
R

E
s

M
a

b

a

A
R
R
A

K
E
A
D
W
R
S
P
Y

1

1

p
e
a
f
s
2
l
3
c
T
d

c

h
0
n

Field Crops Research 201 (2017) 60–74

Contents lists available at ScienceDirect

Field  Crops  Research

jou rn al hom ep age: www.elsev ier .com/ locate / fc r

esearch  paper

thiopian  wheat  yield  and  yield  gap  estimation:  A  spatially  explicit
mall  area  integrated  data  approach

ichael  L.  Mann a,∗,  James  M.  Warner b

Department of Geography, The George Washington University, Washington DC, United States
International Food Policy Research Institute, Addis Ababa, Ethiopia

 r  t  i  c  l e  i  n  f  o

rticle history:
eceived 6 October 2015
eceived in revised form 26 August 2016
ccepted 21 October 2016

eywords:
thiopia
griculture
ata integration
heat productivity

emote sensing

a  b  s  t  r  a  c  t

Despite  the  routine  collection  of annual  agricultural  surveys  and significant  advances  in  GIS and  remote
sensing  products,  little econometric  research  has  integrated  these  data  sources  in estimating  developing
nations’  agricultural  yields.  In  this  paper,  we  explore  the determinants  of  wheat  output  per  hectare  in
Ethiopia  during  the  2011–2013  principal  Meher  crop  seasons  at the  kebele  administrative  area.  Using  a
panel  data  approach,  combining  national  agricultural  field surveys  with  relevant  GIS and  remote  sensing
products,  the  model  explains  nearly  40%  of the  total  variation  in  wheat  output  per hectare  across  the
country.  Reflecting  on the  high  interannual  variability  in output  per  hectare,  we  explore  whether  these
changes  can  be  explained  by  weather,  shocks  to, and  management  of  rain-fed  agricultural  systems.  The
model  identifies  specific  contributors  to wheat  yields  that  include  farm  management  techniques  (e.g.
area planted,  improved  seed,  fertilizer,  and  irrigation),  weather  (e.g.  rainfall),  water  availability  (e.g.
mallholder agriculture
anel data estimation
ield gaps

vegetation  and  moisture  deficit  indexes)  and  policy  intervention.  Our  findings  suggest  that  woredas
produce  between  9.8  and  86.5%  of their  locally  attainable  wheat  yields  given  their  altitude,  weather
conditions,  terrain,  and  plant  health.  In  conclusion,  we  believe  the  combination  of field  surveys  with
spatial  data  can  be used  to identify  management  priorities  for  improving  production  at  a  variety  of
administrative  levels.

©  2016  The  Authors.  Published  by  Elsevier  B.V. This  is  an  open  access  article  under  the  CC  BY-NC-ND
. Introduction

.1. The Ethiopian context

Ethiopia’s agriculture system constitutes 46% of gross national
roduction, employs 85% of its population, and creates 75% of
xport commodity value (FDRE, 2013). Despite its large scale, the
gricultural sector is largely formed by smallholder subsistence
arms burdened by dependence on erratic rain-fed systems. In all,
mallholders account for 96% of total area cultivated (Taffesse et al.,
011). Ethiopia’s rain dependent agricultural system is particu-

arly vulnerable to shifts in climate and weather, with less than
% of households having access to irrigation (or less than 1% of
ereal acreage) (Mann and Warner, 2015; Taffesse et al., 2011).
hese vulnerabilities are further exaggerated by extensive use, land

egradation, and household poverty.

In Ethiopia, a variety of climate extreme events are increasingly
ommon, particularly droughts and floods. Changes in weather and

∗ Corresponding author.
E-mail address: mmann1123@gwu.edu (M.L. Mann).
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climate, especially in the context of the dynamic Sahel monsoon,
form a potential threat to agricultural production and food security
throughout the region. Recent evidence suggests that the incidence
of droughts and floods in Ethiopia has increased in the last ten
years relative to the decade before (FDRE, 2013). Drought events
alone are estimated to reduce Ethiopia’s GDP by up to 1% in a typi-
cal year (FDRE, 2013). This will likely be confounded by additional
loss of agricultural productivity due to changes in climate (Jones
and Thornton, 2003). Targeted intervention can lead to increases in
yields in some of Ethiopia’s most challenging environments (Mann
and Warner, 2015). Despite the critical nature of this research, little
is known about the response of smallholders to these trends, espe-
cially across large spatial scales and across heterogeneous physical
and social terrain (Altieri and Koohafkan, 2008).

Wheat is modeled here due to its relative importance as well
as its wide scale adoption throughout the four main regions of
Ethiopia. According to recent estimates there are approximately
4.7 million farmers growing wheat on approximately 1.6 million

hectares representing between 15 and 18% of total crop area (Minot
et al., 2015). Additionally, less than 1% of all wheat production takes
place outside the four regions studied in this paper.

nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

dx.doi.org/10.1016/j.fcr.2016.10.014
http://www.sciencedirect.com/science/journal/03784290
http://www.elsevier.com/locate/fcr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fcr.2016.10.014&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mmann1123@gwu.edu
dx.doi.org/10.1016/j.fcr.2016.10.014
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Crop

1

f
c
p
m
C
t
s
m
t
m
4
d
b
s
r

c
a
j
t
t
t
p
v
a
h
s
i
e
o
e
m
f
p
i
w

1

t
d
i
u
d
d
d
t
o
m
1
w
W
c
a
2
f

r
t
R
u

M.L. Mann, J.M. Warner / Field

.2. Data and integration

One of the primary objectives of this study is to integrate data
rom a variety of sources to better model the effects of weather,
limate, markets, and farm management behavior on agricultural
roductivity. Each source provides a unique and often compli-
entary set of information. For instance, every year Ethiopia’s

entral Statistics Authority (CSA) engages in the massive Agricul-
ural Sample Survey (AgSS) of over 45,000 rural households. This
urvey provides critical information on crop yields, and manage-
ent practices at the kebele level. Although the AgSS is over ten

imes larger than any other agricultural survey in the nation, even
oderate resolution remotely sensed imagery observes around

4 million locations in Ethiopia daily. The fusion of these two
atasets can therefore leverage the household-level detail provided
y AgSS with nearly real-time information provided by remote
ensing. Combined, they may  reveal new information relevant to
esearchers, policy makers, and optimally the farmers themselves.

Although there are individual benefits and drawbacks to both,
ombining survey and remotely sensed data can enhance yield
nalysis. For example, conventional agricultural surveys have sub-
ectivity in responses, and implementation can be expensive and
ime-consuming; meanwhile remote sensing can provide objec-
ive, standardized, and possibly cheaper information in a more
imely fashion to aid farmers through monitoring, as well as yield
redictions (Ahmad et al., 2014; Lobell et al., 2005). Surveys pro-
ide detailed information on farm labor, input choice, extension
ccess, and other key determinants of productivity. On the other
and, remote sensing is subject to scale issues (especially in areas of
mall farmer plots with extensive multi-cropping), cloud cover dur-
ng the rainy season, methodological choices by the researcher (eg.
stimated planting time) as well as other drawbacks. Both meth-
ds have weaknesses and strengths, but by combining both, we  can
xploit a broader and more flexible set of data to model the deter-
inants of wheat productivity. For instance, low yields observed

rom crop cut surveys might be explained by changes in rainfall
atterns easily observed by satellite, alternatively while satellite

magery provides a real-time look at plant health, it can’t determine
hether shifts are the result of pests or disease.

.3. Project description

Despite routine agricultural surveys and advances in agricul-
ural modeling, little effort has been made to understand the
eterminants of agricultural yields (and gaps) through spatial data

ntegration methods (Lobell et al., 2005). Here we aim to see if our
nderstanding of the determinants of Ethiopia’s agricultural pro-
uctivity can be improved through the integration of data between
isciplines and across space. This study combines four basic types of
ata: remote sensing data, policy intervention information, agricul-
ural household surveys, and other spatial data such as information
n road networks and edaphic properties. We  combined this infor-
ation to provide two products that are nationally representative

) wheat productivity at the kebele level,1 and 2) yield gaps at the
oreda level for wheat in Ethiopia’s four major growing regions.
hile this form of analysis has been developed in more economi-

ally developed nations with larger agricultural crop planting areas

nd more homogenous agroecological climates (Fontana et al.,
005; Randall et al., 2011), there has been relatively little work
ocusing on the African smallholder farmer.

