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INTRODUCTION

In commutative ring theory, the notion of Gorenstein rings has been
studied widely. For rings having finite Krull dimension, Bass showed the
characterization of Gorenstein rings as rings with finite self-injective
dimension [B]. The notion of Cohen—Macaulay rings with dualizing mod-
ules was developed by Grothendieck and Hartshorne [Hr], and was studied
by several authors. In developing these theories, they began by using the
technique of local duality, and then used the technique of duality for
derived categories [Hr]. In ring theory, the notion of Gorenstein rings was
studied extensively (for example, [AR1], [AR2], [Ho], [I1], and [I2)].
Miyashita introduced the notion of a tilting module of finite projective
dimension [Ms]. Happel [Hp] and Cline, Parshall, and Scott [CPS] studied
the relations between tilting modules and equivalences of derived cate-
gories. We studied the relation between tilting modules and localization of
derived categories [Mcl1]. Miyashita also introduced cotilting bimodules,
and showed the existence of homological duality of modules [Ms]. The
purpose of this paper is to study the relations between cotilting bimodules
and duality for derived categories, and to study the non-commutative ring
version of dualizing modules.

In Section 1, we define localization duality of triangulated categories by
using the notion of localization of triangulated categories. In Section 2, we
study a bimodule which induces a quotient duality and a localization
duality of derived categories of modules (Theorem 2.8 and Corollary 2.5).
Moreover, we consider the condition that a bimodule, in particular a
cotilting bimodule, induces a duality for derived categories (Theorem 2.10
and Corollary 2.11). In Section 3, we approach the notion of approxima-
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tions, which was introduced by Auslander and Buchweitz [AB], by using
localization duality for derived categories (Proposition 3.2 and Theorem
3.4). And we consider categories which are equivalent to the category of
finitely presented modules having finite injective dimension (Propositions
3.6 and 3.7). In Section 4, we construct a finitely embedding cogenerator
for the category of finitely presented modules by using a module which
induces a quotient duality (Theorem 4.1, Proposition 4.8, and Corollary
4.9). Furthermore, we apply it to cotilting bimodules, and in particular, to
rings with finite self-injective dimension (Propositions 4.4, 4.5; Corollaries
4.2,4.3, 4.6, 4.7).

Throughout this paper, we assume that all rings have non-zero unity,
and that all modules are unital.

1. PRELIMINARIES

Given a triangulated category & with a translation T, we define the
opposite triangulated category 2 ° by the following:

(@ Tom(XP) =T (X);

(b) X®P>Y® > Z% > T, u(X%) is a distinguished triangle if
T,1(X) > Z > Y - X is a distinguished triangle in 9.

Then there is the natural duality D,: 2 —2°, which induces the
isomorphism between Grot(2) and Grot(Z°), where Grot(2) is a
Grothendieck group of & (see [G)).

We call a covariant ¢-functor Q: % — 7~ between triangulated cate-
gories a quotient ¢-functor provided that there is an equivalent J-functor
E: /KerQ — 7 such that P-E is equal to Q, where P:  — #Z/Ker Q is
the natural quotient (see [Mc1, Sect. 2; V, Chap. I, Sect. 2, No. 3]). We will
call a contravariant ¢-functor G: % — 7~ between triangulated categories
a quotient duality if D, -G is a quotient J-functor. Let G: Z — 7 and F:
7"— % be contravariant ¢-functors. We call {G, F} a right adjoint pair if
FoD,. is the right adjoint of D, -G. In other words, there is a functorial
isomorphism Hom,,(X,FY) = Hom, (Y,GX) forall X e  and Y € 7.
We call {7"; G, F} a localization duality of % provided that {"°°; D, - G,
FoD,} is a localization of #. In other words, {G, F} is a right adjoint pair,
and the natural morphism id,-— Ge°F is an isomorphism. According to
[Mc1, Proposition 2.3], if a quotient duality ¢-functor G: % — 7~ has a
contravariant g-functor F: 2°— % such that {G, F} is a right adjoint pair,
then {#7"; G, F} is a localization duality of #%. Also, by [Mc1, Theorem 2.5],
o-functor G: # —» 77 is a quotient duality if {7;G,F} is a localization
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duality of %Z. By the above, if G: Z — 77 is a quotient duality, there is an
epimorphism Grot(%) — Grot(2").

Let .« be an additive category, K(&/) a homotopy category of ., and
K™ (&), K~ (), and K"(«) full subcategories of K(2) generated by the
bounded below complexes, the bounded above complexes, and the bounded
complexes, respectively. For a full subcategory % of an abelian category
o, let K**(#) be a full subcategory of K*(%) generated by complexes
which have bounded homologies, and K*(%)qs a quotient category of
K*(#) by the multiplicative set of quasi isomorphisms, where * = + or
—. We denote K*(%)q;, by D*(7). For a thick abelian subcategory # of
&, we denote by D%(w) a full subcategory of D*(«) generated by
complexes of which all homologies belong to # (see [Hr] for details).

For a complex X = (X', d,), we define the truncations

o (X)) 20> 1Imd, > X" 5 X2 e
o (X): > X" 25X > Kerd, >0 -,
ol (X)) > X" 5 X" >1Imd, >0 -,
(X)) 20> XM S X2
T (X)X X" 50>

For m <n, we denote by K!"™"(%) the full subcategory of K(%)
generated by complexes of the form - - 0 > X" —» -+ - X" 1 - X"
— 0 — -+, and denote by DI"™"l(o/) the full subcategory of D(%)
generated by complexes of which homology H' = 0 (i < m or n < i).

Let F: &/ - % be a contravariant left exact additive functor between
abelian categories. If & has enough projectives, and F has finite right
homological dimension on ., then RF, R™F, and R"F exist, RF | ., =
R*F, and moreover, R*F has image in D*(%), where (*,%) = (+, -),
(—, +), or (b, b) (see [Hr] for details).

