JOURNAL OF NUMBER THEORY 21, 256-259 (1985)

Some Further Remarks on Genus Field

M. BHASKARAN

114 Marangaroo Drive, Girrawheen, W. Australia 6064 Communicated by H. Zassenhaus Received January 1, 1982

Gurak's characterization of the relative (narrow) genus field of a normal extension is extended to any finite extension. Using this, a purely algebraic proof for a theorem of the author on the (narrow) genus field is given. © 1985 Academic Press, Inc.

1. INTRODUCTION

Let K/k be any finite extension with relative discriminant **D**. The narrow genus field K^* of K/k (or the genus field as defined in [4]) is the maximal unramified (at finite primes) extension of K of the form $K\Omega$ with Ω/k abelian. For a prime $p | \mathbf{D}$, let $P_1, P_2, ..., P_s$ be the distinct prime divisors of p in K. Let $K_{(p)}$ denote the intersection of the local extensions of K at $P_1, P_2, ..., P_s$ and let $\tilde{K}_{(p)}$ denote the maximal abelian subextension of $K_{(p)}/k_p$ with local conductor p^{ρ_p} and local norm symbol [, $\tilde{K}_{(p)}/k_p]$. Let U_p and $U_{\mathbf{P}_i}$ (i = 1, 2, ..., s) denote the unit groups of k_p and $K_{\mathbf{P}_i}$ respectively. Let $N_{A/B}$ denote the norm map from A to B. When there is no ambiguity, this is denoted by N. Let $[U_p: N_{K_P/k_p} U_{\mathbf{P}_i}] = d_{\mathbf{P}_i}$. Let $e_p^* = \text{G.C.F. of } d_{\mathbf{P}_i}$. Define a group G'_p of numerical characters of k with conductor p^{ρ_p} by forming the composites $\chi \circ [$, $\tilde{K}_{(p)}/k_p]^{-1}$ for each $\chi \in \mathbf{G}^*(\tilde{K}_{(p)}/k_p)$ (the character group of $\tilde{K}_{(p)}/k_p$). As the ramification index of $K_{(p)}/k_p$ is e_p^* (by Lemma 1 below), the order of \mathbf{G}'_p is e_p^* . Set $\mathbf{G}' = \prod_{p \mid \mathbf{D}} \mathbf{G}'_p$ and let \mathbf{G}'_0 be the modified resolution of \mathbf{G}' (as defined in Section 3 of [4]) with conductor m.

In Section 3, following the ideas of Gurak [4], we characterize K^* with the aid of G'_0 and derive a formula for the narrow genus number, $[K^*: K]$, of K/k. We make use of this in Section 4 to give an algebraic proof for a theorem on the narrow genus field which was proved by means of some density theorems in [1] (corrections in [2]).

2. Some Auxiliary Results

LEMMA 1. Let $\tilde{\mathbf{G}}_p$ denote the Galois group of $\tilde{K}_{(p)}/k_p$. Then

$$\begin{split} \prod_{\mathbf{P}\mid p} NK_{\mathbf{P}}^{\times} &= NK_{(p)}^{\times} = N\widetilde{K}_{(p)}^{\times}, \\ \widetilde{G}_{p} &= k_{p}^{\times}/NK_{(p)}^{\times} = k_{p}^{\times}/N\widetilde{K}_{(p)}^{\times}. \end{split}$$

and

$$e_p^* = the ramification index of \tilde{K}_{(p)}/k_p$$
.

(Here F^* denotes the group of non-zero elements of a field F.)

This may be deduced from some well-known results in Classfield theory ([3, pp. 142–143, Propositions 3 and 4] and the fact that $\tilde{K}_{(p)} = \bigcap_{\mathbf{P}|p} \tilde{K}_{\mathbf{P}}$, where $\tilde{K}_{\mathbf{P}}$ is the maximal abelian subextension of $K_{\mathbf{P}}/k_p$). Theorem 2 of [1] is a special case of this.

LEMMA 2. Let \mathbf{P}_{K}^{m} denote the group of principal ideals of K prime to m, H_{m} denote the narrow ray mod \times m and K_{0}^{*} denote the maximal abelian subextension of K^{*}/k . Then K_{0}^{*} is classfield to $N_{K/k}\mathbf{P}_{K}^{m}H_{m}$, where m is the conductor of K_{0}^{*}/k .

This is Theorem 2 in [4]. From Lemmas 1 and 2 we get:

LEMMA 3. The ramification index of a K_0^* -prime divisor of p is e_n^* .

LEMMA 4. The Galois group of a normal extension is generated by its inertia subgroups.

This is Lemma 6.5 in [5, p. 265].

