- and holo-PCP, which corresponds to the typical four helix
bundle architecture observed for other ACPs and PCPs and reported
earlier for the TycC3-PCP [15]. The cofactor bearing helix II shows
significantly altered orientations in the A, A/H and H conforma-
tions, with the A form reflecting the most flexible and expanded
conformation and the H-form exhibiting an unfolded helix III.
Based on these data, it has been suggested that the PCP phospho-
pantetheinyl transferase Sfp recognizes the A-conformation of
the PCP [8], whereas the terminal thioesterase domain Srf-TE
recognizes the H-form [9].

Although such inherent plasticity of the carrier protein provides
an attractive model for an ordered trajectory from one active site to
another, no such major structural rearrangements have been
observed in any other carrier protein. Few comparative structural
studies of PCPs in both their apo- and holo-forms have been
reported. Crystal structure analyses of the aryl carrier protein
(ArCP) from EntB of the enterobactin NRPS reveal the ‘‘A/H’’ confor-
mation in both the apo- and holo-forms [17,18]. Recently, NMR
structures of the excised terminal PCP from the teicoplanin NRPS
also revealed the ‘‘A/H’’ conformation, with only subtle differences
between apo- and holo-forms [19]. Thus the existence of the alter-
native ‘‘A-’’ and ‘‘H-’’ states has been called into question [20–22].

As the first steps in lipoteichoic acid modification exhibit
features common to both fatty acid and non-ribosomal peptide
synthesis, [23,24] we have investigated the structural properties
of the D-alanyl carrier protein (Dcp) DltC from B. subtilis. Dcp is
unusual for amino acid carrier proteins in that it can be charged
by the Escherichia coli ACPS [6,25], and an NMR solution structure
of apo-Dcp from Lactobacillus rhamnosus (LrDltC) has been
described [6]. Here we present a high resolution crystal structure
of DltC in its apo-form, as well as the first crystal structures of a
Type II PCP in holo-form. Complementing these results with NMR
solution data, we show that DltC does not undergo any significant
backbone rearrangements upon cofactor modification.
2. Experimental procedures

2.1. Gene cloning, mutation, expression and protein purification

DltC with a C-terminal His6-tag was produced from the B. sub-
tilis dltC gene cloned into the pQE-60 E. coli expression vector
and transformed into E. coli BL21 (DE3) as described [25]. To mimic
the apo form, Ser36 was mutated to alanine using the primers TTG
CTT GAT GCT TTT GGA ACA GT (forward) and ACT GTT CCA AAA
GCA TCA AGC AA (reverse) to yield DltC Ser36Ala. Cells were grown
in LB-medium at 37 �C to an OD of 0.6 and expression induced with
1 mM IPTG. After 4 h expression at 37 �C, cells were harvested by
centrifugation at 6 000 g for 20 min. The cell pellet was resus-
pended in 50 mM HEPES, 300 mM NaCl, 20 mM imidazole pH 7.8
and lysed by sonication. After centrifugation at 20000�g for
20 min, the supernatant was applied to an affinity column
(His-Trap, GE Healthcare) and eluted using a linear gradient up
to 250 mM imidazole. DltC-containing fractions were pooled and
further purified with a size exclusion chromatography column
(Superdex 75 prep grade, GE Healthcare) using 50 mM HEPES,
300 mM NaCl, pH 7.8 as buffer. Expression and purification of wild
type DltC resulted in both apo- and holo-DltC species in ratios
between ca. 1:1 and 1:10; holo-DltC appeared as dimeric species
under non-reducing conditions that dissociated readily in the
presence of reducing agents. All steps were monitored by
SDS–PAGE to analyze protein content and purity.

Selenomethionine (SeMet) labelled DltC Ser36Ala was produced
by growing E. coli BL21 (DE3) in M9 minimal medium supple-
mented with lysine, phenylalanine, threonine, leucine, isoleucine,
valine and selenomethionine, using the same growth-, induction-
and expression-conditions as for the unlabeled protein. DltC for
NMR-experiments was expressed using M9 minimal medium
supplemented with 13C-labeled glucose and 15N-labeled
(NH4)2SO4. To ensure high purity and uniformity of the protein
samples for NMR measurements, holo-DltC was expressed in
E. coli BL21 (DE3) cells co-transformed with the pREP4 plasmid
containing the gene sfp for the B. subtilis 40-phosphopantetheinyl
transferase Sfp; co-expression resulted almost exclusively in the
holo form, as confirmed by mass spectrometry.
2.2. Crystallization, data collection and structure determination

