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1. INTRODUCTION

In this paper, we solve the scattering problem of the following linear
system

2
=0z 0

i 0 q,+1

4+ 1 0 ) ¥Y(x) (1.1)

'I’(x)=(
0 .

in R% where ¢, and g, are small, x=x, +ix,, é:=1(8/dx, + i(8/0x,)),
0. =3(8/6x, —i(8/dx,)), and generate a corresponding hierachy of non-
linear evolutions of ¢, + 1, ¢, + 1. For a direct application, we see that the
initial value problem of the Davey-Stewartson [6] system with nonsmall
potential could be solved explicitly.

We follow the argument of the d-method to solve the above problem,
which was introduced by R. Beals and R. R. Coifman [1, 5]. By recasting
the scattering data as J-data, they gave complete and systematic analysis of
the scattering problems for general classes of linear systems in one and
higher dimensional spaces [2, 3].

The inverse scattering problem of the Davey-Stewartson related linear
systems with small potential was solved by A. S. Fokas and M. J. Ablowitz
[7] and R. Beals and R. R. Coifman [3, 4]. In their papers, the smallness
of the potential assures the compactness of some integral operators. Here
by setting our potential approximately constant, we still have the
compactness property. However, our analysis has a very different feature
due to the occurrence of the discontinuous J-data. The nonsmoothness
relates to the soliton solutions in 2 + 1, as was pointed out by A. S. Fokas
and M. J. Ablowitz in their paper [7].

The plan of this paper is as follows. In Sections 2 and 3 we deal with the
direct problem of finding the class of potentials in which the scattering
transform may exist. We also construct the scattering transform on them.
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28 DERCHYI WU

In Section 4 we deal with the inverse problem of finding the potentials
of scattering transforms. In Section 5 we derive a hierachy of evolution
equations of the potentials in terms of the evolutions of their scattering
transforms. And in Section 6 we apply our theory to prove the solvability
of the Davey—Stewartson equations.

2. THE EXISTENCE OF EIGENFUNCTIONS

In this section, we show that if ¢, are sufficiently small in L2+~ L¥3~¢
we can find a A-parametrized family of solutions of (1.1), AeC, with
1A £0, 1.

If we denote

-d; -1
i 0 ql(X)>
P(D)= , Xx)=
(D) , o=(, ) "5
-1 -0,
and set
Yix)=W¥(x, )=D(x, 1) m(x, A),
with
4 o {1 0
(p(x,,1)=et(n((l+1/l)/2)+xz(('« 1/4)/2i)) o 1) M|¢Oa 1,
then (1.1) reduces to
2,00
P(D)ym= m=Qm. (2.1)
2 1
—1 76x+;

By posing the boundary condition

1
m—+<i>, as |x| —» o0

and taking the Fourier transform on both sides of (2.1), we obtain the
integral equation

m(x, ,1)=</11>+G « Om(x, A), (2.2)
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(EH/A 1 )
i 1 1 E+ A
G(x, i) = .

(x.4) (21r)ZI |E> 4+ AE+ &/

For simplicity, we define d¢=d&, d¢, and x-&=x &, 4+ x,&,, for every
pair of complex numbers for the rest of the paper.
The existence of m(x, 1) follows from the following lemmas.

where

ei(x161+xzfz)dél ds,. (2.3)

LemMMA 1. If f, g are differentiable functions on the interval [ —1,1],
2(0)#0, then

L
1 r+i

SCUMa+ 1Mo+ 1 Moo 18 11
g(r)

F 1w 18 e (14 181 0))

Jor some positive constant C.

Proof. This lemma follows by elementary argument. We omit the
details.

LEMMA 2. Suppose w, BeC, |ol=1, |Bl<1, w-B=0, and
ix - &

e
Then g, z€ C*(R*\0), and

C(1 —log |x!), as |x|—-0,
1
8w s <{ C TR as|x| = oo and |f >
w, B =

1
X7

s

as |x| - oand || <

s

B e NI =

Jor some positive constant C independent of w and B.

