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Abstract

By using Krasnoselskii’s fixed point theorem and upper and lower solutions method, we find some
sets of positive values determining that there exist positive-periodic solutions to the higher-
dimensional functional difference equations of the form

x(n+1)=Am)xn) +Ah(n)f(x(n — t(n))), neZz,

where A(n) = diaday(n), ag(n), ..., am ()], h(n) = diadhi(n), ho(n), ..., hm()], aj, hj:Z —
Rt , t:Z — Z areT -periodic,j =1,2,...,m, T >1,A>0,x:Z — R™, f:Rﬁ — Rﬁ,where
R ={(x1,....x;m)T € R™,x;20,j=1,2,....m}, RF ={x e R, x>0}

0 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The existence of positive periodic solutions of functional differential equations have
been studied extensively in recent years [1-5]. However, relatively few papers have been
published on the same problem for functional difference equations. In [6], Raffoul has
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studied the existence of positive periodic solutions for the following functional difference
equation:

x(n+1)=a(n)x(n)+Ah(n)f(x(n—r(n))), (1.2)

wherea(n), h(n) andt(n) are T-periodic forT is an integer withl’ > 1, A, a(n), f(x)
andh(n) are nonnegative with @ a(n) < 1foralln €{0,1,..., T — 1}.

LetRT ={(x1,....xn)T € R™, x; 20, j=1,2,...,m}, RT={x€R, x>0}, letZ
be the set of all integers arnd be the set of all nonnegative integers. Givea b € Z, let
[a,b]={a,a+1,...,b}. Ouraim in this paper is to study the existence and nonexistence
of positive solutions of the following higher-dimensional functional difference equation:

xn+1D)=Am)x{) + kh(n)f(x(n - t(n))), neZz, (1.2)

where A(n) = diadai(n),a2(n), ..., an(n)], h(n) = diaghi(n), ha(n), ..., iy ()],
aj,hj:Z— R, 1:Z— Z areT -periodic,j =1,2,...,m, T >1,A>0, f: R} — R}
is continuous. We denotBC the normed vector space of bounded functibnZ —
R™ with the norm||¢|| = >~7_; SUP,c(0,7—1) ¢ (n)|, wherep = (41, ¢, o) and
0,7 —1]:={0,1,2,..., T — 1}. Particularly, for eachx = (x1, x2, ..., x,)" € R™, we
define the nornix|g = Z;’?:l x ]

In the sequel, we say thatis “positive” whenever € R}, we denotef = (f1, f2,

..., fm)T, and denote the product afn) fromn =a to n = b by ]'[Zi’a’x(n) with the
understanding thef["=" x(n) = 1 for alla > b.

In Section 2, we make some preparation. In the first part of Section 3, by using Kras-
noselskii’s fixed point theorem, we obtain sufficient conditions for the existence of at least
one positiveT -periodic solution of (1.2); in the second part of Section 3, wifesatisfies
other conditions, we show that there exists> 0 such that (1.2) has at least one positive
T-periodic solution fora € (0, 2*] and does not have any positive periodic solutions for
A > A* by using the upper and lower solutions method [7].

2. Some preparation

In this paper, we always assume that
(P1) O<a;(n)<1l,nel0, T -1, forj=12...,m.

For convenience, we introduce the definition of cone and the well-known Krasnosel’skii
fixed point theorem.

Definition. Let X be a Banach space ari be a closed, nonempty subsetXf K is a
cone if

(i) au+BveK forallu,ve K and alle, 8 > 0;
(i) u,—ue K implyu=0.
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Theorem 2.1 (Krasnoselskii [8]) Let X be a Banach space, and IEtC X be a cone inX.
Assume thaf21, £2o are open bounded subsetsXfwith 0 € £21, £21 C £22, and let

0 KN(22\21) — K
be a completely continuous operator such that either

() oyl <llyll, ¥y e kN a2g and gyl = lIyll, Vy € kN 9$22; or
(i) lleyll =1yl Vy e knas2yandllgyll < Iyl Vy € kN 3s2.