Crystallization screening was carried out in 96-well plates
(Greiner BioOne) and fine screening in 24-well plates (Qiagen
EasyXtal). First crystals of holo-DltC (crystal form I, Supplementary
Fig. 1) grew in 0.1 M sodium acetate, 0.2 M ammonium acetate,
30% PEG 4000, pH 5.7. Oscillation photographs were collected at
the BESSY synchrotron (Berlin, Germany) on beam line BL14.1 at a
wavelength of k = 0.9184 Å and the data reduced using the XDS
package [26] or MOSFLM and SCALA as implemented in CCP4 [27].
Crystals belonging to space group P6122 (a = b = 72.7 Å,
c = 110.3 Å, a = b = 90�, c = 120�) diffracted to 2.2 Å and contain
two molecules in the asymmetric unit. A second crystal form (form
II) was obtained in 95 mM sodium-citrate, 19% PEG 4000, 19%
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2-propanol, 8% glycerol, pH 5.6. In house data were collected using
CuKa radiation (k = 1.5418 Å) on an RA Micro 007 rotating anode
X-ray source equipped with an R Axis IV++ image plate detector,
an X-Stream cryo-nitrogen stream and VarimaxTM Optics
(Rigaku/MSC). The crystals diffracted to 1.8 Å, belong to space group
P6522 (a = b = 49.2 Å, c = 146.3 Å, a = b = 90�, c = 120�) and contain
one molecule in the asymmetric unit.

As attempts to solve the structure of holo-DltC by molecular
replacement using previously published NMR and X-ray structures
of PCPs and ACPs (including that of apo-DltC from L. rhamnosus
(LrDltC or Dcp)) [6] proved unsuccessful in both crystal forms,
SeMet MAD phasing was initiated. The SeMet-labeled Ser36Ala
apo-DltC crystallized in 25% w/v PEG 3350, 100 mM bis–Tris, pH
5.5. The monoclinic crystals (space group P21, with a = 34.5 Å,
b = 37.2 Å, c = 37.7 Å and a = c = 90�, b = 114.8�) diffracted at beam
line BESSY-MX BL14.1 to 1.01 Å and contain one molecule in the
asymmetric unit. Using data collected at wavelengths of 0.9798 Å
(peak), 0.9799 Å (inflection) and 0.9184 Å (remote), the anomalous
signal from the partially disordered N-terminal methionine Met1
was sufficient for phasing using the SHELX programme suite [28]
navigated using hkl2map [29]. Automated model building was car-
ried out using ARP/wARP [30] within CCP4, followed by cycles of
manual rebuilding using Coot [31] and refinement using PHENIX
[32] as implemented in the CCP4 program suite. The final electron
density maps allowed modelling of all 78 DltC residues, together
with those of the C-terminal Arg79-Ser80-His6-tag. The resulting
coordinates (after removal of the C-terminal tag residues) were
used as template to obtain initial phases for holo-DltC in crystal
forms I and II by molecular replacement using PHASER [33].
Crystal form I revealed density for all 78 DltC residues in both
monomers, together with the phosphate of the bound ppant cofac-
tor at Ser36. In addition, the complete ppant cofactor as well as the
C-terminal expression tag was fully interpretable in crystal form II.
Data collection and refinement statistics are given in Table 1.
Table 1
Data collection and refinement statistics for DltC crystal forms.

A. Data collection apo-DltC (Ser36

Beamline BESSY 14.1
Wavelength k (ÅA

0

) 0.9184 (remote = native) 0.9799 (inflec
Temperature (K) 100 100
Space group

Molecules/asu
P21

1

Unit cell constants
a, b, c (ÅA

0

) 34.58 34.53
37.21 37.17
37.69 37.69

a, b, c (�) 90.00 90.00
114.82 114.83
90.00 90.00

Resolution range (ÅA
0

) 100–1.01 (1.07–1.01) 100–2.8 (2.87
No. unique reflections 40503 (2895) 3977 (309
Multiplicity 3.6 (3.4) 2.2 (2.2)
Completeness (%) 96.6 (94.4) 94.4 (96.6
I/rI 13.9 (2.5) 42.3 (38.4
Rmeas (%) 6.6 (66.6) 2.4 (2.5)