1 The levels of administrative areas in Ethiopia consist of, in descending order,
egions, zones, woredas and kebeles. There are an average of 15 zones per region in
he  four major wheat producing regions, with approximately 11 woredas per zone.
ural woredas are composed of approximately 24 wards/kebeles each, and are the
sual focus when speaking of local decentralized government administration.
s Research 201 (2017) 60–74 61

Current academic and applied work in remote sensing is gen-
erally assessed at the pixel level, either at the macro (ie. global,
regional, state) or local scale (individual field) (Ferenz et al., 2004;
Liu et al., 2005; Prasad et al., 2006). Global studies of agriculture
rely on broad remote sensing tools, and the findings are, under-
standably, across multiple countries and agroecological zones (e.g.
Licker et al., 2011). Field-level studies rely on localized agricultural
plots (typically of large multi-hectare fields) and are combined with
spatially consistent satellite imagery that create relatively accurate
yield estimates (Ferenz et al., 2004; Serrano et al., 2000). Usually,
these farm-level research projects have taken place in more devel-
oped nations where agricultural plots are significantly larger and
monocropped (Moran et al., 1997; Swinton and Lowenberg-Deboer,
2001). To our knowledge, the type of national level analysis pre-
sented here, particularly for African smallholder farmers, has not
been performed to date. In addition, most research of this kind has
relied on crop models that view modeling from a purely agroeco-
logical perspective.

We believe models estimating observed yields may  be improved
by expanding their scope to include variables that better capture
the idiosyncratic nature of actual management practices, spatial
patterns of investment and market activity, and other critical spa-
tial determinants. Here we  develop crop-specific national-level
productivity maps for wheat that are beneficial for understand-
ing overall productivity as well as evaluating research and policy
interventions. The use of a broad set of spatial variables, inte-
grated with household surveys, allows for increased flexibility
and a better understanding of what influences Ethiopian farm-
ers’ yields—estimates recorded by households in three annual
nationally representative surveys. This study provides time vari-
ant estimations of crop productivity for Ethiopia using both survey
and spatial data. We  also present estimates of wheat yield ‘gaps’,
where ‘gaps’ are defined as the difference between average yields
and 90th percentile locally-attained yields from areas of similar
climate, soil, and water availability. These estimates are critical to
understand the production potential of the agricultural sector as
well as to guide interventions, both locally and nationally. In this
way, we hope to provide both researchers and policymakers with
improved information to enhance analysis and interventions across
Ethiopia’s diverse agrological landscape.

2. Methods

2.1. Objectives and overview

We develop a panel regression model to estimate 1) wheat out-
put per hectare, to produce 2) yield gaps for three seasons including
the 2012–2014 Meher crop seasons in Ethiopia. This study focuses
on the four major agricultural regions of Ethiopia (Tigray, Amhara,
Oromia, and SNNP) because they comprise the majority of popu-
lation and agricultural crop production for the country. The four
regions have approximately 50 zones, 550 agricultural woredas,
and 14,500 kebeles. Even though about 2150 of these kebeles are
surveyed per year in AgSS, for stability of estimates, we restricted
our sample to those kebeles where three or more wheat farmers
were identified. Additionally, while this paper estimates at the sub-
woreda, or kebele level, most operational policy is implemented
within woredas and for that reason our estimates are aggregated
to this level.

2.2. Model data
The full model uses 21 independent variables that we divide
into Survey, Climate/Weather, Spatial, and Remotely Sensed data.
In order to match with AgSS survey variables, all explanatory vari-
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bles are summarized by the mean or standard deviation2 at the
ebele-level.

.2.1. Survey variables
Primary data are obtained from Ethiopia’s annual Agricultural

ample Survey (AgSS) and the Population Census Commission. Sur-
ey data includes productivity and farm management variables
overing three years of agricultural data (2011/2012–2013/2014
eher crop seasons3) (AgSS, 2014, 2013, 2012). The CSA takes a ran-

om sample of enumeration areas (EAs4) that exist at the sub-kebele
evel. Kebele population estimates from the 2007 Ethiopian census
re used to weight kebele-level agricultural statistics (Population
ensus Commission, 2008), and adjusted over time using the World
ank’s annual agricultural population growth rates for Ethiopia
The World Bank, 2013). We  treat the 20 households interviewed
er EA as being a representative sample of the kebele.  Importantly,
pproximately 97% of the same EAs are sampled for a three-year
eriod. This allows for a kebele panel data set to be used. Field pro-
uctivity is measured as quintals per hectare and is a sample of
etween three and five crop cuts at the EA level.5 Observations with

ess than three crop cuts per EA were dropped from the analysis
o enhance stability of the estimates. Population density is mea-
ured as the total population per hectare (Pop Den). Other statistics
rom the AgSS on wheat production at the kebele level include the
roportion of land applied with chemical fertilizer (Chemfert); the
roportion of land where wheat was irrigated (Irrigation); the pro-
ortion of land area dedicated to improved seed (ImprSeed); the
roportion of land where wheat was damaged by weather, pests
r other external events (Damage); and the proportion of total
rea planted with wheat (LandWheat). To control for the effects of
he adoption of knowledge-based technologies our regression also
ncludes the temporally lagged value of WheatOPH.

.2.2. Climate/Weather variables
In order to capture the influence of longer-term weather

xpectations, two measures of climatic water deficit (CWD) were
btained from hydrologic models (Willmott and Matsuura, 2001;
illmott, 1977). CWD  is an approximation of water available to

lants, as it expresses the annual evaporative demand that exceeds
vailable water. CWD  integrates complex interactions of heat,
ater supply and demand, terrain, and edaphic properties (e.g. soil
ater holding capacity) into simple measures of seasonal charac-

eristics relevant to plant community structure and productivity
hrough a measure of water stress. CWD  data was retrieved at 0.5◦

esolution (a pixel equals 0.5 decimal degrees or approximately
0 km on a side) (Willmott and Matsuura, 2001). A simplified visual
epresentation is presented in Appendix A (Fig. A1). The variables

sed here include a measure of the mean (CWDMN) and standard
eviation (CWDSD) of CWD  for the 1981–2010 period. These act
s a proxy for long-term expectations of uncertainty around water

2 Standard deviations are used on a limited set of variables in order to capture
nterannual variability.

3 The Meher crop season produces over 95% of total crop production annually
AgSS, 2013).

4 Enumeration areas are sample areas, designed by CSA, that exist within kebele
oundaries and consist of approximately 150–200 households. On average, there
re about 4.8 EAs per kebele but this varies significantly because of differences in
opulation.
5 CSA’s methodology concerning crop productivity determination does not allow

or  individual estimates and all farmers are projected to have the same output per
ectare at the sample level via an average crop cut. More specifically, CSA takes a crop
ut  sample of up to a total of five farmers, depending on how many farmers actually
row the crop, and projects that average to all land dedicated to that particular
rop in the sample. Therefore, this sample design allows for only one productivity
stimate per EA.
s Research 201 (2017) 60–74

availability for a given location. Estimates of CWD  were not avail-
able after 2010.

2.2.3. Spatial variables
Nine variables were obtained to characterize the geographic

locations, terrain, soils and other determinants of productivity.
Administrative boundaries were downloaded from UN-OCHA’s
Humanitarian Response COD-FOD Registry (UN-OCHA, 2014).
Euclidean distance to Addis Ababa is calculated in meters
(Dist Addis), road density is estimated as road length as described
by the Ethiopian Water and Land Resource Centre (WLRC, 2013)
in length of road within 5 km of any given pixel, in km per km2

(Road Den). Agroecological zones (AgroEco, dummy variables) were
obtained from the Water and Land Resource Centre (WLRC, 2013)
and describe areas of similar growing conditions, with 15 zones
based roughly on elevation and average precipitation. AgroEco
therefore controls for omitted variables correlated with differences
between these zones. Elevation in meters (Elev) was  obtained from
the Shuttle Radar Topography Mission (STRM) at 90 m resolution
(Jarvis et al., 2008) and was used to calculate terrain slope in degrees
(Slope). Cation-exchange capacity (CEC) was measured as the max-
imum quantity of total cations measured in meq+/100 g dry soil,
that a soil is capable of holding, at a given pH value, available for
exchange with the soil solution. CEC was used as a measure of fer-
tility and nutrient retention capacity. This data was accessed via the
Africa Soils Profiles Database v 1.1 (Leenaars, 2013). Other edaphic
properties were also downloaded from the Africa Soils Database but
were dropped from the final model due to statistical insignificance.
The Agricultural Growth Program (AGP) interventions variable indi-
cate whether or not the AGSS surveyed-areas operated under the
AGP program during the sample period. The AGP  intervention is a
large-scale (83 initial woredas) project, funded by the World Bank,
designed to increase productivity and marketization within high-
potential agricultural areas. Intervention woredas were obtained
from the Ethiopia Strategy and Support Program II’s baseline report
(IFPRI, 2013). To capture larger-scale administrative impacts, a
dummy variable was used for each zone (Z Code). Finally, to test
for potential spatial autocorrelation locational coordinates, the cen-
troid, were used for each woreda (Cen Y and Cen X).