2. LOCALIZATION DUALITY OF DERIVED CATEGORIES

For a ring A4, we denote by Mod A (resp., A-Mod) the category of right
(resp., left) A-modules, and denote by mod A4 (resp., A-mod) the category
of finitely presented right (resp., left) 4-modules. We denote by Inj A
(resp., A-Inj) the category of injective right (resp., left) 4-modules, and
denote by &2, (resp., ;) the category of finitely generated projective right
(resp., left) modules. If A is a right coherent ring, then mod A is a thick
abelian subcategory of Mod A4, and then D*(mod A) is equivalent to
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K=*(2,). Moreover, D*(mod A) is equivalent to D7 , ,(Mod A), where
* = — or b (see [Hr)).

For a right A-module U, over a ring A, we denote by add U, (resp.,
sumU,) the category of right A-modules which are direct summands of
finite direct sums of copies of U, (resp., finite direct sums of copies of U,),
and denote by rac(U,) the full subcategory of mod A generated by mod-
ules M which satisfy Ext,(M,U) = 0 for all i > 0. We denote injective
dimension of U, (resp., projective dimension of U,) by idim U, (resp.,
pdimU,).

Let A and B be rings, zU, a (B — A)-bimodule. We will call ,U, a
cotilting (B — A)-bimodule provided that it satisfies the following:

(C1) U, is finitely presented as both a right A-module and a left
B-module;

(C2r) idimU, < o; (C21) idimzU < oo;

(C3r) Ext'(U,U) =0 for all i>0; (C3]) Exth(U,U) =0 for all
i>0;

(C4r) the natural ring morphism B — Hom ,(U,U) is an isomor-
phism;

(C41) the natural ring morphism 4% — Homz(U, U) is an isomor-
phism.

In the case B = A, we will call a cotilting (4 — A)-bimodule a dualizing
A-bimodule.

LEMMA 2.1. Let A and B be rings, U, a (B — A)-bimodule. Then
{Hom ,(-, ;U,): Mod A — B-Mod, Hom z(-, ;U,): B-Mod — Mod A} is a
right adjoint pair.

LEMMA 2.2, Let U, be a right A-module over a right coherent ring A
which satisfies the conditions (C1), (C2r), (C3r). For X € K" (rac(U,)) and
Y'€ K" (add U,), we have the functorial isomorphism Hom p, o 4 (X, Y") =
HOM g moa 4( X, Y.

Proof. By [Hr, Chap. I, Proposition 3.3, Corollary 5.3], the natural
functor K*(rac(U,))q;s — D*(mod A) is equivalent. Let K* ¢(rac(U,)) be
the full subcategory of K*(rac(U,)) consisting of complexes of which all
homologies are null. Then K*(rac(U,))q; is equal to K*(rac(U,))/K™
*(rac(U,)). According to [V, 5-3 Proposition] or [Mcl, Lemma 2.1], it
suffices to show Hom g+ aq, (K™ *(rac(U,)), K*(add U,)) = 0. Let B be
an endomorphism ring End ,(U,), and let X* be an acyclic complex in
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K*(rac(U,)). Then Hom (X, U, is an acyclic complex. For Y'e
K*(add U,), Hom (Y, ;U,) belongs to K~ (). Hence we get

HOM g moq 4)( X Y) = HomK(B-Mod)(HomA(Y.'BUA)’ HomA(XA’Bl]A))
= 0.

LEMMA 2.3. Let A be a right coherent ring, B a left coherent ring, and
sU, a (B — A)-bimodule which satisfies the conditions (C1), (C2r), (C3r).
Then R*Hom (—,zU,): D*(mod A) - D~(B-mod) and R~ Homg(-,
3U): D™ (B-mod) - D*(mod A) exist, and {R"Hom ,(-, zU,),
R™Hom (-, zU,)} is a right adjoint pair.

Proof. It is easy to see existence. For X' D*(mod A) and Y'€ D~ (B-
mod), there exist M € K" (rac(U,)) and P'€ K™ (%) such that M'= X" in
D (mod 4) and P'=Y  in D~ (B-mod). By Lemmas 2.1 and 2.2, we get
the isomorphisms

Hom o4 A)(X.’ R Hom,(Y", 3U,))
= HOM pmog A)(M.V Hom( P, 3U,))

= HOM g (mog A)(M': Homy( P’ 3Uy))

I

HOM g moay( P HOM (M, 3U,) )

I

HomD(B_mod)(Y', R*Hom (X", 3U,)).

PrRoPOSITION 2.4. Let A be a right coherent ring, B a left coherent ring,
and zU, a (B — A)-bimodule which satisfies the conditions (C1), (C2r),
(C3r), and (C4r). Then {D~(B-mod); R*Hom ,(-, ;U,), R"Hom (-, zU,)}
is a localization duality of D*(mod A), and the image of R™Hom ,(-,
58U | peamod 4y 18 contained in D*(B-mod).

Proof. By the condition (C2r), it is easy to see that the image of
R*Hom (=, 3U,) | pomoa 4, IS contained in D”(B-mod). According to
Lemma 2.3, {R"Hom ,(-, zU,), R"Hom (-, z;U,)} is a right adjoint pair.
For X' D~(B-mod), there is a complex P'€ K~ (;4) such that X" is
isomorphic in P in D~ (B-mod), and we have R™Homg(P, U, =
Hom (P, zU,) in D~ (B-mod). Since Hom (P, ,U,) € K*(add U,), and
K*(add U,) is contained in K*(rac(U,)), we have R* Hom ,(R™Hom (P
U, gU,) is isomorphic to Hom ,(Hom (P’ zU,), zU,) in D~ (B-mod).
The condition (C4r) implies that the canonical morphism P —
Hom ,(Homz( P, ;U,), zU,) is an isomorphism, and then the natural mor-
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phism P — R*Hom (R~ Homg(P, zU,), zU,) is an isomorphism in
D~ (B-mod). Hence the natural morphism

idp-(5-mosy = RTHOM ((R™Hom z(—, 3U,), 3U,)

is an isomorphism.