B. Refinement
No. of residues (protein/cofactor/solvent) 709/0/137
Rcryst (%) 11.9
Rfree (%) 13.5
rmsd bond length (ÅA

0

) 0.010
rmsd bond angles (�) 1.35
Mean B (ÅA

0
2) 14.58

Ramachandran plot (%)
Preferred 98.5
Allowed 1.5
Disallowed 0
Pdb code 4bpf
3. 1H-15N NMR measurements

NMR measurements were performed in 100 mM HEPES pH 7.8,
150 mM NaCl, 3 mM TCEP and 10 mM MgCl2 at 298 K. All buffers
contained 10% (v/v) D2O. Spectra were measured in a Bruker
Avance III 800 spectrometer equipped with a TCI cryoprobe and a
Bruker Avance III 600 spectrometer equipped with a QXI probe.
13C/15N labelled holo-DltC and 13C/15N Ser36Ala apo-DltC were
used for peak assignments. The backbone resonances of 73
apo-DltC residues were assigned on the basis on HNCA,
HNCACAB, HN(CO)CACB triple resonance spectra, although no res-
onances corresponding to Ala36 in apo-DltC could be identified.
1H-15N TROSY HSQC spectra of 15N labelled DltC were recorded
for conformational studies of holo-DltC and apo-DltC. As the holo-
form of DltC shows no significant chemical shift changes, all
assignments could be transferred from apo-DltC and were con-
firmed by triple resonance experiments. Two additional correlation
peaks could be assigned to the ppant cofactor amides. Chemical
shift differences Dxall between the apo and holo forms were calcu-
lated according to:

Dxall ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Hholo-1Hapo
� �2 þ ð15Nholo-15NapoÞ2=25

2

( )vuut
using the corresponding chemical shifts in the proton and nitrogen
dimensions [34]. Steady-state {1H}-15N heteronuclear NOE experi-
ments were recorded at T = 298 K and a magnetic field strength of
14.1 T in an interleaved manner by applying 600 saturation 120�
pulses (each 5 ms long) to the proton channel. 15N single quantum
R2 relaxation dispersion data were recorded at T = 298 K and a mag-
netic field strength of 14.1 T in a series of 1H-15N correlation spec-
tra. The constant time relaxation delay was set to 40 ms to ensure
that the peak intensity in the Carr–Purcell–Meiboom–Gill (CPMG)
relaxation spectrum was about 50% of the intensity in the reference
Ala) holo-DltC form I form I holo-DltC form II

BESSY 14.1 In-house
tion) 0.97976 (peak) 0.9184 1.5418

100 100 100
P6122

2
P6522

1

34.52 72.68 49.21
37.16 72.68 49.21
37.68 110.30 146.26
90.00 90.00 90.00

114.84 90.00 90.00
90.00 120.00 120.00

–2.8) 100–2.81 (2.88–2.81) 62.94–2.2 (2.32–2.2) 40.93–1.95 (2.0–1.95)
) 4006 (316) 9293 (1300) 8344 (1174)

2.2 (2.2) 11.2 (11.5) 19.5 (19.8)
) 96.4 (99.1) 99.9 (100) 100 (100)
) 36.1 (33.3) 16.6 (3.8) 27.4 (6.0)

2.9 (2.8) 9.6 (80.6) 8.8 (56.0)

1293/8/44 689/24/56
20.9 19.0
23.6 24.0

0.002 0.016
0.534 1.44
38.76 32.55

96.1 94.8
3.9 5.2
0 0

4bpg 4bph
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spectrum omitting the relaxation period [35]. All data were
recorded using Topspin 2.1 (Bruker Biospin), processed with
NMRPipe [36] and analysed with NMRView [37].

4. Results and discussion

Within the monoclinic crystal form, apo-DltC exhibits the four
helix bundle typical of carrier proteins (Fig. 1), with a root mean
square deviation (rmsd) in Ca positions of 1.44 Å to apo-LrDltC
(mean structure, 1hqb.pdb) [6]. Helices I (Asp2-Gln16), II
(Asp35-Asp51) and IV (Thr66-Lys79), which each possess an
‘‘N-cap’’ residue (Asp2, Asp35 and Thr66, respectively) [38], are of
similar length to each other with an up-down-down topology,
A 

I 

I’

II

III

IV

Ser36Ala

Fig. 1. 1.01 Å resolution structure of apo-DltC. (A) Overall fold reveals the typical four-he
the 40-phosphopantetheinyl cofactor ppant (Ser36Ala, at the N-terminus of helix II) is colo
demonstrating major (green) and minor (blue) occupancy conformers within the hydro

A B 

D D

S36A
D35 

F37

G38

R61

SD35 

G38

R61

S36
D35

F37

S36’