3. CHARACTERIZATION OF NARROW GENUS FIELD

We first characterize the narrow genus field of a finite extension K/k in terms of numerical characters. Let F_0 denote the maximal abelian subextension of F/k. Let \hat{k} denote the narrow classfield of k, h^+ the narrow class number $[\hat{k}:k]$ of k and g^+ the narrow genus number $[K^*:K]$ of K. For an abelian extension F/k, let G(F/k) denote the group of numerical Artin characters of F/k. (For more details about this group, see Section 3 of [4].) Further, let $U_{K/k}$ be the subgroup of U_k^+ (group of totally positive units of k) which are local norms at all k-primes.

M. BHASKARAN

THEOREM 1. K_0^* is the unique abelian extension containing \bar{k} with $\mathbf{G}(K_0^*/k) = \mathbf{G}_0'$. Further, the narrow genus number

$$g^{+} = \frac{h_{k}^{+} |\mathbf{G}_{0}'|}{[K_{0}:k]} = \frac{h_{k}^{+} \prod_{p \mid m} e_{p}^{*}}{[K_{0}:k] [U_{k}^{+}: U_{K/k}]}.$$

This is proved in [4] (Theorem 7) for the case K/k normal.

Proof. Let $(K_0^*)^*$ be the narrow genus field of K_0^*/k . Taking K and K_0^* for K in Lemma 2 and applying Lemmas 1 and 3, we find that $K_0^* = (K_0^*)^*$. Also taking K and K_0^* for K in Section 1 to form the associated numerical character groups, we find that both groups are the same in view of Lemma 1 and Lemma 3. Then, by Theorem 7 in [4], $G((K_0^*)^*/k) = G'_0$. The proof for the narrow genus number formula could be given using an argument similar to the one given in the proof of Theorem 4 in [4].

4. NARROW GENUS FIELD FOR FINITE EXTENSION OF THE RATIONALS

Using Theorem 1, we give a purely algebraic proof for the following theorem which determines the narrow genus field of a finite extension of the rationals. Earlier, the author used some density theorems to prove this in [1].

THEOREM 2. Let K/Q be a finite algebraic extension and let $\Omega^{(p)}$ denote the unique abelian extension of the rationals of degree e_p^* and conductor p^{ρ_p} . Then

$$K^* = K \prod_p \Omega^{(p)}$$

where p run through all the rational primes with $e_p^* > 1$.

(Here e_p^* and p^{ρ_p} have the same meaning as in Section 1 except that k is taken as \mathbb{Q} .)

Proof. Let $p_1, p_2, ..., p_r$ be the primes for which $e_p^* > 1$. Now by Lemma 4, K_0^* can be viewed as the inertia field of a subfield $K^{(p_1)}$ such that p_1 is fully ramified in $K_0^*/K^{(p_1)}$. Since $K^{(p_1)}/\mathbb{Q}$ is normal, we can repeat the argument and get $K^{(p_1)}$ as the inertia field of $K^{(p_2)}$ such that p_2 is fully ramified in $K^{(p_1)}/K^{(p_2)}$. Continuing this process, we get $K^{(p_1)} = \mathbb{Q}$ for some $t \leq r$. Also we see that the degree of $K_0^* = e_{p_1}^* e_{p_2}^* \cdots e_{p_r}^* \neq \prod_{i=1}^r e_{p_i}^*$ unless t = r. But by Theorem 1, the degree of $K_0^* = e_{p_1}^* e_{p_2}^* \cdots e_{p_r}^*$. Therefore t = r. This shows that $K^{(p_{r-1})}$ is an abelian extension of \mathbb{Q} where p_r is fully ramified. In the above argument, taking p_i (i = 1, 2, ..., r) instead of p_{r-1} and vice versa, we see that for every p_i there is an abelian extension of \mathbb{Q} in K_0^* , where p_i is fully ramified. Thus, K_0^* contains abelian subfields of degrees $e_{p_i}^*$ (i = 1, 2, ..., r). These abelian subfields must have conductors $P^{\rho_{p_i}}$. Also the composite of these abelian subfields has degree equal to that of K_0^* . So $K_0^* = \prod_{p_i} \Omega(p_i)$ and the theorem follows.

REFERENCES

- 1. M. BHASKARAN, Construction of genus field and some applications, J. Number Theory 11 (1979), 488-497.
- 2. M. BHASKARAN, Corrigenda. "Construction of genus field and some applications", J. Number Theory 19 (1984), 449-451.
- J. W. S. CASSELLS AND A. FROHLICH, "Algebraic Number Theory," Academic Press, London/New York, 1967.
- S. GURAK, Ideal theoretic characterization of the relative genus field, J. Reine Angew. Math. 303/304 (1978), 314-318.
- 5. W. NARKIEWICZ, "Elementary and Analytic Theory of Algebraic Numbers," PWN-Polish Scientific Publishers, Warsaw, 1974.