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Gurak’s characterization of the relative (narrow) genus field of a normal exten- 
sion is extended to any finite extension. Using this, a purely algebraic proof for a 
theorem of the author on the (narrow) genus field is given. ‘p 1985 Academic Press. Inc. 

1. INTRODUCTION 

Let K/k be any finite extension with relative discriminant D. The narrow 
genus fieZd K* of K/k (or the genus field as defined in [4]) is the maximal 
unramilied (at finite primes) extension of K of the form KSZ with Q/k 
abelian. For a prime p 1 D, let P,, P, ,..., P, be the distinct prime divisors of 
p in K. Let Kcpj denote the intersection of the local extensions of K at 
p, > p, f..., P, and let R,,, denote the maximal abelian subextension of 
Kcp,/kp with local conductor pop and local norm symbol [ , R,,,/k,]. Let 
UP and U,, (i= 1, 2,..., s) denote the unit groups of k, and K,, respectively. 
Let NAIB denote the norm map from A to B. When there is no ambiguity, 
this is denoted by N. Let [UP: NKplkp UPI] = d,,. Let e,* = G.C.F. of d,,. 
Define a group Gb of numerical characters of k with conductor ppp by form- 
ing the composites 10 [ , &,,/k,]-’ for each x E G*(K,,/k,) (the charac- 
ter group of I&,/k,). As the ramification index of K,,,lk, is e,* (by 
Lemma 1 below), the order of Gb is e,*. Set G’ = n,,,, GL and let Gb be 
the modified resolution of G’ (as defined in Section 3 of [4]) with conduc- 
tor m. 

In Section 3, following the ideas of Gurak [4], we characterize K* with 
the aid of Gb and derive a formula for the narrow genus number, [K*: K], 
of K/k. We make use of this in Section 4 to give an algebraic proof for a 
theorem on the narrow genus field which was proved by means of some 
density theorems in [ 11 (corrections in [2]). 
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2. SOME AUXILIARY RESULTS 

LEMMA 1. Let e, denote the Ga~ois group of l?,,,/kp. Then 

T]i NK; = NK;p, = Ni?;,,, 
PIP 

and 

(Here F* denotes the group of non-zero elements of a field F.) 

This may be deduced from some well-known results in Classfield theory 
([3, pp. 142-143, Propositions 3 and 43 and the fact that Efp, = nplp &,, 
where & is the maximal abehan subextension of K&/k,). Theorem 2 of [ 1] 
is a special case of this. 

LEMMA 2. Let Pz denote the group ofprincipal ideals of K prime to m, 
H,,, denote the narrow ray mod X m and K$ denote the maximal abelian sub- 
extension of K*/k. Then K,* is classfield to N,,Pz. H,, where m is the con- 
ductor of K$/k. 

This is Theorem 2 in [4]. 
From Lemmas 1 and 2 we get: 

LEMMA 3. The rarn~~cat~o~ index of a K$-prime divisor of p is e,*, 

LEMMA 4. The Galois group of a normal extension is generated by its 
inertia subgroups. 

This is Lemma 6.5 in [5, p. 2651. 

3. CHARACTERIZATION OF NARROW GENUS FIELD 

We first characterize the narrow genus field of a finite extension K/k in 
terms of numerical characters. Let FO denote the maximal abelian subexten- 
sion of F/k. Let f denote the narrow ciasstield of k, h+ the narrow class 
number [R: k] of k and g+ the narrow genus number [K*: K] of K. For 
an abelian extension F/k, let G(F/k) denote the group of numerical Artin 
characters of F/k. (For more details about this group, see Section 3 of 
[4].) Further, let tJKlk be the subgroup of U,+ (group of totally positive 
units of k) which are local norms at all k-primes. 
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THEOREM 1. K,* is the unique abelian extension containing k with 
G(K,*/k) = Gb. Further, the narrow genus number 

g 
+ _ h: IG -= h: r-Len e; 

- [K,,: k] [K,: k][LJ:: U,,]’ 

This is proved in [4] (Theorem 7) for the case K/k normal. 

Proof Let (K,*)* be the narrow genus field of K,*/k. Taking K and K,* 
for Kin Lemma 2 and applying Lemmas 1 and 3, we find that Kz = (K,*)*. 
Also taking K and K$ for K in Section 1 to form the associated numerical 
character groups, we find that both groups are the same in view of 
Lemma 1 and Lemma 3. Then, by Theorem 7 in [4], G((K,*)*/k)= Gb. 
The proof for the narrow genus number formula could be given using an 
argument similar to the one given in the proof of Theorem 4 in [4]. 

4. NARROW GENUS FIELD FOR FINITE EXTENSION 
OF THE RATIONALS 

Using Theorem 1, we give a purely algebraic proof for the following 
theorem which determines the narrow genus field of a finite extension of 
the rationals. Earlier, the author used some density theorems to prove this 
in [l]. 

THEOREM 2. Let K/Q be a finite algebraic extension and let alp’ denote 
the unique abelian extension of the rationals of degree e: and conductor ppr. 
Then 

where p run through all the rational primes with e,* > 1. 

(Here ef and ppr have the same meaning as in Section 1 except that k is 
taken as Q.) 

Proof Let pl, p2,..., pr be the primes for which e,* > 1. Now by 
Lemma 4, K$ can be viewed as the inertia field of a subfield K(PI) such that 
p, is fully ramified in K,*/K (PI). Since KCpl)/G! is normal, we can repeat the 
argument and get KCP1) as the inertia field of KCP2) such that p2 is fully 
ramified in K(PI)/K(PZ). Continuing this process, we get KCpr) = Q for some 
t < r. Also we see that the degree of K,* = e;, eT2.. . e,*l # n;=, e:, unless t = r. 
But by Theorem 1, the degree of K,* = ez,e,*, . . . ez,. Therefore t = r. This 
shows that KCPr-I) is an abelian extension of Q where pr is fully ramified. In 



REMARKS ON GENUS FIELD 259 

the above argument, taking pi (i = 1,2,..., r) instead of p,- , and vice versa, 
we see that for every pi there is an abelian extension of Q in K,*, where pi is 
fully ramified. Thus, K$ contains abelian subfields of degrees e:, 
(i = 1, 2,..., r). These abelian subtields must have conductors Pppl. Also the 
composite of these abelian subfields has degree equal to that of K$. So 
K,* = &,, Q(p,) and the theorem follows. 
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