2.2.4. Remotely sensed data
We  use three sources of remotely sensed information from the

National Aeronautics and Space Administration (NASA). Data on
precipitation (PRECIP), was collected from the adjusted merged-
IR precipitation product from Tropical Rainfall Measuring Mission
(TRMM), which is collected every three hours at 0.25 ◦ resolution
(25 km on a side) for the whole period of interest, and is measured in
mm/h  (GSFC, 2014). Annual totals were calculated for each sample
year in cumulative mm for the period of the AgSS survey. As such,
the TRMM data provides a real-time look at precipitation.

Remotely sensed vegetation indexes were obtained from the
16 day MODIS MOD13Q1 composite product6 at 250 m resolution
(Didan and Huete, 2006). MODIS’s Enhanced Vegetation Index (EVI)
is sensitive to the amount of chlorophyll in any given pixel. EVI
and similar indexes are commonly used to estimate plant produc-
tivity and health in agricultural applications. After preprocessing
and the identification of agricultural pixels, a series of EVI statis-
tics were produced for each year of the AgSS survey. Refer to the
Enhanced Vegetation Index in Appendix A for detailed methodol-

ogy concerning preprocessing and the identification of agricultural
pixels. EVI statistics used in the final model include EVIMX,  the max-
imum achieved annual EVI value, and EVID the annual total area

6 Composite images compile data over a fixed number of days (typically 8 or
16  days) to create cloud-free images representative of that period.
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Fig. 1. Example relating EVI time series to wheat yields.
A  stylized comparison of the evolution of the enhanced vegetation index (top) and
plant development (bottom) under good and poor plant health. The top panel also
points out key portions of the phenological cycle including the onset of the Meher
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and the Hausman Test were used. We  tested if individual specific
variance components were zero (Ho : �2

u = 0) with the Breusch-
Pagan Lagrange multiplier (BPLM) test adjusted for unbalanced
lanting season (red dash), maximum EVI values (blue vertical dashed line), and the
ecreasing portion of the EVI curve (labeled ‘decreasing’).

dapted from (FAO, 2013).

nder the curve of the decreasing portion of the EVI curve (green
haded areas labeled “decreasing” in Fig. 1).

To identify key points in phenology, we assume that EVIMX
an be represented as the maximum EVI value for a given year
nd that this occurred during the Meher growing season. Because
thiopia has two growing seasons, the area under the curve esti-
ates required that measurements start at the beginning of the
eher growing season. We  define the start of the Meher growing

eason as the annual local minimum nearest to the Meher rainy
eason onset (red vertical dash, Fig. 1), where the day of rainy sea-
on onset can be any date between May  and the end of August
epending on geographical location. On the basis of local expert
nowledge, the start of the rainy season is estimated to occur in
he first ten-day period that accounts for 2.5% of total annual rain-
all, that is followed by a 30-day period that experiences no more
han seven consecutive days without rain as estimated from the
RMM precipitation data7 In addition, we focus on the decreas-

ng portion of the EVI signal past the annual EVI maximum point.
his period of the phenological cycle matches roughly with head
evelopment and yield formation in the plant. Therefore, inade-
uate water availability during these periods have been shown to
trongly affect yields (FAO, 2013). Descriptive statistics for each
ndependent variable can be found in Table 1.

.3. Statistical methods

.3.1. Wheat yield model estimation
We explore a variety of determinants for wheat output per

ectare in the 2011–2013 Meher crop seasons by using a panel data
pproach at the kebele level. The use of panel data in this study alle-
iates two problems, unobserved spatial and temporal dynamics
nd homogeneity (lack of variance). If pooled together, the inte-
ration of an unbalanced statewide set of kebeles (N = 1726) over
he 2011–2013 period (T = 3) amounts to a high degree of observed
ariance over both space and time.

Non-linear specifications are controlled for using cubic splines.

 spline function is a smoothly joined piecewise polynomial of
ny degree. Smoothing is enforced by constraining functions to be
ontinuous at knots, or join points (Durrleman and Simon, 1989).

7 This definition of rainy season onset was obtained from a CIMMYT wheat expert.
s Research 201 (2017) 60–74 63

Increasingly non-linear forms are only applied if a joint t-test, that
all coefficients are equal to zero, is rejected. When referenced in
the text all variables using splines will report the significance of
this joint t-test. We  indicate the number of coefficients estimated
for each variable x with x(Sn) where S indicates the use of a spline
and n indicates the number of coefficients estimated.

We estimated a fixed effect model that examines individual
differences in intercepts, assuming the same slopes and constant
variance across individual observations (group and entity) in Eq.
(1):

ln(yit) = (˛  + �w) +  ˇAit + �Wit + �Mit + �Pit

+�Iit + �Pit + �ln (yit−1) + vit (1)

Where yit is the natural log of wheat output per hectare
(WheatOPH) for kebele i in time t. ˇAit is a Kx1 vector of regression
coefficients (ˇ) for descriptive variablesAit , where K is the number
of descriptive variables. ˇAitincludes relevant exogenous agroeco-
logical determinants of wheat productivity (EVIMX(S1−3), EVID(S1−3),
Elev(S1−3), Slope(S1−2), CEC, AgroEco), ıWit includes weather and
climate (CWDMN, CWDSD, Precip, Damage), �Mit includes man-
agement variables (LandWheat(S1−2), ImprSeed(S1−3), ChemFert,
Irrigation), �Pit contains a policy and administration variable
(AGP), �Iit represents infrastructure variables (Dist Addis(S1−2),
Road Den(S1−2)), and �Pit controls for effects of population
(Pop Den(S1−2)).�w is a vector of zone-level fixed effects con-
stants that controls for unobserved characteristics of each zone.8

�ln(yit−1)is the temporally lagged values of y for period t − 1 (i.e.
last year’s output per hectare in the same kebele),  and vit is a N × T
matrix of disturbances. All variables are standardized to have a zero
mean and a standard deviation of one. As such, coefficients can be
interpreted as a “one standard deviation increase in variable x cor-
responding to a ˆ̌

 unit increase in Y”, where ˆ̌
 is any estimated

coefficient.
Controlling for both time and zonal fixed effects allows us to

disentangle the effect of temporal and spatial heterogeneity of
omitted variables. To control for potential heteroscedasticity, we
estimate Eq. (1) using Huber-White sandwich estimators (Huber,
1967; White, 1980). The statistical significance of each variable is
tested and reported in the text as a p-value with estimates with
p < 0.10 being considered statistically significant, and p > 0.10 being
insignificant. Because our regression is in log-linear form we  inter-
pret the coefficients for continuous variables as percentage change
in y, calculated as:%�y = 100 (e ˆ̌

i − 1), where ˆ̌
i is an estimated

coefficient. We  present a set of regressions each exploring the
explanatory power of a set of variables. These include 1) “In-Sample
1” an initial specification testing the significance of all variables of
interest, 2) “In-Sample 2” a simplified model including all signifi-
cant variables, and 3) “Out-of-Sample” omits all variables related to
the AgSS survey, in order to allow for out-of-sample yield estimates.

2.3.2. Model tests
Pre-estimation: In order to choose between Pooled, Fixed Effects

(FE), Random Effects (RE) models, an F-test, Breusch-Pagan LM test,
8 A recent research study of yields at the global-level acknowledged that crop
yield patterns do follow administrative boundaries (Licker et al., 2011). This points
to  the relative importance of nationally directed crop management practices over
just  biophysical areas determining relative yields. The implementation of many gov-
ernment agricultural initiatives are coordinated at the zonal administration level
and  then implemented in the woreda. Therefore, we  incorporate zonal level admin-
istrative dummy  variables to depict potential variations in administrative capacity
in facilitating agricultural implementations and other potential institutional issues.
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Table 1
Variable units and summary statistics (aggregated to the kebele level).