Proof. We choose x(¢) to be a smooth function with support contained
in {[¢ <1}, satisfying y=1 on {|¢[ <1}, and 0<y<1. Moreover, set
Xie = x(&/k).

ix . §

e
800 = o (0 &

eix~f
+J|¢—w12—1+2iﬁ-<"3
=7+1L

() d¢
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Case 1. |x]—0. First of all, we can use polar coordinate and
Lemma 1 to show that /7 is uniformly bounded. Second, note that away
from singularities,

kjagk 1 ~ ! —
(5/66)16_(”'2_1_*_21,/3.6, pEEr k=0,1,2
Then by integration by parts,
lré
+J|5 T L= 1)
” - tr{ l_x}V ‘
<Cf f/zrdrd9+ f(Aée e e

1
A4
ClE—wP—1+42B-&

1
sCIogN+—3<j(1—xN) de
| x|

+f|V¢(l—~XN)| Ve |é_w|2—11+2iﬁ-‘f’d£
1
+f|A¢(l—xN)|Ilé_w|2_1+2iﬁ-§‘d€)
oC N N
<ClogN+|)iz<JN/2r dr +]1\,JN/2%dr+'](]£§'[N/2%dr>

—Clog |x|,

if we take N=1/(x.

Case 2. |x|—> o, B=1. For VYN, |I|<C,|x|~" follows from a

standard argument of mtegratlon by parts. For part I, since >3,

|E —w|*—1+2if-¢=0 has two roots, say 0, and &,, where €l =2. As a

result, we can reduce the estimate of /7 to those of 71, and 11,, where
eix-é ”

EwlP—1+2ip- &%

11=111+112=f

eixf
+j If—w|2—1+2iﬁ~éh(l_m}'

Now let us define p°(&) =& —w|? — 1 + 2iB - &, and write p°(&) =1, + in,,
n:€ R. Suppose that y2(¢) is a localized function with respect to n at 4 =0;
that is, support of yJ(¢) is contained in {&:|p°(¢)| <e). Then if we change
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coordinate £ to #, the Jacobian’s at 0 and ¢, will be uniformly bounded. So
to estimate /I, (respectively, II,), we can split 71, with y° and change
coordinate £ to n. Then by similar method as in the above case (see [11]
for details), we obtain

C 1
—<C—

|, | < Ce + .
lx[“e x|

if we take e=1/x].

Case 3. |x|—> oo, |BI <3 |I)<Cy(1/]|x|") as in the above case. For
part II, we use a similar method again, except that we take the split
function y4(f) as a localized function on the ¢ domain after using the polar
coordinate & =rte’®. For details, see [11]. Thus we get

+ C 1
Ixlogel " Ixle " |x|"*

1| < Ce+
if we take e=1/|x|"% |

LEMMA 3. G(x, )= (%" 97) defined as in (2.3) satisfies

Gy G2z

C 1 1
lcnuain=|Gnu;1n<fﬂ:;ﬁnﬂnmx( —-),

Ix|” x| V2

. . 1 1
|GMLUhanMH<CmM( )

x|” || 2
for some positive constant C independent of J.

Proof. Note that |2+ A+ ¢E/A=|E4+al—|al?+2ib-¢, where a=
LA+ 1/1417) 4 b=3(=1+1/|x|*)(— 4, + i4,). So if we choose w = —a/|al,
B=5/lal, then G, =G, =(2rn)* g, slal x), and the results for G,,, G,
follow immediately from Lemma 2. Estimate for G,, and G,, can be
obtained by standard calculation and similar argument. |I

Then we are ready to prove the existence of our eigenfunctions m(x, 4).

THEOREM 1. If the norm of Q is sufficiently small in L** ¢~ L3¢, then
Jfor any complex number |A| #£0, 1, (2.2) has a unique solution in L™.

Proof. We first write G =G' + G with G' =Gy, and y, is defined as
in Lemma 2. By Lemma 3, G'<Clx| ', G*<C|x| "% so for every ¢,
O<e<l1, G'eL?% G?e L***. Consequently for every Qe L?+*n L*3 ¢,
G,*Q-:L* > L™ has a norm less than C(||Q|l,,.+ Q4 .), which is
independent of A.