Theng has a fixed point irk N (22 \ £27).

3. Main results

Let
X = {x:Z—> R™, x(n+T)=x(n)};

then it is clear thatX c BC, endowed with normx|| = 3", llx;llo, where|x;llo =

SUR,¢f0,7—15 [*j ()]
Similar to the proof of Lemma 2.2 in [6], one can get the following lemma.

Lemma 3.1. x(n) € X is a solution of Eq(1.2)if and only if

n+T-1
x(n) =\ Z G, wh) f(x(u—t(w))), (3.1)
where
G(n,u) =diagG1(n,u), ..., Gu(n, u)] (3.2)
and
[Tederiai(s) .
Gj(n,u)= 1_1_[?;1;?171’61]“), uelnn+T-1], j=1,2,...,m.

By (P1), we know that the denominatordn; (n, u) is not zero fom € [0, T — 1]. Note
that due to (P1), we have

Nj=Gijn,n)<G;jn,u)<G;jn,n+T—-1)=G;(0,T—1)=M;,

j=12,...,m,
forue[n,n+ 7T — 1], and
1> Ginw o Gim N5y

" Gimn+T-1)" Gim,n+T-1) M;

y:min{#, j=1,2,...,m}
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and

N:= min Nj, M:= max M;.
1<j<m 1<js<m
Theny € (0,1).
Next, define a cone by
P={xeX, xj(n) =ylxjllo, j=1,2,...,m},
meanwhile, we define an operatér P — P by

n+T-1

(Fx)(m)=x Y Gmwh)f(x(u—7@))

u=n

forx € P, n € Z, whereG (n, u) is defined by (3.2). We denote
(Fx) = (Fix, Fox, ..., Fux)T.

Lemma3.2. F: P — P is well defined.

Proof. For eachx € P, since it is clear thatFx)(n + T) = (Fx)(n), Fx € X. For any
x € P, we have

n+T-1
(Fjx)(n) =A Z Gi(n,u)h;u)f; (x (u — t(u)))
n+;fl
<A Y GO.T = Dhj)fj(x(u—t@w)).
Thus
T-1
IFjxlo=sup [(Fjx)m)| <A Y Gj0.T = Dhju) f(x(u — T (w)))
neldi= u=0
and
n+T-1
(Fix)m)y=2 Y G(n,u)h;j(w)f;(x(u—t@w))
T
> AN; Zhj(u)fj(x(u — t(u)))
u=0
T-1
_ G;0,T—-1
= AN, Z J(T')hj ) fi(x(u — t(w)))
u=0 J

ZyIFixllo, j=12,...,m.

Therefore(Fx) € P. This completes the proof.0

Lemma3.3. F: P — P is completely continuous.
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Proof. We first show thatF' is continuous. By the continuity of, for any giveny € P
ande > 0, there exist$ > 0 such that for any € P with ||x — y| < §, we have

£
soup il =) = S = e o)) < 5o
Hence
|(F;x)(n) - (F,-y)(n)|
n+7T-1
<A Y Ginwhiw)]fi(x(w—Tw)) = £ (y(u—tw))]
<AMg; T sup | fi(x(n—t)) — £ (y(n — ()| < =
nel0,T—1] m

foralln € [0, T — 1], whereq; = max,cjo,r—11 /2 (n). This yields

|(Fix)@m) — (Fj»)m) |, < %
Thus,
|Fx — Fy| <e.

Hence,F is continuous.

Next, we show thaf" maps bounded sets into relatively compact sets. Indeed Het
a constant an® = {x € X, |x|| <d} be a bounded set. We prove tha¢D) is compact.
To do this, we must show that any sequencé& (D) contains a convergent subsequence.
Thus, let{x*};cy be a sequence iP. Let us show thaf Fx*};cny has a convergent sub-
sequence. Sincg is continuous ornkR™, the sequencéf (x¥(0))}ren is bounded, then
the sequencef (x¥(0))}xen contains a convergent subsequence. Sqxfe?}.cy be the
subsequence df*};cny such that £ (x*-9(0))}ren is convergent.