Variable Description Units Mean Std. Source

Dependent Variable wheatOPH Wheat output per hectare Quintals/Hectare 17.00 8.47 Survey
Weather & Climate CWDMN  Mean climatic water deficit mm mm  1.49 1.86 Remotely Sensed

CWDSD Standard deviation climatic water deficit mm 1.84 1.44 Remotely Sensed
Precip Precipitation mm 370.46 191.70 Remotely Sensed
Damage Proportion of wheat damaged by weather, pests etc. % as decimal 0.14 0.18 Survey

Management LandWheat Proportion of land planted with wheat % as decimal 0.08 0.12 Survey
ImprSeed Proportion of land planted with improved seed % as decimal 0.07 0.18 Survey
ChemFert Proportion of wheat applied with chemical fertilizers % as decimal 0.55 0.42 Survey
Irrigation Proportion of wheat irrigated % as decimal 0.01 0.05 Survey

Agroecological EVIMX Max  enhanced vegetation index (EVI) – 0.35 0.09 Remotely Sensed
EVID  Area under curve of declining portion of EVI curve – 5.08 1.79 Remotely Sensed
Elev  Terrain elevation Meters 1922.84 552.43 GIS
Slope  Terrain slope Degrees 8.37 5.16 GIS
CEC  Soil Exchangable cations meq+/100 g 41.68 16.16 GIS

Populations Dist Addis Euclidean Distance to Addis Ababa Kilometers 283.11 128.10 GIS
Road  Den Mean length of road (km) within 5 km Meters 0.18 0.23 GIS

Person/per sq. km. 349.73 573.46 Survey
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Table 2
Regression on log of output per hectare (standardized coefficients).

In-Sample 1 In-Sample 2 Out-of-Sample

Constant 2.643e + 00** 2.593e + 00** 2.740e + 00**
LnwheatOPHt-1 7.748e-02** 7.992e-02**
CWDMN  1.637e-01* 1.643e-01* 8.127e-02
CWDSD −1.956e-01** −1.933e-01** −1.351e-01**
Precip −2.537e-03
Damage −9.376e-02** −9.546e-02**
EVIMX(S1) 7.693e-02* 7.169e-02* 8.928e-02**
EVIMX(S2) −1.772e-01* −1.563e-01* −2.607e-01**
EVIMX(S3) 9.382e-02+ 7.945e-02 1.557e-01**
EVID(S1) 1.437e-01* 1.769e-01** 1.864e-01**
EVID(S2) −5.840e-01* −6.590e-01* −8.414e-01**
EVID(S3) 4.426e-01+ 4.974e-01* 6.403e-01**
LandWheat(S1) 1.738e-01* 1.693e-01*
LandWheat(S2) −9.231e-02 −8.717e-02
ImprSeed(S1) −1.621e-03 −2.206e-03
ImprSeed(S2) 9.093e-02 8.742e-02
ImprSeed(S3) −1.306e-01 −1.262e-01
ChemFert 3.340e-02+ 3.332e-02+
Irrigation 4.658e-04
Elev(S1) 8.770e-01** 8.629e-01** 9.424e-01**
Elev(S2) −1.233e + 00** −1.212e + 00** −1.100e + 00**
Elev(S3) 6.119e-01** 6.008e-01** 4.468e-01*
Slope(S1) −6.786e-02+ −6.376e-02+ −2.194e-02
Slope(S2) 9.570e-02** 8.133e-02* 6.498e-02*
CEC −2.220e-02
AgroEco – – –
Dist Addis(S1) −1.806e-01** −1.549e-01* −1.653e-01**
Dist Addis(S2) 1.857e-01* 1.704e-01* 1.744e-01**
Road Den(S1) 4.555e-02
Road Den(S2) −7.157e-02
Pop Den(S1) 2.055e-01* 2.119e-01*
Pop Den(S2) −2.641e-01** −2.738e-01**
AGP 4.318e-02 4.267e-02 5.241e-02*
Cen Y −6.190e-03
Cen X −9.940e-02
YEAR 2.037e-03
Pop Den Population density

ariables Cen Y, Cen X, AGP, AgroEco and Z-Code are not included.

anels (Sosa-Escudero and Bera, 2008). The adjusted BPLM test does
ot reject the null (p > 0.08) and indicated that the RE model is not
ble to handle heterogeneity better than pooled OLS (i.e. inconsis-
ent). Fixed effects was determined to be statistically significant
t the 99% level (p < 0.01). The use of FE was reinforced with the
se of the Hausman test implemented as a test of overidentifying
estrictions (Wooldridge, 2002), where the individual effects are
ncorrelated with a regressor in the model. Here, we  rejected the
ull (p < 0.01) and concluded that individual effects �i are signifi-
antly correlated with at least one regressor. Therefore, the use of
andom effects is problematic.

Post-estimation: We  tested for global spatial autocorrelation in
he error term with the use of an augmented Moran’s I Test for

odel residuals (Cliff and Ord, 1981). We  do not reject the null of
o spatial autocorrelation in the residual (p > 0.31).

.3.3. Out-of-sample performance
The use of environmental information along with geographic

nd remotely sensed data enabled us to estimate wheat output
er hectare out-of-sample (outside of the original AgSS survey).

n order to predict kebeles outside of the AgSS survey, survey-
elated variables were dropped from Eq. (1) with predictions being

ade from the simplified regression (results in Table 2 − Out-of-
ample). These can be used to estimate yields on a kebele-by-kebele,
nd year-by-year basis. We  used a k-fold cross-validation on the
nal model to evaluate the model’s ability to fit out-of-sample
ata (Lachenbruch and Mickey, 1968). Accuracy metrics are then
eported for each out-of-sample prediction in Appendix A, Table A1.

.3.4. Yield gap methodology
Attainable yields were estimated from actual observations in

thiopia, rather than potential yields based upon idealized or

imulated conditions. Here we assume that within comparable
groecological areas the 90th percentile kebele is the locally attain-
ble yield.9 which can be contrasted with actual yields of the other

9 Given the national coverage and large variation in agroecological characteris-
ics,  determining yield potential and water-limited yield were beyond the scope of
his  project. We therefore relied on the locally attainable yields and chose the 90th
ercentile to avoid potential problems with statistical noise and aggregation over a
elatively small sample of famers at the kebele level. The estimates seem relatively
onsistent with other Ethiopian wheat efficiencies estimated in the literature (See
lemu et al., 2014; Gelaw and Bezabih, 2009; Yami et al., 2013).

Z  Code – – –
R2 0.39 0.38 0.24

N  1726 1726 2907

+90%, *95%, **99% level of significance.

similar areas. Areas with comparable agroecological conditions are
determined with a time-variant clustering algorithm.

Eight kebele clusters, with similar agroecological characteristics,

were identified using a multidimensional clustering algorithm. The
K-means algorithm partitions multidimensional data into k clus-
ters of similar data (k = 8). Distance to the multidimensional cluster
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ean determines a kebele’s membership in any cluster each year.
ore specifically, given a set of kebele level observations (x1, x2,.,

n) where each observation is a multidimensional vector (contain-
ng information about climate, weather etc.), the K-mean algorithm
ims to partition the n observations into k sets S = {S1, S2,. . .,  Sk} in
rder to minimize within the cluster variance (sum of squares) as
escribed by:

in
s

∑k

i=1

∑
x ∈ Si

|x − �i|2 (2)

here �i is the mean value of observations in cluster Si and x is
 vector of agroecological data for a given kebele.  Here we parti-
ion the data based on five weather and agroecological categories.
hese variables include: elevation (Elev), precipitation (Precip),
reenness during the late season (EVID), mean climatic water
eficit (CWDMN), and standard deviation of climatic water deficit
CWDSD). These variables were chosen as key determinants from
he estimation of Eq. (1) and can be considered representative of
limate, weather, and topography. Eq. (2) is estimated as a panel
ith cluster membership varying year to year given changes in

ime-variant conditions (precipitation, greenness).
Yield performance of any kebele can then be compared to the dis-

ribution of yields from kebeles with similar climate, weather, and
errain on a year-to-year basis. Wheat yield gaps (YG) are calculated
s follows:

G = −100
(

1 − YA
YL

)
(3)

here YA is an actual yield and is estimated from the panel regres-
ion in Eq. (1), and YL is a local attainable yield, defined as the 90th
ercentile of the distributions described by a kebele’s agroecological
luster membership described above. To match the scale of domes-
ic agricultural planning, kebele level estimates are aggregated to
he woreda level using an area weighted sum.