505:111/1-3
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Therefore if (|Qll2. .+ Q43 -:) <1/C, then (1 -G = Q') is invertible in
L*. So

=(1—G*Q.)—l(i>eL°°

is the unique solution of (2.2). §

3. THE 0-DATA AND THE SCATTERING TRANSFORM

In 1985, P. G. Grinevich and S. V. Manakov [9] formally solved the
scattering problem of the Schrédinger operator

L=0.0:+q(x),

where x is a complex number. In this section, we show how similar ideas
can be exploited to obtain the J-data in our case. Then we define the
scattering transform and conclude the direct problem of (1.1).

LEMMA 4. If |A| #0, 1, and G = (%" ©2), then

Gy Gn2

_ 1 sgn(|4]|—1) ix-(A+ 1/4) ~2 1
G(x, A)= o i € (1 —1/Z>‘

Proof. Let p,(&)=1¢1>+ A&+ &/4 Then if ¢{=re”, py(&)=(E/A)A—
Hr— \/rT——Z) eCrNA—Lr+./r*—4)e"* ™). Suppose ¢ is a test
function supported outside the unit circle. Since (r —/r*—4)<2, (r+./r*—4)
= 2,by residue theorem, we have

Edi, di,

aGlz 1 6¢(A) eix-f
) _ d
J, 60 ] L \E12+ AE + E/A

=~y |, o

1

1
—_(—2—%—)E L(r,s) L A— %(,4_\/,—2_:;) £i6+7)

<2 ig(4) )
di,dl,d
( (A,——r—\/r 4)ex(ﬂ+n) 1 2 é

1 J. e f¢(2)
" an .0, 0p(€))0R

rdrdo.
A= (1/2)('+\/fz* ) eilé+7)
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By a change of variables: r=R+1/R, R>1, 8=u—n, we get &=
—(n+ 1/7), where n = Re™ and its Jacobian =1 —1/R? The above expres-

sion then becomes

7 —ix-(n+1/n

J-2 j @+ mg(n) _ <R+1>(1——)deu
R>1 —(’1+1/r1)—(1/'7 W—(n+1/7)) R

27 e x (n+l/n)¢(,’) ( 1)( 1 )
R+=)1——)dR d
f o=t Tor -y RN TR

1
—_ ﬂx (n+ 1/%)
= 4nf F ¢(n) dn, dn,.

Consequently if || > 1,

9 11 ﬁ
- Gyy(x, M) = —— e = GHUD,
o6 4 4}

On the other hand if we take ¢ to be a test function supported inside
the unit circle, by a similar argument as above, but with 1—3(r—
Jr2-4) et J-L(r+./r’-4) e"*™ replaced by A-3(r+./r’-4)e"* "),
i—Yr—/r’—4)e™*™, and with the condition R>1 replaced by the
condition R < 1, Jacobian = — (1 — 1/R?), we can prove that for every |4| #
0,1,

\ 1 sgn(JAl—1) . o
Gl )= = BRI L g,
2 4n i

Similarly we can prove for the cases G,;, G, and G,,. |
For simplicity, we write

0

;;f

Gi(x}=G(x, 4),

1
“"(“5)’

i=

for the rest of the paper.
LEMMA 5. If || #0, 1, then
e EG v e =Gy xS

Proof. This follows directly by a change of variables. ||
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THEOREM 2. If Q is sufficiently small in L***~L¥*~°, QelL', |A| #
0, 1, then

_Lsgn(IM—l)

dim(x, A)=
* 4n

3 T S — 1
e —Ag my+ ori W&, A)m (x! _E>

Proof. Let m= (:; ). Then by (2.2), Lemma 4, and Lemma 5,

0;m(x, 1) = _Z%ifﬁ(%l_‘_”(l G e gt et

N
(1)) e

1 Al-=1) .,

= —4-7—[5—5’1”7'—)@*'“(1—61/;*Q->1
- 1\~

__ Lsgn(ldl—1)

i Z e H(1—=G_x Q!

) e 1
(=g )& ()

_ Usgn(lal—1)

=g AT G (& A mix, /7).

Theorem 2 suggests that there is a jump of m(x, A) across the unit circle.
In fact, the jump is the discontinuous part of the J-data of m(x, 4). In order
to show this, we need some more lemmas.

LEMMA 6. Let A=Re™. Then

llm ei(:q(().+ 1/4)/2) + xa((4 — UM‘IZIHG(X })
s A

()
L ¢ dc.