PPant

PPant' 

Fig. 2. Experimental 2Fo–Fc electron densities (contoured at 1r) in the vicinity of the
depicted as white sticks. (A) apo-DltC; (B, C) holo-DltC monomers A/B respectively in cry
prosthetic group is presumably disordered in both cases. (D) Stereo representation of the
cofactor, which is stabilized by forming a disulfide bond to the cofactor (light yellow) o
forming a right handed helix bundle with the almost perpendicular
short helix III (Pro55–Phe59) lying on top. The largest loop region
between helices I and II is characterised by an additional helix I’,
comprised by residues Asp18-Asn23, as observed for apo-LrDltC as
well as ACP from B. subtilis [39]. Apart from a pronounced hydropho-
bic surface centred on helices II and III, which based on recent struc-
tural data is likely to be involved in interaction with the adenylation
enzyme DltA [18,40], the protein surface is composed predomi-
nantly of polar (with an excess of negatively charged) residues.

The atomic resolution of the apo-DltC crystal structure allows
reliable assignment of alternative conformations of core residue
side chains (Fig. 1B), although this has no discernible effect on
the positioning of backbone atoms and secondary structure
Phe59

Trp64

Ile70

Phe29

Val54

B 

lix (I, II, III and IV) bundle observed for other carrier proteins. The attachment site for
ured yellow. (B) Close up view of the final 2Fo–Fc electron density (contoured at 1r),

phobic core.

C 

 

S36D35 

F37

G38

R61

36

F37

S36
D35

F37

S36’

PPant

PPant’ 

ppant attachment site Ser(Ala)36; carbon atoms of symmetry-related molecules
stal form I, showing density for the ppant phosphate moiety; the remainder of the
equivalent region in holo-DltC, crystal form II. Note the well-defined density for the

f a symmetry-related molecule.
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elements. In particular, the partially surface exposed aromatic side
chains of Trp64 and Phe59 can be refined in two distinct orienta-
tions, with a ratio of major:minor occupancies of ca. 2:1. On the
other hand, NMR 1H-15N correlation spectra show only one distinct
signal for the indole nitrogen of Trp64 (see below, Fig. 3A) and 15N
relaxation data obtained from R2 relaxation dispersion experi-
ments show no sign of millisecond dynamics. Within the NMR
structure ensemble for apo-LrDltC (1dv5.pdb) [6], the residue
equivalent to Phe59 (Phe62) also demonstrates considerable posi-
tional variability, suggesting that this side chain is only weakly
constrained in solution. In the crystal structure, the conformational
diversity centred on Trp64/Phe59 extends to the neighbouring ali-
phatic side chains of residues Ile28, Ile46 and Ile70, which are com-
pletely buried within the protein core between helices II, III and IV.

Clear electron density corresponding to a phosphate moiety
could be observed covalently linked to the side chain of Ser36 in
both molecules of holo-DltC within the asymmetric unit of crystal
A 

B 

1H / p
9 8 10

15
N

 /
 p

pm

116  – 

121  – 

131  – 

126  – 

111  – 

106  – 

Δω
al

l
/ 

pp
m

0.6  – 

0.4  – 

0.0  – 

0.2  – 

residue n
10 20 30 40 500 

I III‘

Fig. 3. 1H-15N TROSY HSQC NMR spectroscopy demonstrates the structural equivalence o
large scale structural rearrangements are seen upon superposition of spectra for apo- an
Ala36, the site of ppant attachment, which has also been observed for ACP from E. coli
observed, confirming its presence in the holo-DltC sample. Note the single peak for the i
bars; left ordinate) plotted as a function of residue number (average chemical shift dev
structure element demarcations on the top. The largest shift is seen for the backbone ami
spin-relaxation data for apo- and holo-DltC (red and black circles, respectively; right ord
data points to the far right of the plot represent relaxation data for the NH groups of th
form I (Fig. 2B, C). Superposition of the individual monomers on the
apo-DltC structure yields rmsds for the Ca atoms of residues Met1
to Lys78 of 0.67 Å (monomer A)/0.72 Å (monomer B); monomers A
and B differ by an rmsd of 0.31 Å. All residues of the core adopt
the major occupancy conformation observed in the apo-form,
although the absence of evidence for a minor conformation may
be due to the lower diffraction limit of the holo-crystals. The
Ser36-phosphate side chain of each monomer in the asymmetric
unit adopts slightly different conformers (gauche (�) vs. gauche
(+)); in both cases, the negative charge of the phosphate moiety
is (at least in part) compensated by a close approach of the guani-
dinium function of Arg61, which itself enters into a planar stacking
interaction [41] with the aromatic side chain of Phe29. No density
is observed for the remainder of the ppant moiety, which we
assume is flexible in the crystal lattice. In solution, the low values
for the ppant amides in the {1H}-15N heteronuclear NOE experi-
ments (see below, Fig. 3B) indicate high flexibility of the cofactor
pm
6 7 