COROLLARY 2.5. Let A be a right coherent ring, B a left coherent ring,
and zU, a (B — A)-bimodule which satisfies the conditions (C1), (C2r),
(C2D), (C3r), and (C4r). Then {D*(B-mod); R”Hom ,(-, z;U,), R®Hom 4(-,
UV} is a localization duality of D*(mod A).

Proof. By the condition (C21), it is easy to see that the image of
R®Hom 4(-, ,U,) is contained in D®(mod A). We are done by Proposition
2.4,

We will call an 4-module M an endo-—artinian module provided that M
is Artinian as an End ,(M)-module. For a finitely generated A-module M,
let n(M) be the number of non-isomorphic indecomposable modules
which are direct summands of M.

COROLLARY 2.6. Let A be a right Artinian ring, and U, a finitely
generated endo—artinian right A-module which satisfies the conditions (C2r)
and (C3r). Assume that injective dimension of zU is finite, where B =
End ,(U). Then we have n(U,) < n(A ).

Proof. By Proposition 2.5, {D*(B-mod); R®Hom ,(-, ,U,), R®Hom (-,
»U,)} is a localization duality of D”(mod A4). According to Section 1, we
have a surjection Grot(D’(mod A4)) — Grot(D’(B-mod)). Since U, is a
finitely generated endo-artinian right A-module, B is an Artinian ring.
Then we have Grot(D?(mod A)) = Z"“D and Grot(D?(B-mod)) = 2B,
and hence, we have n(U,) < n(A4,).

As in [Mc1], we have the following lemma, testing whether G:  — 7" is
a quotient duality.

LEMMA 2.7. Let G: Z — 7 be a contravariant J-functor between triangu-
lated categories. Assume there exists a family I of objects in % satisfying the
following conditions:

(@) Forevery N € 77, there exists an object M € % such that N = GM,

(b) Given X, Y € %, for all f € Hom,(GX,GY), there exist distin-
guished triangles

Sx Sy
X->Ty>Z7Z - and Y->T,->2 -,
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where Ty, Ty € and Z,Z' € KerG, and ' € Hom,(Ty,Ty) such that
foGsy = GsyoGf'. Then G: Z — 7 is a quotient duality.

THEOREM 2.8. Let A be a right coherent ring, B a left coherent ring, and
sUy a (B — A)-bimodule which satisfies the conditions (C1), (C3r). If
injective dimension of U, is at most one, then R®Hom (-, ,U,): D*(mod A)
— D’(B-mod) is a quotient duality.

Proof. Let F = Hom ,(—, zU,). Let 7 be the family of complexes X"

-5 0o X" 5 - 5 X" X" 50> - (for all m<n)e
K®(mod A), where X" € rac(U,) and X' € addU, (m <i <n). It suf-
fices to show that 7 satisfies the conditions of Lemma 2.7. By assumption,
if M is a finitely presented A-submodule of some module which belongs
to rac(U,), then M belongs to rac(U,). Since D”(B-mod) is equivalent to
K%(;2), given N DI™"(B-mod), there exists a complex U'e
K*(add U,) such that FU" is isomorphic to N° in D®(B-mod). Further-
more, we have F(o¢._,U) = o, ,FU=FU in D’(B-mod) (t <m — 1).
Since Im d, _,, is finitely cogenerated by U,, Im d,_,, € rac(U,), and then,
ol _,U belongs to .7. Hence the condition (a) of Lemma 2.7 is satisfied.
Given X' and Y € DU™"(mod A), there exist Py and P; e
KU"=L(rac(U,)) such that Py = X and Py =Y in D’(mod A4). For FP;
and FPy, there exist Uy and U, € K*(add U,), which have t,: Py— Uy
and ¢, Py — Uy in K"(mod A), such that Fz, and F¢, are isomorphisms
in D~(B-mod). As above, for all t > n + 1, we can take s,: Py — ol Uy
and sy: Py, — o.,Uy such that t, = (oL , U— Uy)esy and t, = (¢, Uy
— Uy )e sy, and that Fs,, and Fs, are isomorphisms in D°(B-mod). Then
mapping cones of s, and s, belong to Ker R’F. Since FU, belongs to
D" ~m+Y(B-mod), o_,FU; is acyclic for all # > n + 1. Then we have the
isomorphisms

HomD(B-mod)(RbFX'* R'FY’) = HOM 5.moa)(FUx, FUy )

l

= HOoM 3_moa)(FUx, FUy )

= HoM 5.moa)(FUy, 0 _ FUy)

= Homy z.moay( 0> ;- 1FUy, 0. _,FUy)

= HoMg p.moa)(Fol 11Uy, Fol Uy)

= HOM (moq 4)( 0%, Uy, Uy, 0141 Us ).
Hence the condition (b) of Lemma 2.7 is satisfied.

COROLLARY 2.9. Let A be a right Artinian ring, and U, a finitely
generated endo—artinian right A-module which satisfies the condition (C3r). If
the injective dimension of U, is at most one, then we have n(U,) < n(A4 ).
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Proof. The same as Corollary 2.6.

For a right A-module U,, we denote by coresol(U,) the full subcategory
of mod A generated by modules M which have an exact sequence 0 — M
U’ >U'> - U - - ,where U' € add U, (i > 0).

THEOREM 2.10. Let A be a right coherent ring, B a left coherent ring, and
sU, a (B — A)-bimodule which satisfies the conditions (C1), (C2r), (C3r),
and (CA4r). Then the following are equivalent:

(@ R*™Hom (-, zU,): D*(mod A) - D~(B-mod) is a duality;
(b) rac(U,) coincides with coresol(U,);

(©) for every X € rac(U,), there is an exact sequence 0 - X — V —
W — 0 in mod A, with V € add U, and W € rac(U,).