= li
(21)° emor J [EP =1+ (e #¢—e?E)e
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Proof. By a change of variables w = & + {(4 + 1/4),

lim oA+ 1/2)/2) + xa((2 — l/i)/Zi))G(x i)
2

R—-1%F
1 . &+ (A+ 1/2)/2) + xaEo+ G— LAV} 7 E L (/2 1
=—— lim fe - — (é+/ )df
(2n)* R>13% €12+ A&+ ¢/A 1 E+4
= L lim
T (2n)? R-1%

eiix@i+ G+ 17— X —1/2)/4) + x2(w3 + (A — 1/A + A — 1/A)/4i)}

x
f lw]2— 1+ (e~ *w — e*®) L(1/R— R)+ (2 — R*— 1/R?)

B+ 1/i- LA+ 1/2) 1
"( 1 w+i—%(i+1/i)>dw
1 How, ¢, €)

dw,

1i : .
(27)? oo f 0P =14 (¢ "0 —ed) ¢+ 0(c)

where dw =dw, dw,, and

flw, ¢ 8)=ei{x1(w1+(i+1/‘}.—1——1/}:)/4]+x2(w1+(l'1/).+1—l/)__)/4i)}
’ ¥

x(cb—%(l—l/l) 1 _>'
1 w+3(A—1/1)
By Lemma 1, in order to complete the proof, we only need to show that
. Sflw, ¢, ¢)
1 : .
e (J.Né [w?— 1+ (e ?w—e?d)e de
Sflo, ¢, ¢) )
— : . dw | =0,
jN, 0> =14+ (e *w—e®d) e+ o(e) @
and
: 5 1
fosoe(3 )
lim do =0,

es0* Jn; @ —1+ (e Po—e%d)e

where N;= {w=re”: [sin(6 —¢)| >4, r>0}, for all 5>0. However, this
follows from Lemma 1 again. (See [11] for details.) Thus the proof is
complete. |
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Now let us define ¥,(x, u, 4), |u| =|A| =1, which satisfies

!
#ixn =)+ [ Gile-nw 0 Piem D (B)

with

1 et '
G, (x, lim dé. 32
b6 )= 2neio+fm 21+ (g - ué)e< f)é o

By Lemma 6 and an argument similar to the proof of Theorem 1, ¥,
exists. Moreover we define f_(x, 1)=limg_ - f(x, RA), and f, (x, A)=
limg_, + f(x, RA) for any function fe L*(Cx {C\S'})n C(Cx {C\S'}),
S'={zeC:|z]=1}. Note that

¥ _(x,)=¥,(x, 4 A),

(3.3)
V,(x,A)=¥,(x, —4, A).
LEMMma 7. With G, defined as in (3.2),
0 if . e 1 el —e ® 1
_ i —_ — ix. e _ —ix-el®
o= —g (e (0 W)= (7T L))
Proof. Use the polar coordinate and set
x. &r.o)y 1
— pix E(r )
S5 Er, ) =e ( D ke 9)) g
Then by the dominate convergence theorem, we know that the limit
1
i - 1
EI_I’I}')I+ r2_ 1 +2ir£ Sln(0—¢) {f(x, é(r’ 6)) f(x9 é( ’ 6))} dr df
is independent of ¢. So
4 am | 1 {Fx, £, 00) — (. &(1,0))} dr B} =0,
3 Le~o- d P 1+ 2ire sin(0— ¢) x

Furthermore for fixed 6, ¢, let r, be the roots of r*— 1+ 2ire sin(f — ¢)
=0, that is, 7, = —igsin(0 — $) £ /1 —&?sin’(6 — §). So
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A N A 2" S(x,&(r, 8))
59 1= a¢ i, L L, 7 v e sn0—g) P
1
(2n)2 a¢ -0 f(x é(] 0))
= 1
X L P T+ 2iresn@—g) Y

1
(27[)2 6¢ e—v()

o lim [ &01,0) l
= () a¢ " 2 /1—¢%sin*(6—¢)

—m+iesin(9—¢) =
+\/m+is sin(6 — ¢)

1 6 2n
= 53 fo f(x, &1, 0)) in(sgn{sin(6 — ¢) }) dO

_._,_l_ el’,\'~e" e_i¢ 1 e~ix-e"¢ _e_ié 1 I
T 4nm 1 e? 1 —e?))