Now, { f (x*O(1))}xen contains a convergent subsequence. Sdxfet},cy be the sub-
sequence ofx*0)cy such that £ (x¥1(1))}xen is convergent. Observe that*-1},cy is
a subsequence ¢f%}cy and that{ f (x*1(0) }ken, {f (x¥1(1))}ken are convergent.

Again, {f(x*1(—=1))}rey contains a convergent subsequence. Softetb1},cn
be the subsequence ¢k%1};cn such that{f(x~151(—1))}ien is convergent. Ob-
serve that{x~1%1},cy is a subsequence dft“}rey and that{f(x~151(—1)}ien,
{f L0 heen, {f 7HE1(D) ken are convergent.

Continuing in this fashion we find, for eaéte Z, a subsequenda ~¢+1-k(+Dy,
of {x~!* ey suchthat f (x~HDA DG 4 1)) ey, (f = EDEEED(— (14 1)) rew
are convergent. Observe that also the sequeriggs ~‘+D%CHD (1)) )en, ...,
{f (= DR+ (1))}, oy are convergent.

Consider now the sequenge**},cy. Observe that it is a subsequence.of}icy,
and also that f (x—5-**(n))}sen is convergentforalk € Z. Let us show thafFx =55 };en
is a Cauchy sequence.

Therefore, for any > 0, there exists € N such thae, g € N with e, g > k,

sup |fi(xme¢(n—Tm)) = £ (x 7888 (n — T (m))| <

nel0,T—-1
j=212,...,m.

&
A.quij’
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Consequently, it, g € N with e, g >k, forall n € [0, T — 1], we have

|(Fjx™0%)(n) — (Fjx~88$)(n)|

n+7T-1
<A Y Gin,whi@)|fi(x(u—t@)) — fj(x"EE(u—w))|
<AMq; T sup | f;(x4%¢(n — tm)) — £ (x 855 (n — ()| < =
nel0,T—1] m

and

m
[(Fx™¢¢¢)(n) — (Fx™888)(n)| = Z [(Fjx=¢)(n) — (Fjx~$88)(n) ||0
j=1
&
<m—<Ee.
m
This proves thaf Fx %%}y is a Cauchy sequence, and with this the proof is com-
plete. O

From now on, by using different methods, we will obtain different results. So we will
continue in two parts.

() In this part, whenf satisfies certain conditions, we obtain some conditions deter-
mined by under which there exists at least one positive periodic solution of (1.2) by
using fixed point theorem.

Theorem 3.1. Suppose thatP1), (P2)and the conditions

(H1)  lim f-"(x)=1,-, O<lj<oo, j=12.....m,
xj—>0+0 X;
HY  dim D 0<Lj <00 j=12....m.

Xj—+00 Xj
hold. Then, for each satisfying

1 1
NGTL" <h= MqTl
yNg q

(3.3)

or
1 1
— <A< ,
yNgT!l" MqTL'

(3.4)

whereq = maxi<j<m ¢, ¢; = MiNyefo,r-11h; (1), § =MiMmgj<m ), ' =maxegj<ml;,
L'=maxgj<m Lj, 1" =minigj<mlj, L =mimg < Lj, (1.2)has atleast one positive
T-periodic solution.

Proof. Suppose (3.3) holds. Let> 0 be given such that
1 1
— <A<
yNGT(L" —¢)

S MgT(1'+¢)
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By (H1), there existsZ; > 0 such thatf; (x) < ((j + e)x; < (' + e)x; for0 < x; < E1.
Define
21={xeP, xjllo<E1, j=12,...,m},

then, ifx e PN 9$24,

n+T-1
(Fjx)(n) =A Z Gi(n,u)h;u)f; (x (u — t(u)))
B n+T-1
Mg +e) Y xj(u—t@) <AMgT'+)lx;llo < Ilx;llo.

