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A B S T R A C T  

The fast Four i e r  t r ans fo rm m e t h o d  is descr ibed for Laplace's  equat ion  in a toroidal region using 
the  9-point  d i f fe rence  approx imat ion  to the Laplacian operator .  Numerical  results are given 
which  indicate  the  ef f ic iency and accuracy  o f  the me thod .  Accura te  di f ference approx imat ions  
are also der ived for  the  de te rmina t ion  o f  the electrostat ic field in a toroidal  region. 

1. INTRODUCTION 

The use of fast Fourier transforms for the numerical 
solution of Poisson's equation in a rectangular region 
was described by Hockney [1, 2] and Christiansen 
and Hockney [3] for the 5-point difference approxi- 
mation, and by Pickering [4] for the 9-point approxi- 
mation. Hughes [5] used the 5-point difference ap- 
proximation and fast Fourier transforms for the solu- 
tion of Poisson's equation in cylindrical coordinates. 
A 9-point difference approximation to Laplace's equa- 
tion in cylindrical coordinates with rotational sym- 
metry was used by the author for the determination 
of capacitance of a ring capacitor [6, 7, 8]. SOR itera- 
tion was used to solve the difference equations. In this 
paper, we describe the solution of these difference 
equations by fast Fourier transforms and compare 
the computer run-time to that of the SOR method. 
Difference approximations are derived for the deter- 
mination of capacitance. 

2. SOLUTION OF THE DIFFERENCE EQUATIONS 
USING SINE TRANSFORMS 

Let 

r=ro+ ih, i = 0 , 1  ..... M 

z = j k ,  j=O,  1 ..... N 

with N = 2 IQ, and let u(r 0 + ih,jk) be denoted by 
u(i,j). Assume that we have Dirichlet boundary con- 
ditions, i.e. u(i, 0), u(i,N), u(0,j) and u(M,j) are 
given for 0 • i • M, 0 • j • N. The 9-point differ- 
ence approximation to Au = 0 is [7] 

a lu  (i + 1,j) + a 2 [u (i + 1, j + 1) + u(i + 1, j -1)]  

+ a3[u(i, j + 1)+ u(i,j-1)] + a4[u(i-l,j + 1)+ u(i-l , j-1)] 

+ a5u ( i - l , j )  - a0u(i,j) = 0, (1) 

0 < i < M ,  0 < j < N ,  

with 

a 1= (r+ h/2)[(5k 2-h2)/(6h2k2)]-1/[12 (r + h/2)], 

a 2 = (r + h/2) [(h 2 + k 2) / (12h2k2)], 

a 3 = r [(5h 2 - k2)/(6h2k2)], 

a 4 = (r -h/2) [(h 2 + k 2) / (12h2k2)], 

a 5 = (r -h/2) [(5k 2 - h 2) / (6h 2 k2)]-1/[ 12 (r - h/2)] 

and 

a 0 = r[5(h2+ k2)/(3h2k2)]-r/[ 6(r + h/2)(r-  h/2)]. 

Let 

N-1 
u (i,j)= k~ l  K (i,k) sin (lrkj/N) (2) 

with 

N-1 
K(i,k) = (2/N) j ~ l  u (i,j) sin (ukj /N).  

Substituting (2) in (1) and using the orthogonality 
relations for the sine functions, we get 

[a 1 + 2a2cos(Trk/N)]~ (i + 1,k) + [-a 0 + 2a3cos(lrk/N)]g (i,k) 

+ [a 5 + 2a4cos(~k/N)] g ( i- l ,k)  

= (2IN) sin (~k/N)[s i + (-1) TM ti] (3) 

o r  

3ig ( i+l ,k)  +Xig(i ,k ) +3 , i g ( i - l , k )=~- ( i , k  ) (4) 

where 
s i = - a2u(i + i, 0) -a3u  (i, 0) - a4u(i-  1, 0) 
and 

t i = -a2u (i + 1, N) - a3u (i, N) - a4u (i- 1, N). 

(*) J. B. Campbel l ,  Division o f  Electrical Engineering, National  Research Council ,  Ot tawa ,  
Canada K I A  0R6.  
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The system of equations (4) is solved by an adaption 
of Gauss elimination described by Richtmeyer and 
Morton [9]. 
The procedure is repeated for each harmonic and, 
Finally u(i,j) is obtained by the inverse sine trans- 
form (2). 

when u ~ C 6, 

h b = 8 [ 1 - - ~ -  I /D,  

c= - [ 1 - - ~ - r  ] /D,  

D = h[18-27(h/r)  + 9(h/r)  2 +2(h/r)3]/3 
and 

a = - ( b  + c ) .  