Now we are ready to find the discontinuous J-data.

1 r—r.|®

j S &(1,0)) - log do

r—r_jo

xlogr

0

THEOREM 3. If Q is sufficiently small in L**¢n L¥*~ =~ L', then we can
find a function R: S'x S' - C, such that

2n

Y_(x, )=V =] RE 1) P, (x,e) df,
0

2n
m_(x, ) =m(x D)= [ R@®, 1) e A (x, ¢%) d,

and supgi 1 |R| < C Q| for some positive constant C.

Proof. We first write ¥, =( q,‘ »). By (3.1), Lemma 7, and an argument
similar to the proof of Theorem 2, we have

0
5& v (.X e )
- #_Z;!— { [€ _‘¢ql 'IIL 2(€'¢, €‘¢, j‘) + q: g’l, l(e“»a el¢s /1)] Wl(x’ ewb’ €'¢)
—[—e #q ¥, —e™ e, 1)
+ P (e, e )] Y (x, 0%, —e%)}
=W, (", 1) ¥ (x, e, e®) — Wy, 1) Wi(x, e? —e™),
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or
% Yi(x, e A)= W (" i) V\(x, e e?)— W,(e?, i) ¥, (x, e, —e®),
where
Wi(e®, ) = = (e 4G Pr (e, . 1)+ 4, ¥ (e, e, 1)),

——

WZ(ei¢’ A) = - 4~f— ( _e_i¢ql sUl, 2( _ei¢’ €i¢~ )V) + qj!{l‘\ll( _eid,’ ei¢’ ;'))
n
Equation (3.3) then implies that

¥_(x, 1)+ j T W, 1) W _(x, e) di
Q

2n
—¥ (x. )+ L W(e,2) ¥, (x, o) dg,

where
Wl(ei¢’ i) = X[u. o+ ﬁ](¢) Wl(ews A)»
WZ(ei¢a }‘) =Xla—n, a](¢) WZ( _ei¢a '1)’ x=arg i,

and y, is the characteristic function for the set 4. Consequently,
sup, , |[W.(A, )I<C|Q|,. Thus if Q is sufficiently small in L>***n
L¥*~ ¢~ L', we can conclude that

el 2n k
¥o(x ) - ¥ (x A)={ > (-] e,

k=1
o0 2 k
+Y (—U*(j (e, /1)~)
k=0 0
xr” W,(—e®, A)-} ¥ dg.
0

By setting R(e’*, A) to be the kernel of the above integral operator the
theorem follows. ||

For convenience, we renormalize m(x, 1) by defining

A(x, ) =,—; (m(x, A)— (;))
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COROLLARY 1. If (0%/0x) Qe L** A L¥*~* k=0, 1, and Q is small in
LN LY=L, then A(x, 1) is a unlformly bounded function in the A
variable which satisfies,

if 1Al #1,
sgn(JA|—1) .,
5}A(X, l): _%%-'Ilﬂz_)elx“(_iqlmz‘{"qgml)(f“i)
x< i o))
if 1Al =1,
A_(x, 1) — J '4'; ix-(—Ai+e®)

( %A, (x, e® (e{"’)) dg,

where R(A', M) is as in Theorem 3;
if |4l = 00, A(x, A) = (g).
Proof. This is obvious from the definition of 4, Theorem 2, Theorem 3,
and a similar argument as in Lemma 3. J

Our scattering transform is defined from the above corollary, that is,
from the 0-data of A.

DeFiNITION 1. If (0%/0xF) Qe L***nL** % k=0, 1, and Q is small in
L2 A L¥3~¢~ L', then we define the scattenng data (or the J-data)
S.,S;as

1 sgn(]4i| —1)

S(A)= “ZE—I‘}‘lz_‘ (=g iy + Gomiy ) (&, A),

when || #0, 1;
Sq(A', Ay=R(L, 2),

when |A|=|A"|=1, R is as in Theorem 3; and the scattering transform
T: L*(Cx{C\S'}NCHCx{C\S'})>L*(Cx {C\S'}AC(Cx{C\S'})
as

et (,i)f(x 1) for [A] #1:
Z c ) Z » )

%J.zn ei{¢+'t“41+elo)}sd(ei¢s A)f+(x, ei¢) d¢, otherwise.
0
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4. THE INVERSE PROBLEM

We now turn to the problem of inverting the scattering transform: given
the ¢-data S,, S, or equivalently, the scattering transform, try to find the
corresponding Q.