. Results

.1. Wheat output per hectare

The following section outlines the results of the panel regres-
ion by estimating the log of wheat output per hectare. Regression
stimates are reported in Table 2, and estimates of output per
ectare are presented in Fig. 2 below. The determination of the
nal model is shown below in Table 2 (In-Sample 1–2). Results for

he out-of-sample estimation (for estimation of non-AgSS sampled
ommunities) are presented in Table 2 Out-of-Sample.  Coefficients
isplay the expected sign and statistical significance and an overall
-square of almost 0.40 for the model.10 Unless otherwise stated,
esults presented throughout the document will be from the In-
ample 2 specification.

As outlined in Eq. (1) we test for the independent effects of
groecological conditions, weather and climate, spatial determi-
ants, policy and administration as well as other inputs. This model
lso tests for the effects of improved farm management techniques
ncluding the use of improved seeds, chemical fertilizer, reported
rop damage, area dedicated to wheat, as well as irrigation. As
entioned earlier, this section will refer to the results from the
pecification In-Sample 2. The results strongly support integrating
urvey and remotely sensed data, with most variables statistically
ignificant at the 95% level or better and non-linear fits demonstrat-
ng expected signs.

10 Given the relative stability of area planted, we can capture nearly 75% of variation
n  total wheat output (quintals) at the kebele level using similar models. For the
urpose of brevity, these models are not presented here.
s Research 201 (2017) 60–74 65

As expected, the survey variables confirmed many of the
contributing factors to wheat productivity in the final model
(In-Sample 2). We  find that higher yields in the previous sea-
son are correlated with increases in the current Meher season
(lnwheatOPHt-1). It should be emphasized that the relative size of
the coefficient is not as large as might be expected and the impact
of omitting the variable does not substantially alter the R-square.
Specifically, a one quintile increase in last year’s OPH has an approx-
imate 0.42 quintile increase in the current output per hectare.

We find that at the kebele level chemical fertilizers increase pro-
duction per hectare, although at current rates of application its
effects are relatively small. A one standard deviation increase (ie.
42% increase in land applied with chemical fertilizer in a kebele)
in the percentage of land applied with chemical fertilizers (Chem-
Fert), at the average rate of application, increases wheat output
per hectare by 3.38% (joint F-test, p < 0.05).11 At the kebele level,
improved seeds (ImprSeed) have a statistically significant effect on
productivity (joint F-test, p > 0.05).

We also find that irrigation (Irrigation) has no significant effect
on output per hectare (p > 0.98, In-Sample 1). This finding, however,
is likely due to the extremely low percentage of households with
irrigation (less than 3% of farmer’s have access). None of the kebeles
have enough irrigated land to see broad increases in productivity.
On the other hand, damage to a percentage of holdings (Damage)
from pests, rust, flooding, hail et cetera significantly reduces out-
put per hectare in approximately half of all farms growing wheat
(p < 0.01). A one standard deviation (18%) increase in the percent-
age of land damaged corresponds to a 9.10% decrease in output
per hectare. We  also saw significant increases in yield in kebeles
where farmers plant a larger proportion of wheat (LandWheat) with
a one standard deviation increase (12.14%) in the percentage of land
planted increases output per hectare by 18.45% (p < 0.01).

Two  climate variables, obtained via the crop model estimation,
significantly contribute to explaining relative wheat productivity.
We tested for climatic influences with the mean and standard devi-
ation of climatic water deficits (CWDMN and CWDSD,  respectively).
Splines from CWDMN indicate that yields are higher in areas with
historically moderate levels of available water (p < 0.05). The fail-
ure to find declining productivity in the driest areas is likely due to
the exclusion of the driest portions of the country (outside of the
four major growing regions) from the sample. Areas with higher
historical variability in water availability (CWDSD) see declining
productivity (p < 0.01) as relative long-term variability of rain pat-
terns should have a negative impact on yields.

Two  of the three variables related to remote sensing, are sig-
nificant indicators of wheat productivity. Precipitation was found
to be statistically insignificant (Precip). The explanatory power of
precipitation (Precip) is undermined (p > 0.95, In-Sample 1) by the
inclusion of variables related to CWD  and EVI that are probably bet-
ter proxies for water availability for plants. We control for plant
health through critical periods of the growing season through the
use of the Enhanced Vegetation Index (EVI). EVI maximum values
(EVIMX) and area under the declining portion of the EVI curve of
(EVID) both significantly correlate with output per hectare (p < 0.07
and p < 0.05, respectively). In the section below, the non-linear
effects of these environmental variables are briefly outlined.

The effects of the maximum value of EVI (EVIMX) remains
positive until very high levels and then decreases towards zero
influence at the highest recorded levels (Fig. 3a). As such, EVIMX

is capturing increases in productivity due to total growth and leaf
area until this declines with the wettest areas of the south, which
have extremely high EVI values and lower wheat productivity that

11 For all non-linear specifications, we reported the joint t-test that all coefficients
are all equal to zero.
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Fig. 2. Estimated wheat output per hectare in quintals by woreda.
Estimated mean woreda output per hectare (OPH) measure in quintals, ranging from low productivity (dark purple) to high productivity (light green).

Fig. 3. a,b: Effect of maximum EVI value and area under the declining portion of the EVI curve.
[Left − A] Cubic spline estimation of effects of the maximum Meher season EVI value (EVIMX) on the natural log of wheat output per hectare (LnwheatOPH). [Right − B]
Cubic  spline estimation of effects of the area under the declining portion of the EVI curve for the Meher growing season (EVID) on the natural log of wheat output per hectare
(LnwheatOPH).



 Crops Research 201 (2017) 60–74 67

w
S
u
i
i
a

s
a
s

r
e
2
s
a
s
p
m

s
c
f
t
(
t
t
m
m
p

t
b
f
t
a
t
C
b
I

3

m
w
d
c
p
d
f
p
a
−
l
t
m

4

h
m
t
d

Table 3
Wheat yield gaps by region determined by climate cluster methodology.

Region Pred OPH Yield Gap%

Median Median Min  Max

Amhara 13.96 −51.28 −34.88 −78.44

relevant to farmers’ challenges (e.g. rust resistant strains). It is
advisable to, “Reduc[e] the area currently occupied by susceptible
wheat varieties” and “It is highly advisable to release and promote

12 For those kebeles participating both in the AgSS survey and AGP interventions.
M.L. Mann, J.M. Warner / Field

ere likely not screened out (as described in Section 2.2.4 Remotely
ensed Data). Fig. 3b depicts the EVID spline function. For lower val-
es of EVID, a one standard deviation increase (1.79 unit increase

n area under the “grain filling” area of EVI) corresponds to a 19.35%
ncrease in productivity (p < 0.01). These increases then taper out
t around 50% of the maximum EVID value.

Of the ten spatial variables, five were of the expected sign and
tatistically significant (Dist Addis, Elev, Slope, AgroEco, Pop Den),
nd five were dropped from the In-Sample 2 estimation due to
tatistical insignificance (Road Den, CEC, AGP, CEN Y & CEN X).

As would be expected, the changing nature of the physical ter-
ain impacts productivity. We  find that significant increases in
levation (Elev) improve output per hectare until approximately
000 m above sea level (p < 0.05), see Fig. 4a. Mean kebele terrain
lope (Slope) decreases output per hectare until approximately 10◦

fter which yields see no further declines (p < 0.05). The spline fit for
lope also indicates increasing yields at the highest angles which is
otentially due to the effects of the extensive use of terracing that
itigate problems of steep terrain (Fig. 4b).

The effects of urban primacy (Dist Addis) and population den-
ity (Pop Den) are outlined in Fig. 5a,b. The distance to the national
apital (Dist Addis) is measured by an increasing Euclidian distance
rom Addis Ababa (Dist Addis). The spline coefficients correspond
o lower agricultural yields until they level out around 300 km
Fig. 5a p < 0.05). Yields increase with kebele population density up
o around 400 people per square kilometer and then decline beyond
his point (Fig. 5b, p < 0.05). However, it is important to note that the

edian value of population density is 155 people per square kilo-
eter in our sample and the larger values likely reflect fragmented

lots in unusually small kebeles.
We also find that the World Bank and Ministry of Agricul-

ure’s AGP intervention kebeles perform better but not significantly
etter (p = 0.12) than non-AGP woredas. This will be discussed
urther in Section 4. Agroecological zone fixed effects (AgroEco) cap-
ure significant differences between growing regions (p < 0.10). We
lso test the influence of a suite of potential edaphic characteris-
ics (e.g., pH balance, organic material, clay content). Similarly, to
ation-exchange capacity (CEC), we find no significant relationship
etween edaphic properties and wheat output per hectare (p > 0.19,

n-Sample 1).