Along the line z = z 0 with u (r, z0) = constant, it fol- 

lows from (7) and (8) that i fu  ~ C 6, Uzz = Uz4 = 0 
and 

du(r,z) + eu(r ,z+k)  + fu(r ,z  + 2k) 

= ( d + e - ~ f ) u + ( e + 2 f ) k u z + ( e + 8 f ) ( k 3 / 6 ) U z 3  + ... 

= u z + 0(k 4) (10) 

when d = -7/(6k), e = 4/(3k) and f= - 1/(6k). 

The capacitance determination is similar to that de- 
scribed in [6, 7, 8] and is determined from the integral 

C=-(41r) -1 ~ (0u/Bn) dS 

where the contour of integration is either a section of 
the boundary of the region or a contour enclosing a 
section of the boundary. The normal derivative on the 
boundary of the region is determined from (9) or (10). 
Equation (5) or (6) is used to determine the normal 
derivative in the interior of the region. The integral 
is approximated by Simpson's quadrature rule. 

3. CAPACITANCE DETERMINATION 

Nine-point approximations to u r and u z were derived 
in [7] and are given by : 

u r = [h/(12k2)][u(r + h, z + k) + u(r + h, z-k) 

- u ( r - h ,  z + k) -u(r  -h,  z-k)] 

+ {[1/(2h)] -[h/(6k2)] } [u(r + h, z) -uCr-h, z)] 

+ [(r + h/2)-lu(r + h,z) + (r- h/2)- lu(r-h,  z) 

- 2r(r + h/2)-l(r-h/2)-lu(r,z)]/6-(h2/6)(Au)r 

+ 0 (h4), (5) 

and 

u z = (r + h/2)[k/(12 rh2)][u(r + h, z + k) -u(r +h,z -k)]  

{ [1/(2k)]-[k/(6h2)] } [u (r, z + k)-  u (r, z -  k)] 

+ (r -h/2)[k/(12rh2)] [u (r-h, z +k) -u ( r -h ,  z -k)] 

- (k2/6) (Au)z + 0 (h4). (6) 

The capacitance determinations require the integra- 
tion of the normal derivative of u (r, z) along a wall 
where u (r, z) = 0. The Laplacian o fu  (r, z) is given by 

Au= Urr + (1/r) u r + Uzz . (7) 

Differentiation of the Laplacian gives 

(Au)r r + (l/r) (AU)r - (AU)z z 

= Ur4 + (2/r)Ur3- (1/r2)Ur2 + (1/r3)u r -uz4 • 
(8 )  

Along the line r = r 0 with u(r0, z) = constant, it fol- 

lows from (77 and (8) that 

Urr = - ( l / r ) u  r 

Ur4 = - (2/r) nr3 - (2/r 3) u r 

and 

au(r,z) + bu ( r+h , z )  + cu(r+ 2h, z) 

u (r, z )  = [ : = ( a + b + c ) u +  ( b + 2 c ) h - ( b + 4 c ) ~  r -(b+16c). h4 ] u  r 
i2r3J 

+ [ ( b +  8 c ) : - ( b +  16c) l~r  ] Ur3+ . . .  

= u r + 0 (h 4) (9) 

4. NUMERICAL RESULTS 

Fortran IV programs using the above numerical methods 
were compiled and run on an IBM model 3032. These 
programs are given in [10]. An abridged version of 
FOUR67 [11] was used for the sine transforms. 

Example I 

A boundary value problem was solved in the region 
{(r, z ) l r  0 < r < r 0 +1, 0 < z < 1} with boundary 
values 

u = 0  for r=r0 ,  z = 0  and z = l  

u=sin(rrz) for r = r  1--r 0+  1. 

The exact solution to this problem is 

K0(lr r 0) I0(~r r) - I0(nr0) K0(nr) 

K 0 (~r r0) I 0 (lrr 1) - I0(~r r0) K0(lr rl) 
sin (lrz) 

For r 0 = 1/2, table 1 gives numerical results obtained. 
A square mesh was used. Two capacitance determina- 
tions were made. The normal derivative is integrated 
over each of the tides r = r 0 and z = 0. The exact value 
of capacitance divided by the average circumference 
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TABLE 1. 