LEMMA 8. Suppose fe L> {(C\S')n L>*5(C\S"'), ge C*(S"), 0<a< 1.
Then the following are equivalent.

05 A(A) =f(4), if Al #1;
A _(A)— A (4)=g(2), if |Al=1; (a)
4-C, as |A| - o0;
Ae L™(C\S')n C'(C\S").
AA) = — 27” {(Cldc dc+2n§ = ld{+C (b)

Proof. By a direct application of the Cauchy integral formula [10], we
can prove that (a) implies (b). Conversely, suppose (b) holds. Since 1/4 * -
maps L2 ¢ nL%*° to Cy, A tends to C as |A| - oo. Moreover if |4] #1,
0;A(4) =f(A) is followed by an argument similar to the proof of Lemma 4.
Finally, we can prove A _(1)— A (1) =g(4) by Sokhotski formula [8]. ||

LEMMA 9. Suppose (|A| + 1/|A|%) S (A) is sufficiently small in L*~*(C\S")
A L**(C\S") and supgi, ¢ |Ss(4, 1) < 1. Then there exists a unique
Sunction Ae L*(CxC)n CY(Cx {C\S'}) such that,

i 1Al#1,

R — pix-$a —1 ( —1) ( 1 ))
d;A(x, ) =¢ Sc(l)< ZA v + —1/1))’

if 1A =1,

A_(x,A)—A,(x, 1)
1 p2n : . : :
== [ Sue, 2y et aren (m L (x, %) +( 1.»,,)> d;
A 0 e

if 1Al > o0, A(x, 1)~ (g)-
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Proof. Let us first consider the integral equation

1 I s 1 1 1 _
Alx, 1) = _fﬁjcc—/le ‘SAC)(—C_A(x, —C_>+(_1/C_)>d6/\d£

1 I 12 . A :
Y b T, Seh e e

:7.;1' slc——z
x (e*‘m (x, &%) +< 14,)) dp, (4.1)
e
or
(1—CT-)A=CT(1{A), (4.2)
where
1 ¢ f(x0 - 1 f(x{)
Cf(x, A)= “Zz—ij'c ARy T, (4.3)
—l_e""":‘S‘,(l)f<x, —1) iA 1,
e a)={ 2 ]

/% Sd(€i¢, i) eix.(—).+ew)ei¢f+ (x, eias) d¢, if Ml =1.
(44)

By an argument similar to the proof of Lemma 8, we can prove CT maps
L*(CxC)nC(Cx {C\S'}) to itself with norm less than some positive
constant C, depending only on |[S./Af} 2-c p24c+ |Sillg=. So (1 —CT") is
invertible and there exists A(x, 1)e L*(Cx C)n C(Cx {C\S'}),

Alx, A)=(1-CT)™! CT(I{X)

satisfying (4.1). By Lemma § again this lemma follows. |
Recall that

P}_(D)=<(2/i)6x+i ~1 )

-1 (2/i)o,+ 1/
LemMma 10. If T is defined as in (4.4), then
P,(D)Tf=TP, D).
Proof. This follows directly from the definition of P,(D) and 7. |
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THEOREM 4. If (|A|+1/[A|*) S, is small in L* *(C)n L**%(C),

SUPgi st 1S4) €1, then
Py(Dym=Q(x) m,

with
m=AiA(x, )+ (l),
B 0 —-C . T(A, + 1/}
Q(""(c*(l/o T(A,+1) 0 )
where

T defined as in (4.2), (4.3), (4.4),
1 - 1
Cofx)= —5= | [ Odndl+5= flx D).
Proof. By (4.2) and Lemma 10, we have

P,(D)A=P,(D)(1—-CT)"! CT<1;'{>

= P,(D)(1—CT)"! (1{1)

=[P,(D),(1-CT)™ "] (1{'{)

=(1-CT)™' [P«D), CTI(1-CT)"! (lfl

=(1-CT)~'[Py(D),C1T(1—CT)"! <1{A>
{—C*T(A, +%>} (1-CT) "1

{c lT(A2+1)}(1—CT-)’

1
A

1
0 —C*T<A,+Z

*¢

| o

Cap T+ 1) 0

And the theorem follows from the definition of m(x, 1). |

and

(4.5)
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5. AN AsSSOCIATED HIERACHY OF NONLINEAR EVOLUTIONS

In this section, we find a corresponding hierachy of evolution equations
from the scattering side.