.2. Yield gap analysis

Yield gap estimates presented here are based on multidi-
ensional clustering that compare kebeles with similar climate,
eather, and terrain; aggregated to the woreda level. The spatial

istribution of woreda level yield gaps, as determined by climate
lusters, can be found in Fig. 6. These yield gaps are the ratio of
anel estimates from Eq. (1) and the 90th percentile of the clusters
istribution as described in Eq. (3). As such, large negative numbers,

or example −80, would indicate at a given woreda, on average, is
roducing 80% less than the 90th percentile kebele within the same
groecological cluster. Meanwhile smaller negative numbers, like
25, would indicate that on average, the woreda is producing 25%

ess than the top performing (90th percentile) kebeles in their clus-
er. Regional summaries of gap results from using the cluster based

ethodology can be found in Table 3.

. Discussion

Given the small scale of Ethiopia’s agriculture and the spatial

eterogeneity of it’s agroecological zones, explaining approxi-
ately 40% of variation in productivity lends statistical support to

he further development of this approach. We  believe that multi-
isciplinary approaches, such as this one, can provide insight into
Oromia 14.04 −47.96 −14.22 −76.54
SNNP 13.85 −49.97 −18.97 −90.38
Tigray 16.80 −39.61 −24.54 −67.82

determinants of agricultural productivity, the effects of manage-
ment practices, interventions, as well as weather and climate.

4.1. Panel wheat output per hectare results

The Agricultural Growth Project (AGP), administered by the
Ethiopian Ministry of Agriculture and funded by the World Bank,
aims to increase agricultural productivity and market access for
key crops and livestock products in targeted woredas (Agriculture
and The World Bank, 2011). One of the AGP’s two primary objec-
tives is to increase agricultural yields for participating households.
Controlling for other determinants in Eq. (1), we see a positive,
yet not statistically significant, increase in output per hectare for
wheat (p < 0.12). Coefficients indicate that AGP participating kebe-
les’ yields are 4.3% higher than non-AGP kebeles,12 compared to a
3.3% increase reported in the AGP baseline paper (IFPRI and EDRI,
2013). This comparison provides some basic support to the predic-
tive ability of our model within the context of other independent
analysis.

The AgSS also allows for the control of a variety of input and
management relevant variables. We  estimate significant gains in
productivity from increasing the proportion of land devoted to
wheat production. Starting at lower proportions of planted wheat,
a one standard deviation increase in the proportion of land planted
(+12%) in wheat, increases by 18% output per hectare. Given this
finding, the government’s newly developed cluster strategy may
facilitate significantly increased yields in wheat clusters.13 The rel-
ative importance of this variable should be tempered by its likely
endogenous nature, with higher yields encouraging higher empha-
sis on wheat, and vice versa. That being said, this finding may
also point to economies of scale or benefits of specialization for
many suitable wheat producing regions, as increased scale likely
brings with it lower input and transaction costs, and more capital
investment, amongst others. Explanations involving the impor-
tance of social capital might also be relevant. Additionally, the
stability of regression coefficients across specifications (including
specification In-Sample 3 (Table A2 in Appendix A), where Land-
Wheat is removed) points to this variable’s importance and validity
for predictive purposes. We  find that the self-reported applica-
tion of improved seeds has a significant influence on wheat yields
(p < 0.05). Despite its statistical significance the relative size of their
impact remains low. This may  be for a variety of reasons. For
example, the reported underestimation of improved seed use.14

(Spielman et al., 2011) is consistent with our finding of high returns
from a moderate level of improved seed use. Additionally, there
may  not be widespread diffusion of those improved seeds most
13 Personal communications with relevant Ethiopian government officials.
14 The AgSS questionnaire specifically asks whether or not farmers purchased seed

during the crop season and not whether they used improved seed. In many cases
farmers either recycle seed or receive improved seed from other farmers, this would
suggest larger overall improved seed use.
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Fig. 4. a,b: Effect of elevation and slope.
[Left − A] Cubic spline estimation of effects of elevation (Elev) on the natural log of wheat output per hectare (LnwheatOPH). [Right − B] Cubic spline estimation of effects of
terrain slope (Slope) on the natural log of wheat output per hectare (LnwheatOPH).
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error or driven by the erratic nature of the small-scale rain-fed agri-
cultural systems. In order to tease out potential weather-related
effects, we control for a set of potential determinants of inter-
ig. 5. a,b: Effects of distance to Addis Ababa and population density.
Left − A] Cubic spline estimation of distance to Addis Ababa (Dist Addis) on the na
f  effects of population density (Pop Den) on the natural log of wheat output per he

arieties that have durable adult plant resistance or have effective
ace-specific resistance genes in combinations to prevent further
volution and selection of new virulences that lead to boom-and-
ust cycles of production” (Singh et al., 2011). This is echoed in the
esults on damages to agricultural holdings, where we  find con-
istent and significant losses due to pests, rust, flooding and other
isks to crops. For instance, for the 2012–2013 period, we  find that
1% (3,948/35,844) of farmers and 9.3% (st. dev. = 20%) of all land
lanted in wheat experienced losses for one of these listed reasons.

nterventions, therefore, might emphasize loss prevention methods
uch as pest and flood control, or the use of fungicide and improved
eeds to ward off molds and rust.

As expected, chemical fertilizers increase output per hectare.
e find that increasing the application of chemical fertilizer to 95%

f all cultivated land dedicated to wheat in a typical kebele would
ncrease wheat production per hectare by an additional 3.38%. This
peaks to the wide spread diffusion of fertilizers as well as gains
hat can be obtained through improved inputs and management.

ote however that fertilizers, given their current rates of applica-

ion, have a relatively small impact on obtained yields. This may
mply that fertilizers are applied in insufficient quantities, are of
og of wheat output per hectare (LnwheatOPH). [Right − B] Cubic spline estimation
 (LnwheatOPH).

relatively low quality or are not well matched to soil deficits.15

Although irrigation is likely a critical component of increasing and
maintaining high productivity, we are currently unable to estimate
its effects at the kebele level. This is likely due to the low percentage
of households with access to even small-scale irrigation (less than
3% of households), and relatively good growing conditions for the
sample period. That being said, findings here still point to a high
level of sensitivity to changes in weather and climate. Irrigation,
therefore, should and will play a significant role in food security
and climate adaptation going forward.

Year to year we see substantial volatility in AgSS measures of
agricultural output per hectare. One of the goals of this study was
to evaluate whether or not these changes were due to measurement
15 To better identify fertilizer needs, Ethiopia’s Ministry of Agriculture, working
with the Agricultural Transformation Agency (ATA), are currently undertaking a
national soil-sampling project (EthioSys) to determine local soil qualities. Fertil-
izer blending plants have recently been constructed to provide locally appropriate
fertilizers.
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ig. 6. Spatial distribution of yield gaps as determined by climate clusters.
oreda-level yield gaps as expressed by the ratio of estimated output per hectare a

hown  in red, moderate in purples, and low in light green.

nnual variability. These time-variant controls include measures
f rainfall, water availability, and plant health observed from satel-

ites. We used measures of the enhanced vegetation index (see
ection 2.2.4 for more detail) as a proxy for water availability and
rop health at two critical periods of plant growth. The first, the
rea under the declining portion of the EVI curve (EVID), is a valu-
ble measure of plant health and water availability through some of
he most critical phases of head development and yield formation.

ith increases in EVID, we see substantial increases in productivity
ecause of favorable conditions for plant growth. Here starting at

ow levels, a one standard deviation increase (1.79 units) in EVID

orresponds to a 19.35% increase in yields per hectare. This finding
ndicates that even in this challenging, small-scale heterogeneous
nvironment, traditional satellite measures of plant health can be
pplied. It also suggests that despite favorable rains across much of
 90th percentile kebele within the same agroecological cluster. High yield gaps are

the country during this study period, there is substantial variation
in productivity due to changes in water availability and, therefore,
plant health. The slight declines in productivity (and substantial
variability around these levels) for high levels of EVID may  point to
the effects of late rains, which increase the likelihood of molds and
other diseases late in the growing season. The second EVI index,
the maximum annual EVI value, is reached as the maximum levels
of chlorophyll and leaf area are reached during the Meher grow-
ing season. Here pixels with healthy productive plants and high
leaf areas will have large maximum values. Looking at Fig. A2, we
can see that even wet  agricultural areas rarely have maximum EVI

values above 0.40. Looking at Fig. 3, we  can see that productivity
declines rapidly in plots with EVI max  values over this level. This
is very likely because these pixels contain a higher percentage of
tree cover. Further processing of data could reduce the noise asso-
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ity estimates. AgSS aggregation at the kebele level, while highly
desirable relative to woreda or zonal level estimates, obscures key
sources of variance that can be observed at only the farm or plot
0 M.L. Mann, J.M. Warner / Field

iated with mixed EVI signatures by better screening out mixed
and classes or non-wheat plots. Additionally, in order to avoid
hallenges on the basis of endogeneity of EVI related variables,
e estimate specification In-Sample 4 (Table A2 in Appendix A).

mportantly the omission of EVIMX and EVID points to the stability
f other coefficients of interests, as well as the predictive power of
VI variables to the model, with the R-square dropping from 0.38
o 0.27.