In this case, zU, satisfies the conditions (C3I) and (CA4l).

Proof. (a) = (b) Let M be a right 4A-module which belongs to rac(U,).
Then R"Hom (M, zU,) is isomorphic to a left B-module Hom ,(M, ,U,)
in D~(B-mod). We take a projective resolution P of Hom (M, ,U,).
Then we have the exact sequence

- >P?>pPpt> P’ Hom,(M,,U,) -0,

where P’ e€,% (i <0). According to Lemma 2.3, a quasi inverse of
R*Hom (-, z;U,) is R"Homz(-, ;U,). Then Hom (P’ z;U,) is isomorphic
to M in D*(mod A). Therefore, we have the exact sequence

0 — M — Homy(P°, zU,) — Hom, (P, ,U,)
— Homy(P72,,U,) = .

It is easy to see that Hom (P, ;U,) € add U,.

(b) = (@ Let 0 idp+noq 4y = R™HOomMz(R"Hom (=, zU,), zU,) be
the natural morphism of functors. Since idimU, :=n < %, a derived
functor R~Homyz(R*Hom (-, ;U,), ;U,) is a way-out right oJ-functor.
According to [Hr, Chap. I, Proposition 7.1], it suffices to show that n(M) is
an isomorphism for all M € mod A. Let -+ - P72 /2 p~t /1 pO
— M — 0 be a finitely generated projective resolution of M, and M, :=
Im f,. Then M_, belongs to rac(U,), and the complex M_, - P"*! —
v > P72 /2 pl /1 PO s isomorphic to M in D*(mod A). There-
fore it suffices to show that n(X’) is an isomorphism for all X'
K*(rac(U,)). Let X' be a complex X° - X! - --- - X* € K’(rac(U),));
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then we have a distinguished triangle X*[—k] > X - 7_, ;X - in
D*(mod A). By assumption, we have the exact sequence

0> XU Ut -« U > e

where U’ € add U, (j > 0). Let U be a complex U° - U! —» -+ > U/
— - ; then U'€ K*(addU,) such that X* is isomorphic to U in
D*(mod A). According to the condition (C4r), U — Hom z(Hom (U,
3U,), zU,) is an isomorphism in D*(mod A), and hence n(X*[—k]) is an
isomorphism in D*(mod A). We have the following morphism between
distinguished triangles,

XM k] — X — T X —

l l l

R GR*F(X*[-k]) > R"GR"F(X) > R GR*F(7r_,_,X) —

where F = Hom (-, U,) and G := Homg(-, zU,). By induction on k,
n(r_,_, X" is an isomorphism, and hence n(X") is an isomorphism. We
are done by Proposition 2.4.

(b) & (c) ByidimU, < «, it is easy.

By the duality, it is easy to see that zU, satisfies the condition (C3!), and
we have ring-isomorphisms A°° = End (A ,)° = Endz(Hom ,(A4, zU,))
= End;(zU).

Remark. The condition (c) of Theorem 2.10 is an important condition
of abelian categories with suitable subcategories of “maximal Cohen-
Macaulay objects” in [AB]. Theorem 2.10 says that the condition (c) is
indispensable for duality theory.

COROLLARY 2.11. Let A be a right coherent ring, B a left coherent ring,
and zU, a cotilting (B — A)-bimodule. Then R* Hom ,(—, ;U,): D*(mod A4)
— D*(B-mod) is a duality, where *,7%) = (nothing, nothing), (+, —),
(=, +), or (b,b).

Proof. By symmetry, according to Corollary 2.5, R?Hom ,(-, ,U,):
D*(mod 4) - D’(B-mod) is a duality with a quasi inverse R”Hom (-,
zU.). Let M be a finitely presented right A-module which belongs to
rac(U,). Then we have R®Hom (M, ,U,) = Hom ,(M, ,U,) in D*(B-mod).
We take a projective resolution P° of Hom (M, z;U,) in B-mod. By the
duality, Hom z(P", ;U,) is a coresolution of M. The condition (C4r) implies
that M belongs to coresol(U,). Therefore, rac(U,) is contained in
coresol(U,). Conversely, the condition (C2r) implies that coresol(U,) is
contained in rac(U,). Hence the condition (b) of Theorem 2.10 is satisfied.
By symmetry, we have R* Hom ,(-, ,U,): D*(mod A4) - D*(B-mod) is a
duality, where (*,%) = (+, =) or (—, +). For every X' D(mod A), there
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exists a distinguished triangle o_, X — X — o, ;X — . Then we have the
following morphism between distinguished triangles in D(mod A),

o_oX — X — o, X —

l l l

RGRF(0_,X') — RGRF(X') — RGRF( 0., X') —

where F := Hom (-, z;U,) and G := Homy(-, zU,). Since o_,X €
D (mod A) and o.,X € D"(mod 4), the natural morphism X —
R Hom z(R Hom (X, z;U,), zU,) is an isomorphism. By the symmetry, we
complete the proof.

ExampLEs. (1) For a non-commutative ring A, in the case of even
dualizing modules, there exist many dualizing A-bimodules. Let A be a
connected finite dimensional hereditary k-algebra over an algebraically
closed field & of infinite representation type. For M € mod A4, we define
Tr M := Cok(Hom ,(f, A)), where P, - /P, > M — 0 is a minimal pro-
jective presentation of M, and D := Hom,(—, k). Then (Tr D)"(A) is a
dualizing A-bimodule for all n > 0.

(2) More generally, let 4 and B be finite dimensional k-algebras
over a field k, ,T, a tilting (A — B)-bimodule of finite projective dimen-
sion. Then D(,Ty) is a cotilting (B — A)-bimodule.