LEMMA 11.  Suppose A is defined by (4.1). Then if |A| =1, we have

(12T (T (VA (o
A+(x,A)—<l+2) (A 2<1))(X,A),
where

1 2n . R i X . .
Tdf(x,l)zATL Sy(e, 4y e e (x, o) dp,  for i =1.

Proof. The lemma is directly followed by applying Sokhotski formula
(8] to (4.1). }

As a result (4.1) can be rewritten as

(1—CH)A=CH(1{'1>, (5.1)
where
o (=) e S (4) flx, =1/7), 0 A #1,
Hf(""”_{r,,(l+Td/2)~1f(x,,1), it =1 G

For simplicity, we define a paring < , >,

f1> (gl>> :(C*(f1g1)> 53
<(f2 "\g, * C,(f282) ’ (:3)
where C, is defined as in (4.5), for fz(z), g:(iz), fi,8,€e L7(CxC)n
C'(Cx {C\S'}), and an operator J given by

7(2)-(n 9)

S S 0

Consequently, since P;(D) commutes with H, by an argument similar to
the proof in Theorem 4, (5.1) then implies

s lu(us (O, o

where @ is defined as in Theorem 4.



44 DERCHYI WU

Lemma 12, If H, (, ), is defined as (5.2), (5.3), then there exists H
such that

f HE o= (Hf 80

for f=(1), 2= (%), f;, g€ L(CxC)n C(Cx {C\S'}). As a matter of
fact,

(AP eSS~ YD) S VA i JAlAL,
Hf‘x’”‘{fd(l+Td/2>-‘f(x,i), i =1,

where
2n
Toftc )= Sull e*) e if(x, e*)dp,  for |A]=1.
0

Proof. This follows directly from the definition of H, (, >, and a
change of variables. |

Lewa 13, With Q. A as in (54) and (5.1), then
a7 (Ea (V)2 (2)).
where
Z:—(1+cﬁ)*‘cﬁ<1;/1). (5.5)
Proof. Note that &= —C. Then (5.1), (54) imply
2= (G (V) (G- (),
7 = (G (V) ().
7 (G )+ (V)) arem ()
(G () A+ (0))
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LEMMA 14. Suppose (1+|4|*) SA4) is sufficiently small in L**n
L“E(lﬂl Ydi, di, ), Supgi, g1 1S4l <1, and A is defined as in (5.5). Then
Ae L*(CxC)n CHCx {C\S'}), andA—»( ), as |A| — o©. Moreover if we

let
N UL VIS
P,(D)= < 1 —(2/i) 0.+ /1)’

then

P,(D)A=0(x) (Z + (lil»

where Q is as in (54).

Proof. First of all, note that P,(D) commutes with #. Thus by an
argument similar to the proof in Theorem 4, we can show

b=t (1+( )

Q(x)=( 0 —C (Y)Y B, + 1))
C H(A,+1/¢) 0 :

where

By (5.4), Lemma 12, the above expression for J then implies

ow=7 (V) 2(7+(1a))).
ﬂ'<(1{'1> aa+em >>
7 (wo-em (V) (1),
-7 (= (V) ),

=0(x). 1

For simplicity, we write fg = (f;:) for f= ( ), g=( Z; L& € L¥(CxC)n
C'(Cx {C\S'}) for the rest ollthe paper.

i

LEMMA 15. Suppose that at t=0, (|A|*+1/|A|?) S, is sufficiently small
in
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LY nL*~ (1 +1/|A*) di, dA,), and S, is sufficiently small in
L*(S'x S'). Moreover for t <1, 0H/3t=[¢,, H], where ¢ ,=1/(A—a)+
1/a(ai+1), A, A, and Q are defined as in (5.1), (5.5), (5.4). Then

17 1 1 1
Q {AA( }+ AA( >+A(a)( >+A( )</
o 1/a
1\/ 1/a ~ 1N/ —1/a A, (0))}
Al —= Al —= 0 .
" ( a)(—l/d>+ ( a)( W) 7 )< 45(0)

Proof. 8H/0t=1[¢,, H] implies that S (1, 1)=5(4, 0) e (¢t~ (=10},
and S,(e™, 4, 1) = S (e™, A, 0) ¢’ {#H) — 4™} Note that ¢,(A)— ¢ (—1/4) is
purely imaginary. Then by the assumption on S.(4,0), S,(e™ 4,0) and
Lemmas 9 and 14, A, A are well defined for r < 1.