{ 1H
}- 15N

 N
O

E

–  -1.0

–  1.0

–  0.5

–  - 0.5

–  0.0

umber
8060 70

ppantIII IV His-tag

f apo- and holo-DltC in solution. (A) No major changes in chemical shifts indicative of
d holo-DtlC (red and black, respectively). Resonances could not be assigned to Ser/
[45]. On the other hand, cross peaks corresponding to the ppant cofactor (cf) were
ndole nitrogen of Trp64 (W64sc) in both spectra. (B) Chemical shift deviation (grey
iation Dxall � 0.017 ppm), together with a schematic representation of secondary
de of Phe37 in the immediate vicinity of the ppant attachment site. Overlaid are the
inate) derived from steady-state {1H}-15N heteronuclear NOE experiments. The two
e ppant moiety.
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on the picosecond–nanosecond timescale. It cannot however be
ruled out that the phosphoester bond of crystallized holo-DltC
has been hydrolyzed, as species corresponding to phosphorylated
DltC (due to the loss of a pantetheine moiety) could be observed
in ESI-MS measurements (Supplementary Fig. 2).

In holo-DltC crystal form II on the other hand, well defined
electron density is observed for the entire cofactor (Fig. 2D). The
position of the pantetheinyl side chain, which folds back along
the surface of the protein, is very probably strongly influenced by
formation of a disulfide bond to a symmetry-related molecule. A
similar disulfide linkage between symmetry molecules has been
observed in the crystal structure of the ACP from Plasmodium
falciparum (PfACP) [42]. In keeping with the notion that such
disulfide-linked carrier protein dimers are due to oxidation during
protein preparation [43,44], the protein–protein interface in
holo-DltC crystal form II is completely different to that in PfACP.
In both proteins, the side chain of Ser36 is in the gauche (+)
conformation, while all other ppant torsion angles differ. To
accommodate the orientation of the ppant arm in holo-DltC crystal
form II, the side chain of Phe37 rotates away from its position in
apo-DltC and holo-DltC crystal form I, although this is more likely
due to the observed crystal packing environment than to the
presence of the cofactor. The overall structure of holo-DltC in
crystal form II is similar to those in the other crystals, with rmsd
Ca positions of 0.41 Å (apo-DltC) and 0.63 Å/0.65 Å (holo-DltC
crystal form I, molecules A and B).

As no major differences in structure could be identified within
the different crystal forms, NMR spectroscopy was performed to
investigate the behaviour of DltC in solution. The resulting
1H-15N TROSY HSQC spectra (Fig. 3) revealed an equivalent set of
cross peaks for apo- and holo-DltC, with the appearance of two
additional resonances (due to the two ppant amide moieties) in
the holo-DltC spectrum confirming the integrity of the cofactor.
Analysis of the weighted chemical shift deviations demonstrates
that only resonances in the immediate neighbourhood of the ppant
attachment site are affected by cofactor modification. The largest
shift is seen for the backbone amide of Phe37, the residue immedi-
ately following the reactive site Ser36, followed by those of the
ensuing helix II (Gly38-Ile46) and the sequence Asp60-Asp62.
The latter includes Arg61, whose side chain guanidinium moiety
is directed towards the cofactor phosphate. Thus upon cofactor
attachment, DltC behaves as other carrier proteins in solution
[13,19,45]. Analysis of backbone dynamics using {1H}-15N
heteronuclear NOE data reveal very similar fluctuations of apo-
and holo-DltC on the picosecond–nanosecond time scales
(Fig. 3B). Finally, 15N R2 relaxation dispersion data show no sign
of exchange dynamics to an alternative state (>0.5%) in the mil-
lisecond time scale (data not shown).

The data reported here lead us to conclude that DltC does not
adopt cofactor-dependent alternative conformations in solution.
This is in accordance with other recent studies [19–22] that find
no evidence for the large scale conformational changes reported
for the TycC3-PCP [8], suggesting that it is time to reconsider the
role of carrier protein plasticity in natural product biosynthesis.
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