(3) Let A4 be aring (5 %), where F,G are division rings, and V' is an
(F — G)-bimodule such that dim V" = dim}; = ». Then A is a coherent
ring and also a dualizing A-bimodule.

Let R be a commutative Cohen—Macaulay ring with a dualizing R-mod-
ule w. A finitely generated R-module M is called a maximal Cohen-
Macaulay R-module if depthpRuMp is equal to the Krull dimension of R,
for all p € Spec R, or equivalently if Ext%(M, w) = 0 for all i > 0 (see
[AB).

PROPOSITION 2.12.  Let R be a commutative Cohen—Macaulay ring with a
dualizing R-module . If A is an R-algebra which is finitely generated
maximal Cohen—Macaulay as an R-module, then Hom (A, o) is a dualizing
A-bimodule.

Proof. It is clear that Hom (A4, w) is finitely generated as both a right
and a left A-module. We take an injective coresolution E* of w. Since A4
is @ maximal Cohen—Macaulay R-module, we have an injective coresolu-
tion Hom (A4, E’) of Hom (A4, w) as both a right and a left 4-module.
Then idim ,Hom (A4, w) and idim Hom (A4, w), are finite. In order that
Hom (A, w) satisfy the conditions (C3r), (C4r), it suffices to show that
the natural morphism A, — R°Hom (R°Hom (A4 ,, Hom (A4, w)),
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Hom (A, »)) is an isomorphism in D’(mod 4). We have the isomor-
phisms

R”Hom ,(R"Hom ,( A, Hom,( A4, w)),Homy( A4, ))
= R"Hom ,(Hom,( 4, »),Homy( A4, w))
= Hom (Homg( A4, ), Hom( A, E’))
Hom,(Hom,(A,, w), E)

I

[N

R’Hom(R"Homg( 4, ), o)
=A,.

Similarly, Hom (A4, w) satisfies the conditions (C3/), (C41).

Remark. More generally, for dualizing bimodule complexes, we can
drop the condition of maximal Cohen—Macaulay in Proposition 2.12 (see
[Mc2] for details).

3. APPLICATIONS TO APPROXIMATIONS

Auslander and Buchweitz introduced the notion of Cohen—Macaulay
approximations in connection with Cohen—Macaulay rings with dualizing
modules [AB]. In this section, from the point of view of derived categories,
we approach this theory.

For a left B-module U, we denote by fresol(;U) the full subcategory of
B-mod generated by modules M which have an exact sequence 0 — U™"
- - > Ut > U*> M- 0 for some n, where U’ € addyU (—n <i
< 0).

LEMMA 3.1. Let A be a right coherent ring, B a left cohernet ring, and
sU, a (B — A)-bimodule which satisfies the condition (Cl). Assume that
R®Hom ,(—, ;U,): D®(mod A) — D®(B-mod) is a quotient duality. Then for
every finitely presented left B-module C, there exist exact sequences 0 — Y, —
X, >C—>0and 0> C—->Y > X -0 with X,, X¢ € coresol(,U),
and Y., Y€ € fresol(zU).

Proof. Since D”(mod A) is equivalent to K—?(2,), for every finitely
presented left B-module C, there exists a complex P* in K *(2,) such
that Hom (P, zU,) is isomorphic to C in D’(B-mod). Then we have
H'Hom (P, zU,) =0 (i #0) and H°Hom (P, U,) = C in B-mod.
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Clearly, Hom ,(P, z;U,) belongs to K*(add,U). Let Hom ,(P", ;U,) be the
complex

d_, dy .
O—>U75—>---—)U’1—>Uo—>U1—>U2—>---—)U’—)---,
where U' € add,U (—s < i). Then we have the exact sequences

0—->Imd_, » Kerd, - C — 0,
0—->C—->Cokd_, »Imd, - 0.

Furthermore, Ker d, and Imd, belong to coresol(zU), and Cok d_, and
Im d_, belong to fresol(zU).

Remark. Applying the technique in Lemma 3.1 to the situation of
Proposition 2.4, we also get a generalization of a result of Auslander and
Buchweitz [AB, Theorem 1.8].

The situations of Corollary 2.5, Theorem 2.8, and Corollary 2.11 satisfy
the conditions of Lemma 3.1. In particular, under the conditions of
Corollary 2.11, mod A and B-mod are abelian categories with suitable
subcategories of “maximal Cohen—Macaulay objects” (see [AB] for details).
For a ring B, the stable category B-mod/addzU has the same objects as
B-mod, its homomorphisms are HoM ;.04 /aqa,0 (X, Y) = Hom (X, Y) /{f:
X — Y|f factors through an object in add;U} for X,Y € B-mod /add,U.
Let II: B-mod — B-mod/addzU be the natural functor. We get results
similar to those of Auslander and Buchweitz [AB, Theorems A, B].

ProposITION 3.2.  Let A be a right coherent ring, B a left coherent ring,
and zU, a cotilting (B — A)-bimodule. For a finitely presented left B-module
C, the following hold.

(@) there exist exact sequence 0 > Y. > X > C - 0and 0 - C -
Y€ > X€ > 0 with X, X € rac(zU) and Y., Y€ € fresol(zU).

(b) For other exact sequences 0 -» Y. - X, - C - 0and 0 - C -
Y - XY > 0 which satisfy the condition (a), there exist morphisms be-
tween exact sequences,

0—>Y -X.—-C—0 0-C—-Y"—X >0

B e Ils 17
0->Y X, —-C—>0 0-5C—->YY>XY>0

such that TI(a), TI( B), TI(y), and TI(8) are isomorphisms in B-mod /add,U.
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Proof. (a) By Theorem 2.10, Corollary 2.11, and Lemma 3.1, it is clear.