Thus,
I Fjxllo < llxjllo

and

m
IFxll = Z IFjxllo< ) llxjllo= x|l forallxe PNos.
Jj=1

Next, we construct?2;. By (H2), there_exigtsE"z such thatf;(x) > (L; — &)x; >
(L" —e)x; forall x; > Ep. Let E;, = max{2Ey, E2/y}. Define

22={x€e P, |xjllo< E5}.

Sincex € P, if x € P N 0822, then mineo7—-13x;(n) = ¥ llx;llo and

n+T-1
(Fjx)(n) =A Z Gi(n,u)h;u)f; (x (u — t(u)))
_ B n+T-1 _
>ANG(L" —¢) Z xj(u—t@)=ANGT(L" —e)yllxjllo > lIx)llo-

Thus,

| Fjxllo = llx;llo
and

m
||Fx||_Z||Fx||o Z|xj||o=||x|| forallx € PN 352,.

By Theorem 2.1F has a fixed pointirP N (£22\ £21), thatis, (1.2) has at least one positive
periodic solution. Similarly, we know that the conclusion still holds whesatisfies (3.4).
The proofis completed. O

(I1) In this part, we show that there exist$ > 0 such that (1.2) has at least one positive
T -periodic solution for. € (0, A*] and does not have any positive periodic solutions for
A > A* when f satisfies other conditions.
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Lemma 3.4. Suppose that

. (%)
lim f’— =
Xj—)-‘rOO -xj

400, j=1,2,...,m. (3.5)

Let 7 be a compact subset @0, +0c0). Then there exists a consta@f > 0 such that
x|l < Cy forall » € I and all possiblel’-periodic positive solutions of (1.2)associated
with A.

Proof. Suppose to the contrary that there is a sequdntecy of T -periodic positive
solutions of (1.2) associated with; } such that; € 7 for all i and||x' || - +oo asi —
+o00. Sincex' € P,

27

By (3.5), there exist#{ ; > 0 such thatf;(x) > ox; forall x; > H, and there exisl, jo
such thaty||x;g||0 > Hy, whereo satisfies

o j=12,...,m.

kioayﬁch > 1.
Thus, we have

) n+T-1 -
[¥illo = =hig D Gion1hjo) fio(x(u — T(w)))

n+T-1
> Ao NG Z x.ljg(u—t(u)) 2)»,’03/01\76]TH)C;2H0> ||x}8||0.

u=n

This is a contradiction. The proof is completeda

Lemma 3.5. Suppose that
if x|l =Nyl thenf;(x) > f;(y) and f;0 >0, j=1,2,....m. (3.6)

Let (1.2) has aT -periodic positive solution(n) associated withk > 0. Then(1.2) also
has a positivel’-periodic solution associated withe (0, 1).

Proof. Inview of (3.1) and (3.6), we have

n+T-1
xj(n) = Z Gjn, u)hj(u)fj(x(u — r(u)))

n+T-1

>4 Y Ginuwhj)fi(x(u—tw))

u=n
and
n+T-1

%Y Gi(nuhj(w) f;(0) > 0.

u=n
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Let

) =x;(n),

n+T-1
By =2 Y Gimwhijw fi(F(u—-tw)), k=012 ..,
- n+7T-1
NOm) =0 and m=x Y G whjw) f;x"(u—rtw)),
k=0,1,2,.... )

Clearly, we have
D) > 5 =22 m =Ko = > x50 > ).

If we let x (n) = iMoo i;?(n), thenx (n) satisfies (3.1), and we have
xj(n) > x5(n) > x3(n) =0.

This completes our proof. O

Lemma 3.6. Suppose thg3.5)and(3.6)hold. Then there exists, > 0 such thaf1.2)has
a T-periodic positive solution.