Maximum error in £mite difference determination of u(r, z), relative error in 
computed values of capacitance and CPU times for each determination for 
r 0 = 1/2. 

Maximum Relative error CPU times (secs.) 
error in 

h u(r, z) C1 C 2 FFT SOR 

1/8 1.9 x 10 -6 5.9 x 10 -3 5.9 × 10 -4 0.007 0.046 

1/16 1.3 x 10 -7 3.6 × 10-4 3.7 x 10 -5 0.018 0.163 

1/32 8.4 x 10 -9 2.3 x 10 -5 2.3 x 10 -6 0.071 1.038 

1/64 5.3 x 10 -10 1.4 × 10 -6 1.5 x 10 -7 0.286 6.929 

1/128 3.3 x 10 -11 9.1 x 10 -8 9.2 × 10 -9 1.220 

1/256 2.3 × 10 -12 5.7 x 10 -9 5.7 x 10 -10 5.254 

Z using ten SOR iterations with a relaxation factor of 
1.2. 

C 

4 $  

i 

R 

~ r  

L 
Fig. 1. Toroidal H-shaped region. 

of the region is 0.012337 and 0.100123 in each of 
these two cases, respectively. The values C 1 and C 2 
were obtained by approximating the derivatives by 
equations (9) and (10), respectively. 
The CPU time includes only the time required for 
solution of the difference equations. The CPU time 
for solution by SOR includes input of the solution 
obtained with twice the current mesh size, interpola- 
tion, SOR iteration and output of  the new solution. 
The optimum SOR relaxation factor was used and 
iteration was performed until the initial residue was 
reduced by 10 -3. Interpolation at a new point was 
performed by first taking the average of the four 
nearest points and, then, iterating over all new points 

Example 2 

A boundary value problem was solved in the H-shaped 
region R, illustrated in figure 1, using a square mesh. 
The capacitance between the inner and outer walls 
of the region was approximated by integration of the 
charge distribution along the path which is at a distance 
h from the wall r 0 + b. This confguration represents 
a four-electrode capacitor and was studied by Makow 
and Campbell [6] and by Shields [12]. The boundary 
conditions are : 

u (r, z) = 1 for r = r 0, 

u (r, z) = 0 elsewhere. 

The procedure used t ° solve the problem is as fol- 
lows : 

Step 1 

Approximate the solution in the gaps at z = 0 and 
z = c either by an analytic expression or by linear inter- 
polation of a solution with twice the current mesh size. 
When an analytic approximation is used, u(r, z) is ap- 
proximated by a logarithmic function in the gaps near 
the inner wall and by zero in the gaps near the outer 
wall. 

Step 2 

Solve the boundary value problem in the rectangular 
region f(r,z) lr 0 < r < r  0 + b ,  0 < z < c t  by the fast 

Fourier transform method. 

Step 3 

Iterate the solution over mesh points contained in the 
regions 

R I = R n  { ( r , z ) J r 0 < r < r  0 + b ,  c - s < z < c +  4s} 
and 
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R 2 = R n  {(r,z) l r 0 < r < r 0 + b , - 4 s < z < s }  

using SOR iteration until  the residual is sufficiently 
small. Since the region R and the boundary conditions 
are symmetric about  the line z = c/2, it is sufficient to 
i terate in the region R 1. 

Step 4 

Integrate the charge distribution over the contour F 
to obtain an estimate o f  capacitance. Equation (5) 
can be used to determine the normal derivative in this 
case. I f  this is the first time step 4 has been performed 
or ff the present value o f  capacitance does not agree 
with the one calculated during the previous execution 
o f  step 4, repeat steps 2, 3 and 4. 
Table 2 gives values of  capacitance, C, calculated for 
ro = 0.5, b = 1, c =  1, s=  1/8 and s=  1/16. Four  or 

five repeti t ions o f  steps 2, 3, and 4 were required to 
obtain agreement to 8 digits of  the computed values 
o f  capacitance. 

TABLE 2 

Values of  C/(lrD) for r 0 - 1/2, b = c = 1. 

D is the average diameter of  the region. 

h s=  1/8 s=  1/16 

1/16 0.0165257 
1/32 0.0166435 0.0159172 
1/64 0.0166950 0.0159457 

1/128 0.0167150 0.0159581 
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