(b) For0 — Y. - X, — C — 0, we get the following resolution and
coresolution,

0>U" > >U2>U'>Y. -0,
O—>XC—>UO—>U1—> ---—)Ui—>---,

where U’ € add U, for all i. Then we get the complex U: -+ > 0 - U™"
- - s U?>U'>U'>U' > -+ > U - - €K'(addU).
Similarly, for 0 —» Y/ - X, - C — 0, we get a complex V. -+ -0 —

Vs e s V25l syl o i e e K (addgU).
Since Y/ is contained in fresol(;U), Ext3(X,, Y/) = 0. Then we have an
exact sequence 0 — Hom (X, Y{) — Hom (X, X)) = Homg( X, C)
— 0. Hence we have the commutative diagram

0—>Y, »>X.— C—0

B e

0> Y —X.— C —0

Since Y., Y/ € fresol(3U), by Lemma 2.1, 8 can be extended to a mor-
phism r__ U — 7__,V. Also, by X, X/ € rac(3U) = coresol(z3U), a can
be extended to a morphism 7, ,U— 7,,/. Then « and B can be
extended to a quasi isomorphism f: U'— V. According to Lemma 2.2,
there exists a morphism g: VV'— U’ such that f- g and g - f are isomor-
phic in K*(addzU), that is, homotopic to id,- and id,, respectively.
Hence we have the diagram

0— Y, > X. —>C —0

el

0—-Y — X, —>C —0

such that idy_ — @' a and idy — B’'~ g factor through U~!, and that
idy, — aca’ and id, , — BB’ factor through V'~!. For 0 - C - Y©
->X¢>0and 0 > C—->YY > X% -0, we are done by same tech-
nique.

Auslander and Buchweitz called a sequence of (a) in Proposition 3.2 a
rac(zU)-approximation, and called a sequence of (b) in Proposition 3.2 a
fresol(3U)-hull [AB]. Auslander and Reiten showed the minimality of such
an approximation and a hull, in the case with B a commutative complete
Cohen—Macaulay ring or an artin algebra (see [AR1])). Amap g: X — C is
called right minimal provided that f is an isomorphism for all f: X - X
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which satisfy go f=g. A left minimal map is defined dually. A right
minimal rac(zU)-approximation is called a minimal rac(;U)-approxima-
tion. A left minimal fresol(;U)-hull is called a minimal fresol(zU)-hull (see
[AR1] for details). We also get a result similar to that of Auslander and
Reiten [AR1, Proposition 1.1 or Proposition 1.5] (cf. [Ms, Theorem 6.1]).

PROPOSITION 3.3. Let A be a right coherent ring, B a left coherent ring,
and gU, a cotilting (B — A)-bimodule. Then Hom ,(-, ,U,): rac(U,) —
rac(zU) is a duality with a quasi inverse Hom z(—, ;U,).

Proof. By the proof of Corollary 2.11.

For an additive category <7, we will call .« semiperfect if End_(X) is a
semiperfect ring for every object X €.«.

THEOREM 3.4. Let A be a right coherent ring, B a left coherent ring, and
gU, a cotilting (B — A)-bimodule.

@ If rac(zU) is semiperfect, then there exists a unique minimal
rac(zU)-approximation in B-mod.

(b) If fresol(zU) is semiperfect, then there exists a unique minimal
fresol(zU)-hull in B-mod.

Proof. (a) According to Proposition 3.2, it suffices to show minimality.
Let an exact sequence 0 - Y - X — C — 0 be a rac(3U)-approximation
of C. By the proof of Proposition 3.2, we have an exact sequence 0 —
Homz(X,Y) — Hom (X, X) - Homyz(X,C) — 0. Since End,z(X) is a
semiperfect ring and Hom (X, C) is a finitely generated End z( X )-mod-
ule, Hom4z(X,C) has a projective cover Homz(X, X') - Homy(X, C).
By X'€addX, we have Homg,q v (Homy(X, X'), Hom,(X,C)) =
Homgz(X’,C), and then there exists a morphism X’ — C such that
Homz(X', X') - Homz(X’,C) is a projective cover. Then we get the
following morphism between exact sequences,

0 — Homg(X,Y) — Homg(X, X) — Homg(X,C) — 0

! l I

0 — Homg(X,Y') — Homg( X, X') — Homg(X,C) — 0

where Y’ = Ker(X’ — C) and the vertical arrows are epimorphisms. Since
Hom (X, X') is a projective End z;(X)-module, and

Home,g x,(Homz( X, X)), Hom,( X, X')) = Homy( X, X'),
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we get the commutative diagram

0 0

l |

XI/=X/I

l l
0—Y > X—>C—0

l Lo
0—-Y - X —-C —>0

l l

0 0

where all rows and columns are exact and the vertical arrows are split
maps. It is easy to see that X' — C is a right minimal map. By Y €
fresol(,U), we get Exty,(U,Y) = 0 for all i > 0, and therefore, Exty(U, X")
= 0 forall i > 0. Since X" € rac(zU) = coresol(;U) and idim U < o, we
have X" € add,U. We take a resolution of Y:0 > U ™" - -+ > U ? >
U —> Y- 0,where U' € add U, for all i. Since Ext5( X", fresol(;U)) = 0
for all i > 0, we have the commutative diagram

XI/ — X/I
l l
0—U" - U2 >Ut>Y—0

where the vertical arrows are split monomorphisms. Then Y’ belongs to
coresol(;U), and hence we get a minimal rac(;U)-approximation of C:
0-Y ->X"->C~-0.

(b) Similarly.

ExampLE. Let R be a commutative complete local Noetherian ring, A
an R-algebra which is finitely generated as an R-module. Then A-mod is
semiperfect. Moreover, if A satisfies the conditions of Proposition 2.12,
then A has a dualizing A-bimodule.