We also include time-invariant measures of historical climate
nd climate variability, terrain characteristics, edaphic properties,
nd fixed effects indicators such as agroecological zones. Histor-
cal climate is proxied with the plant relevant metric of climatic

ater deficits, which provides a good approximation of histori-
al water availability. We  see consistent declines in productivity in
reas with historically high water deficits. Because CWD  integrates
nformation about precipitation along with soil characteristics and
opography, it is a long-term indicator of conditions favorable for
lant growth. For instance, sandy soils with steep slopes will likely
ave high CWD  measures and be generally unfavorable for plant
rowth while flat loamy soils will likely have the opposite effect. As
uch, CWD  and EVI likely capture some of the critical soil (edaphic)
nd terrain properties that were found insignificant in these regres-
ions, such as CEC and a suite of other properties from AfriSIS
ata that were dropped due to statistical insignificance (e.g., pH
alance, organic matter, clay content, terrain aspect). Addition-
lly, CWD  is an indicator of climate expectations of farmers and
ill likely influence choices such as crop planting type. The inclu-

ion of climatic variability (CWDSD) captures some of the effects
f climate uncertainty on wheat productivity. Farmers in areas
ith higher variability in rainfall and relatively unfavorable soil

nd topographic characteristics (higher CWDSD) would be unlikely
o make longer-term investments that might boost productivity.
tatistically significant fixed effects controls at the zonal and agroe-
ological level speak to the effects of other not explicitly observed
egional characteristics such as policy choices and expected grow-
ng season length.

Topography, demographics, and distance to key cities also affect
roductivity. From Fig. 4a we can see that elevation enhances
roductivity up to a point. The specific relationship between
roductivity and elevation needs careful attention as the spline

unction indicates. While both extremely high elevation and
ncreasing terrain slope decreases productivity, this need not be

 death knell. This is likely a testament to the Ethiopian people
s they terrace and plant in areas not initially suitable for agricul-
ure. Even high elevations do not necessarily imply inhospitable
limates and growing conditions (Ethiopia is a parable itself as
t is one of the highest elevation crop producing countries in the

orld). Instead variation in topography and localized conditions
n Ethiopia may  allow for small pockets of rarified ideal condi-
ions. Beyond topography, the model explores some basic distance
nd population demographic effects. The model demonstrates that
utput productivity declines with greater distances from Addis
baba (Fig. 5a). This finding needs additional research but could
e related to relative geographic remoteness and limited access to

nputs, investment and therefore capital accumulation. Productiv-
ty also varies according to population density, with productivity
nitially increasing with population density. This may  be the result
f improved access to inputs, labor, capital, or social capital and
eclines thereafter as rural landscapes transition to more urban
nes.

.2. Yield gap
Yield gaps are calculated by the ratio of a kebele’s wheat yield
stimates and the 90th percentile kebele operating in similar
groecological conditions. Looking at Table 3 and Fig. 6, we see
s Research 201 (2017) 60–74

substantial gaps between median woreda-level performances rel-
ative to the 90th percentile kebeles in each climate cluster.16 Gap
estimates here should be slightly less than what is typically pre-
sented for at least two  reasons. First, YL is obtained from yields
reported by farmers in the AgSS survey, and not the experimental
farm or water-limited yields. Second, our methodology aggregates
to the kebele level, thereby reducing individual outliers. The result
is a lower, but more generalizable production gap. It can be gen-
erally assumed that the reference technologies are similar across
all producers, so closing these gaps are reasonably attainable with
appropriate interventions such as improved management or low
cost inputs. The estimated gaps provided here are most likely to
be closed by providing greater access to improved agro-economic
management practices (Nin-Pratt et al., 2011).

At the median, Tigray has the lowest gaps, averaging around
40% less than the top yielding kebeles in their climate clusters. This
finding speaks to the power of intervention to overcome Tigray’s
challenging environments; despite having often less than ideal con-
ditions (higher temps, lower rainfall) Tigray’s productivity is in line
with the other major growing regions. The relative successes in
Tigray found here, points to potential power of agricultural inter-
ventions to broadly increase yields in Ethiopia, even in the most
challenging environments. Next for Oromia we  find median gaps
of just over 45%. Here the range of yield gaps is quite high, with
some woredas in Oromia producing between 76 and 14% less (on
average) than the best performing kebeles. This may  be due to the
fact that Oromia has the lowest rates of improved seed use (37%
compared to 49% on average) and below average use of chemical
fertilizers (52% compared to 55% on average). Although these dif-
ferences might also be driven by inputs not included in this model,
capital investment or agricultural extension. Amhara and SNNP
median gaps lag slightly behind, with median gaps around 50%.
These results most likely reflect the difficult growing conditions in
some areas of these regions. We  see relatively smaller gaps in the
central highlands centered on Addis Ababa and extending into cen-
tral Oromia (Fig. 6). This is the area typically considered the “wheat
belt” that has benefited from some recent localized mechanization
interventions.

The yield gap maps produced here can be used to evaluate
the efficacy of ongoing interventions at an aggregate scale for the
2011–2013 period. Interventions in top performing woredas (green
in Fig. 6) should be identified and likely emulated elsewhere. Poli-
cymakers might then target woredas with intermediate yield gaps,
as they narrowly lag top performing areas. Specifically looking at
Fig. 6, interventions might focus on woredas shown in dark pur-
ple allowing them to catch up to the better performing woredas.
Successful interventions applied in nearby top performing woredas
will likely address pressing agricultural issues that we  identified in
the first section of this paper, such as addressing rusts and molds
(Singh et al., 2011), improving access to fertilizer and soil inputs,
and expanding irrigation in weather sensitive areas.

4.3. Model improvements

Moving forward, a number of improvements could be made
to increase the accuracy of the models described here. First and
foremost, models could be used with household-level productiv-
16 Note that no woreda is producing at or above the 90th percentile kebele. This is
because mean woreda productivity is being compared to the distribution of kebele
productivity. Therefore, as discussed in Section 2.3.4, mean woreda performance
should be expected to lag behind top performing kebeles.
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We removed low quality pixels and used smoothing splines to
clean the time series for each of the 44 million pixels for each 16 day
period over the three year period. To screen out non-agricultural
M.L. Mann, J.M. Warner / Field

evel. With kebele level data, the inter-annual noise observed in
gSS crop cut data may  be due to causes other than measurement
rror. For instance, catastrophic losses due to disease or pests on as
ittle as five of the 20 households sampled in a kebele could signif-
cantly decrease estimates. A more spatially explicit examination
f the data may  allow us to understand the determinants of suc-
essful and unsuccessful years better. In lieu of household data sets,
he inclusion of additional AgSS years could help differentiate real
hanges in productivity from noise.

The current model could also be augmented with additional spa-
ial data. For instance, the 250 m resolution MODIS data used in
his study could be downscaled using the 30 m Landsat products.
his method would allow for the delineation of individual plot level
ttributes not currently distinguishable in this report.

The model could also be significantly improved by further col-
aboration with local and regional experts. This should include
urther discussions with local agronomists, policymakers, aca-
emics, as well as other economists. Additionally, the integration of
rop growth models for the estimation of spatially explicit ‘poten-
ial yields’ could be used to further enhance estimated gap models.

. Conclusion

Using several sets of diverse, but publically available data, we
evelop a comprehensive model that depicts crop productivity
t a variety of administrative levels in Ethiopia. To our knowl-
dge, the methodology of combining survey, climate model values,
patial and remote sensed data in an econometric model for small-
cale African agriculture has not been explored. This is somewhat
nderstandable given the inter-disciplinary nature of this research.
ombining the economist’s typical productivity variables (fertil-

zer, seed, etc.) with agronomist data (moisture availability, crop
uts, etc.), and geographic information (distance to cities, remotely
ensed data, etc.) and other relevant information is a relatively new
exus in this form of research. The results presented here indicate

 promising venue for research and policy application.
The model presented effectively incorporates a wide variety

f data from both the structural aspects of the model as well
s the individual coefficients. Explaining approximately 40% of
nnual marginal productivity variation is promising. In addition,
he application of non-linear splines is useful for identifying spe-
ific contributions to productivity. Finally, yield gaps and identified
eterminants of productivity point to specific areas for potential

nterventions. Importantly we also point to areas where interven-
ions have been successful despite challenging growing conditions.
hese particular interventions might be identified and replicated
here applicable. The ability to identify successful interventions in

reas with high interannual variation in temperatures and rainfall
ight be particularly important in the context of climate change.