Proof. Let
n+7T-1
Bj(n) = ; Gjnwhjw, My = max f;(B(n—rm)),
j=12,...,m,
and
B 1
Tomagcn My
Then
n+7T-1 n+T-1
Bimy= Y Gjmwhjw)>re Y Gj(nuhj@)f;(Bu—rw))
u=n u=n
and
n+T-1
he > Gj(nuhj(u)fj(0) > 0.
Let

) =),
n+T-1
B = Y G whiw) fi(F(u—t@w)), k=012,

u=n
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n+T-1

O =0 and T =xr Y G wh;w) fi(x(u—cw)),

u=n

k=0,1,2,....
Clearly, we have
Bzt = >Bm=xtm > > 2o > 200m).
If we now letx;(n) =limg_ oo ;E;?(n), thenx ; (n) satisfies (3.1), and we have

xj(n) 21}(71) > 1?(11) =

This completes our proof. O

Theorem 3.2. Suppose thg3.5)and(3.6)hold. then there exists* > 0 such tha(1.2)has
at least one positivé& -periodic solution fori € (0, A*] and does not have arfy-periodic
positive solution fon > A*.

Proof. Suppose to the contrary that there is a sequénklcy of T-periodic positive
solutions of (1.2) associated wiffa;} such that lim_ ., Ax = oco. Then either we have
|x%i || = 400 asi — oo or there isQ > 0 such that|x*|| < Q. Assume the former case
holds. Note thak* € P and thus

min  x’ (n)

i=1,2,...,m.
ne[0,7—1]" 4 J

By (3.5), we may choosé; > 0 ando > 0 such thatf;(x) > ox; whenx; > > Hy,
and there existy, jo such thaty||xk° lo > Hy. On the other hand, there exms 0} €
[0, T — 1] such thatvj(’)"( it 0y — ||x j(’)o llo. By (1.2), we have
ajo(n ]joO)Hxl;{oo lo=ajo(n Ijoo)xlz{oo (”Ij{oo)
=xif;,° (130 +1) = gy o () Fi (o (10 = (1))

ki k- ki ki
< Hx ”0 )“k,oh/o( ,;0)”;30(";;0—7(",;;0))

ki
<552 o = o () 32 L

ki kig
= lxis lolL =g hio(n 5" ) ]

S

we have

ki
1- ajo(njoo)
Mg S ———
hjo(n; oy
Note that(1 —a;(n))/h;(n) is bounded. Thus, we obtain a contradiction.

Next, suppose that the latter case holds. In view of (3.6), there exists0 such that
fi(0) > 01Q. Then, as above, we will obtain



664 L. Zhu, Y. Li/ J. Math. Anal. Appl. 290 (2004) 654664

a; (n) %] lo =@ (n)x] (n5) = x5 (n + 1) = (n5) £ (<" (n = (7))
<[5 llo = 24 (n)o10 < 3] g = Axhj (n)on ] [
= [+ lo[2 = 2t (n5)o]

for all k. A contradiction will again be reached. Thus, there exi$tsuch that (1.2) has at
least one positivd -periodic solution fon. € (0, A*) and noT -periodic positive solutions
for A > A%,

Finally, we assert that (1.2) has at least dhgeriodic positive solution for = A*.
Indeed, let{};} satisfy O< A1 < Ap < --- < Ax < A* and limy o0 Ak = A*. Sincex’ is
T -periodic positive solution of (1.2) associated withand Lemma 3.4 implies that the set
{x"} of solutions is uniformly bounded iR, moreovery' is the fixed point of the operator
equationFx = x and F is completely continuous, the sequerigé} has a subsequence
{x¢} converging taxr € P. Thus, we have

. n+T-1 -
xj(n)= gli_)moox}g (n) = gli_)moo)»ig Z Gi(n,u)h;)f; (x’é’ (u — t(u)))
n+T-1
=3 Y Gimwhjw) fij(x(w—Ttw)), j=12...m.

Hencex is a T-periodic positive solution of (1.2) associated with= A*. The proof is
complete. O
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