A (B — A)-cotilting bimodule U is called a strong cotilting bimodule if
fresol(;U) = {Y € B-mod | idimY < «} and fresol(U,) = {X € mod 4 |
idim X < o} [AR2]. Since U is not necessarily a strong cotilting bimodule,
in general, fresol(;U) does not coincide with {Y € B-mod |idimY < oo},
and there is no induced equivalence between {Y € B-mod |idimY < oo}
and {X € mod 4 | pdim X < «}. But, in the case of Artinian rings, we
have the correspondences between categories of complexes. Let F(;U) be
the triangulated subcategory of D”(B-mod) generated by ,U. Let D°(B-
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mod);,4 be the triangulated subcategory of D°(B-mod) generated by com-
plexes which are isomorphic to complexes in K?(B-Inj).

LEMMA 3.5. Let A be a right Artinian ring, B a left Artinian ring.

(@) For a complex X'€ D*(B-mod), the following are equivalent:
(1) X'€ D*(B-mod)qg;
(2)  for every Y'€ D*(B-mod), there exists some integer n such that
Hom 1 moay(Y, X'[iD = 0 for all i > n.
(b) For a complex X € D*(mod A), the following are equivalent:
1) XeK(£),

(2) for every Y'€ D’(mod A), there exists some integer n such that
HOM i moq 4( X YTiD = 0 for all i > n.

Proof. (a) (1) = (2) Trivial.

(2) = (1) According to [A], it is easy to see that if there exists some
integer n such that Hom s y00(B/rad B, X'[i]) = 0 for all i > n, then
(b) Similarly.

The following correspondence is the complex version of Sharp or Aus-
lander—Buchweitz and Reiten for Artinian rings (see [S], [AB], [AR2)).

PropPosITION 3.6. Let A be a right Artinian ring, B a left Artinian ring,
and zU, a cotilting (B — A)-bimodule. Then F(zU) coincides with D"(B-
mod);,y, and zU, ® — induces an equivalence K*(, %) — D’(B-mod),.

Proof. By the duality, it is easy to see that R”Hom ,(-, zU,) induces a
duality functor Hom ,(—, ;U,): K°(2,) - 9(,U). In general, there exists a
duality Hom ,(-, A): K*(,%) — K"(2,). For a complex P'€ K*(, %), we
have Hom ,(Hom (P, A), ;U,) =,U, ® P’ in D’(B-mod). Then zU, ® —
induces an equivalence K’(, ) — 9(,U). According to Lemma 3.5, it is
easy to see that R”Hom z(—, zU,) also induces a duality between K®(2,)
and D®(B-mod);,y. Hence (,U) coincides with D’(B-mod),.

The following result is a generalization of a result of Levin and VVascon-
celos [LV] (cf. [12, Theorem 2)).

ProposITION 3.7.  Let A be a coherent ring with idim A, idim 4, < e,
For every finitely presented left A-module, its injective dimension is finite if and
only if its projective dimension is finite.

Proof.  Since idim , A4, idim A, < «, A is a dualizing A-bimodule. Let
C be a finitely presented left A-module. It is clear if pdim C < «, then
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idim C < . Suppose idim C < «. We take a coresol(, 4)-approximation:
0—->Y—>X—>C —0.Since Y € fresol(, 4), idimY < . Then idim X is
finite. For X, we have a coresolution: 0 > X - U° - U' - -, where
U' € add,A. Let X' = Im(U'"! - UY; then Exti(X! X) =
Ext', (X', X) for all i > 1. Therefore, we have Exti(X*', X)=0, and
X — U is a split monomorphism. Hence X is projective. Since pdimY
and pdim X are finite, we have pdim C < oo,

4. FINITELY EMBEDDING COGENERATORS

According to [Hr], an injective resolution of a dualizing module of a
Cohen—Macaulay ring includes every injective indecomposable module in
some term of it. To prove this, they used localization of commutative rings
(see [B], [Hr]). We approach this problem by using categorical localization.

Let & be an abelian category, % a full subcategory of . We call an
object X €.« a finitely embedding cogenerator for % provided that every
object in % admits an injection to some finite direct sum of copies of X
in &

THEOREM 4.1.  Let A be a right coherent ring, B a left coherent ring, zU,

a (B — A)-bimodule which satisfies the condition (C1), and let 0 — zU — E°

— E' - -+ be an injective coresolution of zU in B-Mod. If the image

of R"Hom (-, U,): D (mod A) - D*(B-mod) contains B-mod, then

@ .o E* is a finitely embedding cogenerator for B-mod, and Tl , o E* isa
finitely embedding injective cogenerator for B-mod.

Proof. By assumption, for every X € B-mod, there exists a complex P
in K~ (sum A ,) such that Hom ,(P’, zU,) is isomorphic to X in D*(B-mod).
We may assume Hom (P, zU,) is the following complex U,

00U e U YU S U S -

where U’ € sumzU for all i. Then we have H(U) =0 (i # 0) and
H°(U) = X in B-mod. Let E be the complex E° > E! - -+ - E/ -
-+, then U’ has an injective coresolution E; which is some finite direct
sum of copies of E" for all i. Then E; is isomorphic to U’ in D*(B-Mod)
for all i. By induction on &, we construct a complex ¥, € K*(B-Inj) which
has a quasi isomorphism =_, U — V in K*(B-Mod) as follows. First, we
take V_ = E_,. Assume we have a complex V,_, which satisfies the
above condition. Since 7_,_,U— V;_, and U* — E; are quasi isomor-
phisms in K*(B-Mod), for a distinguished triangle 7_, U — 7_,_ U —
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U[—k + 1] - in K*(B-Mod), we have the following commutative dia-
gram in D*(B-Mod):

T U — U=k + 1]

l l
Vieo = El—-k+1]

Since V;_, and E; belong to K*(B-Inj), we can consider that the above
diagram is commutative in K*(B-Mod). Then we can choose V,_; —
E,[—k + 1] as a map between complexes. By taking a mapping cone of
Vi_,—= El—k + 1], we have the following morphism between distin-
guished triangles in K*(B-Mod):