Overall, this research has a broad range of potential applica-
ions, especially from a public policy perspective. These issues
nclude, but are not limited to, identifying causes of yield determi-
ants, monitoring productivity changes, remotely evaluating larger
gricultural interventions, analyzing relative yield potentials, and
ffective intervention for production shortfalls.
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Appendix A.

Cumulative Water Deficits (CWD)

A simplified visual representation of CWD  or ‘deficit’ depicted
in Fig. A1, demonstrates how temperature (Tmax, Tmin) and pre-
cipitation (Precip) controls the availability of water (Supply) which
limits the amount of water moved through evaporation from soils
and transpiration through plants (Actual Evapotranspiration, AET).
Meanwhile temperatures regulate the amount of water demanded
through potential evapotranspiration17 (Potential Evapotranspira-
tion, PET) (Major, 1967). More complex estimations of CWD  include
specific soil properties, the effects of terrain, slope, and aspect.

Fig. A1. Climatic Water Deficit by Month.
Climatic water deficit (Deficit) is determined through the interaction of water supply
through precipitation (Precip) and evaporation as determined by temperature (T),
terrain and edaphic properties. Deficit is the difference between evapotranspiration
demanded (Potential Evapotranspiration − PET) and the amount of supplied water
actual moved through the system (actual evapotranspiration − AET).

Enhanced Vegetation Index
17 Pet is the level evapotranspiration by plants and soils when water is a not
limiting factor.
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Table A1
Root mean square error for out-of-sample predictions.

Estimation RMSE

1 0.33
2 0.29

T
R

ig. A2. EVI Time series examples by land cover class.
he time series of the enhanced vegetation index characterizes the phenology of fo

 smoothing spline (black). Years are shown in colors (Pink-2010, Green-2011, Blue

ixels we used a sample of 200 random points and high-resolution
ata from Google Earth. For each of these training sites we  labeled
heir land cover and extract their EVI time series. These groups’
VI values then act as a representation of what each land cover
looks like” from space. We  can see examples of EVI time series for
our key land cover types in Fig. A2. In order to screen out non-
gricultural pixels, cells with a correlation of less than 0.5 with wet
r dry agriculture were removed from the sample. Given the com-
lexity of the task, we did not attempt to identify individual crop
ignatures. Therefore, the EVI signals observed for “agriculture”
ere treated as a proxy for plots planted with wheat. Vegetated

and cover types depict a clear seasonal cycle tracing the periodic-
ty of the growing seasons. Looking at the semi-arid land classes,

e see low overall values of EVI across the four growing seasons,
hich reflects the relative lack of vegetation and, therefore, low

evels of chlorophyll or “greenness”. On the other end of the spec-
rum are the wet forests of the south, which maintain consistently
igh levels of EVI across observations over the four-year period.
his reflects the lush vegetation and undergrowth of the region,
ith minimal changes in phenology in any given year. The forest

and class shows a clearer seasonality and likely includes deciduous
nd non-deciduous tree types with less dense undergrowth. Also
asily distinguishable is the agricultural signal (Wet Agri), with a

apid green up after planting, a rapid decline during ripening, and
he eventual return towards zero as soil is exposed after harvest
nd prepared for the next growing season.

able A2
egression on log of output per hectare (standardized coefficients).

In-Sample 1 In-Sample 2 

LnwheatOPHt-1 7.748e-02** 7.992e-02** 

CWDMN  1.637e-01* 1.643e-01* 

CWDSD −1.956e-01** −1.933e-01** 

Precip −2.537e-03
Damage −9.376e-02** −9.546e-02** 

EVIMX(S1) 7.693e-02* 7.169e-02* 

EVIMX(S2) −1.772e-01* −1.563e-01* 

EVIMX(S3) 9.382e-02+ 7.945e-02 
3 0.23
4 0.38
5 0.24

Out of Sample Performance

We  assess the performance of the model Out-of-Sample from Eq.
(1) using K-fold cross-validation. This procedure splits the data ran-
domly into k partitions. Then for each partition, it fits the specified
model using the other k-1 groups and uses the resulting parame-
ters to predict out-of-sample the dependent variable in the unused
group. The root mean squared error (RMSE) k-fold results for the
final model are as follows:

Full Model Results

We  present the results of all model results here. These include 1)
“In-Sample 1” an initial specification testing the significance of all

variables of interest, 2) “In-Sample 2” a simplified model includ-
ing all significant variables, 3) “In-Sample 3” drops the possibly
endogenous variable LandWheat, 4) “In-Sample 4” omits Land-
Wheat, all variables using the enhanced vegetation index (EVIMX,

In-Sample 3 In-Sample 4 Out-of-Sample

9.450e-02** 1.412e-01**
1.503e-01+ 5.291e-02 8.127e-02
−1.899e-01** −6.688e-02 −1.351e-01**

−1.075e-01** −1.175e-01**
7.578e-02* 8.928e-02**
−1.825e-01* −2.607e-01**
1.020e-01+ 1.557e-01**
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Table  A2 (Continued)

In-Sample 1 In-Sample 2 In-Sample 3 In-Sample 4 Out-of-Sample

EVID(S1) 1.437e-01* 1.769e-01** 1.675e-01* 1.864e-01**
EVID(S2) −5.840e-01* −6.590e-01* −7.201e-01* −8.414e-01**
EVID(S3) 4.426e-01+ 4.974e-01* 5.561e-01* 6.403e-01**
LandWheat(S1) 1.738e-01* 1.693e-01*
LandWheat(S2) −9.231e-02 −8.717e-02
ImprSeed(S1) −1.621e-03 −2.206e-03 4.298e-02 6.479e-02
ImprSeed(S2) 9.093e-02 8.742e-02 −3.662e-02 −7.226e-02
ImprSeed(S3) −1.306e-01 −1.262e-01 −4.291e-02 −2.809e-02
ChemFert 3.340e-02+ 3.332e-02+ 4.344e-02* 5.219e-02**
Irrigation 4.658e-04
Elev(S1) 8.770e-01** 8.629e-01** 8.440e-01* 2.389e-01 9.424e-01**
Elev(S2) −1.233e + 00** −1.212e + 00** −1.100e + 00* −2.918e-01 −1.100e + 00**
Elev(S3) 6.119e-01** 6.008e-01** 5.049e-01* 1.359e-01 4.468e-01*
Slope(S1) −6.786e-02+ −6.376e-02+ −4.172e-02 −6.224e-02+ −2.194e-02
Slope(S2) 9.570e-02** 8.133e-02* 7.129e-02* 4.999e-02+ 6.498e-02*
CEC  −2.220e-02
AgroEco – – – –
Dist  Addis(S1) −1.806e-01** −1.549e-01* −1.917e-01** −1.619e-01** −1.653e-01**
Dist Addis(S2) 1.857e-01* 1.704e-01* 2.154e-01** 1.247e-01** 1.744e-01**
Road Den(S1) 4.555e-02
Road Den(S2) −7.157e-02
Pop Den(S1) 2.055e-01* 2.119e-01* 2.016e-01* 2.864e-01**
Pop  Den(S2) −2.641e-01** −2.738e-01** −2.660e-01** −3.652e-01**
AGP  4.318e-02 4.267e-02 3.606e-02 4.700e-02+ 5.241e-02*
Cen  Y −6.190e-03
Cen X −9.940e-02
YEAR 2.037e-03
Z  Code – – – –
Constant 2.643e + 00** 2.593e + 00** 2.624e + 00** 2.706e + 00** 2.740e + 00**
R2 0.39 0.38 0.37 0.27 0.24

+
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A

C
D

D

F
F

F

F

G

escription.
N  1726 1726 

90%, *95%, **99% level of significance.

VID), and all fixed effects, and 5) “Out-of-Sample” omits all vari-
bles related to the AgSS survey, in order to allow for out-of-sample
ield estimates. In-Sample 1–2 and Out-of-Sample are identical to
he results presented in Table 2 in the text.
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