T U —71 U — Uk[—k +1] —

l l l

Vi — Vi, —E[-k+1] —

Since V, is a mapping cone of V,_, — E.[—k + 1], it is clear that I}
belongs to K*(B-Inj). And, since 7_, _,U = V;_, and U* - E; are quasi
isomorphisms in K*(rac(U,)), 7., U— V, is a quasi isomorphism in
K*(B-Mod). By construction, V; is the complex

. _>o_)1_~\‘_)... _)I_lb)lodqol_) eee

where I’ € add(,®, E¥) for all i. Also, we have H'(V;) = 0 (i < 0) and
H°(I)) = X in B-mod. Then we have the exact sequences

01> - >I!'>Imd_ -0 (1)
0—->Imd_, » Kerd, > X — 0. (2)

Since I' is injective (—s <i < —1), Imd_, is injective. Therefore, the
exact sequence (2) splits, and hence X admits an injection to 7° By
I° € add(,®B, EX), X is embedded in some finite direct sum of copies
of &,., E~

COROLLARY 4.2. Let A be a right coherent ring, B a left coherent ring,
sU, a (B — A)-bimodule which satisfies the conditions (C1), (C21), (C3I),
and (C4l), and let 0 > yU > E° > E'—> - > E" >0 be an injec-
tive coresolution of zU in B-Mod. If rac(zU) coincides with coresol(zU),
then ®Z:0 E* is a finitely embedding injective cogenerator for B-mod.

Proof. It is easy to see that the situation of the left version of Theorem
2.10 satisfies the condition of Theorem 4.1.
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COROLLARY 4.3. Let A be a right coherent ring, B a left coherent ring,
sU, a (B — A)-bimodule which satisfies the condition (C1), and let 0 — zU
- E° > E' > -+ be an injective coresolution of zU in B-Mod. If
RPHom ,(-, zU,): D’(mod A) — D’(B-mod) is a quotient duality,
then @, ., E* is a finitely embedding cogenerator for B-mod, and , 11, E* is
a finitely embedding injective cogenerator for B-mod.

Remark. In Corollary 4.3, we do not need finiteness of injective dimen-
sion of U,. Indeed, let 4 be a commutative Noetherian regular ring of
infinite Krull dimension. According to [Hr, Chap. V, Sect. 8], injective
dimension of A is infinite, but A4 induces a duality R”Hom (-, A):
D®(mod A4) — D*(mod A).

We have a result better than a result of Miyashita [Ms, Corollary in
Sect. 6].

PROPOSITION 4.4. Let A be a right coherent ring, B a left coherent ring,
and zU, a (B — A)-bimodule which satisfies the conditions (C1), (C2r),
(C20), (C3r), and (C4r). Let 0 >,U > E° > E* > --- > E" —> 0 be an
injective coresolution of zU in B-Mod. Then @, _, E* is a finitely embedding
injective cogenerator for B-mod.

Proof. By Corollaries 2.5 and 4.3.

PROPOSITION 4.5.  Let A be a right coherent ring, B a left Noetherian ring,
and zU, a (B — A)-bimodule which satisfies the conditions (C1), (C2r),
(C20), (C3r), and (C4r). Let 0 »,U —» E° > E' > -+ be an injective
coresolution of zU in B-Mod. Then every injective indecomposable left B-
module is isomorphic to a direct summand of some E*.

Proof.  According to Proposition 4.4, @, _, E' is a finitely embedding
cogenerator for B-mod. By [Ma], every injective indecomposable left
B-module [ is an injective hull of some cyclic left B-module M. Since B is
a left Noetherian ring, there is an injection from M to a finite direct sum
of copies @, _, E*. By injectivity of Do E* there is an injection from
I to a finite direct sum of copies @, ., E*. According to [Ma] and the
Krull-Schmidt-Azumaya theorem, we complete the proof.

COROLLARY 4.6. Let A be a coherent ring, and 0 > ;A - E° > E* >

- = E" — 0 an injective coresolution of ;A in A-Mod. If idim A, and
idim A, are finite, then @ ,_, E* is a finitely embedding injective cogenera-
tor for A-mod.

Proof. By assumption, A is a dualizing A-bimodule. We are done by
Proposition 4.4.

The following result is a generalization of a result of Hoshino [Ho,
Theorem I1], and is better than a result of lwanaga [I1, Theorem 2].
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COROLLARY 4.7. Let A be a right coherent and left Noetherian ring, and
0->,4—>E°>E'> - an injective coresolution of ,A in A-Mod. If
dim , A and idim A, are finite, then every injective indecomposable left
A-module is isomorphic to a direct summand of some E*.

Proof. By assumption, A is a cotilting A-bimodule. We are done by
Proposition 4.5.

PROPOSITION 4.8. Let A be a right coherent ring, B a left coherent ring,
sUy a (B — A)-bimodule which satisfies the conditions (C1), (C3r), and let
0 > ,U > E° > E' > -+ be an injective coresolution of zU in B-Mod. If
the injective dimension of U, is at most one, then @, _,E" is a finitely
embedding cogenerator for B-mod, and TI ., E* is a finitely embedding
injective cogenerator for B-mod.

Proof. By Theorem 2.8 and Corollary 4.3.

COROLLARY 4.9. Let A be a right coherent ring, B a left Noetherian ring,
sU, a (B — A)-bimodule which satisfies the conditions (C1), (C3r), and let
0 ->,U > E° > E' > - be an injective coresolution of zU in B-Mod. If
the injective dimension of U, is at most one, then every injective indecompos-
able left B-module is isomorphic to a direct summand of some E*.

Proof. The same as that for Corollary 4.6.

ExampLE. Let A4 be aring (5 %), where F, G are division rings, and V/

is an (F — G)-bimodule such that dim ;) < o« and dimV; = . Then A4 is
a right coherent and left Artinian ring, and A satisfies the conditions of
Corollary 4.9.
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