Second, if we take ¢; in the distribution sense, then by (5.1), (5.5), we

have d;A4=H{A+ (")}, 6;A=—H{A+(,},)}, and 85(AA) = (0;4) A+
(GAA) Lemma 13 and the Cauchy integral formula then imply

a7 (e (V)1 3+(00)),
=7 {afeL (V)] 2+ (0)
=7 (otfar ()} 24(),
7o (V)] - (),
=7 (ot A+ () <7 (o a+ (V)] i),
=7 (b 47,7 ((021) . (),
+7 (@06 ("] >>
{AA(a)+ : AA< )+A( )(1; >+/7(a)(1{a>
ea(=g Ba) 1 (=) ) o0 (G}

For the rest of the paper, we say S,, S, are sufficiently small if S, S,
satisfy the assumption of Lemma 15.
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LemMma 16. If |a| > o0 and A is defined as in (5.1), then A(x, a),
A(x, —1/a) can be expanded in

axa=(")+ T mme=(")+ £ ()
k k

=0 1 =oak+l Bk,z(x)>’
1 —a > 1 —a o1 [ Agq1(x)
Al x, —= )= + —~ A (x)=( >+ _—< ’ ,
( a) <1> an* 1 k{:oa" Ak 1.2(x)
with
By =4,
2
?axBo,2=41+72+¢I142,
2
Bk,1=(ql+I)Bk—1,2_7ain»1,1’ k>0,
2
;aka—1,2=(q2+l)Bk~l,l"'Bk—2‘2, k>1,
and
2
?62A1,1=‘]1+‘12+41‘I2,
Ay 2=¢,,
2
'lTaEAk+l.l=(ql+I)Ak+l,2+Ak,ls k>0,
2
Ak+2,2=(q2+1)Ak+1,1_?axAk+l,2’ k=0.

Thus the coefficients B,, A; can be expressed in terms of q,.

Proof. By expanding (5.1), we get
1 -
By (x)= —L, J /’L"H{A +< M)} di A di
2ni Je 1
1
rom m{A +( ”)} &,
2ni Vg 1

1 1 - 1 1
Ak+l(x)= —%J.C -(-_—WHA di A di+2—m s WHA dA.

505/111/1-4
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Second the properties of the coefficients B, 4, can be derived by plugging
the series of A(x, a), A(x, —1/a) in both sides of

P,(D) A=0(x) (A + (11)‘» 1

LemMma 17. If |a| » o0 and A is defined as in (5.5), then A(x,a),
A(x, —1/a) can be expanded in

B 1 o0 1 ~ _ 1 x 1 Ek,l(-x)
Atx, a)_<1/61) +kz(] ak*! Bk(X)_<1/a> +kz;:0 a! (Eka(X))’

2 L
—?axBo‘1=‘I1+q2+‘I1‘I2a
Eo,z=q2,
2.« ~ ~
“75.ka—1,1=(‘11+I)qu,z—kaz,n, k>1,
- ~ 2 o
Bk.2=(q2+l)Bk—l,l+;a.in—l,25 k>0,

and

ZI,I=QI3

2. -

_;a.iAl,z"—"h'*"h'*"Il‘Iz,

~ ~ 2. ~
_Ak+2,l=(q1+I)Ak+l.2+?axAk+l,1’ k=0.
2. - ~
_76.EAk+l,2=(q2+l)Ak+l,l+2k,29 k>0,

Thus the coefficients B,, A, can be expressed in terms of q,.

Proof. This lemma can be proved by Lemma 14 and a similar argument
as in the proof of the previous lemma. ||
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THEOREM 5. Suppose |a| - oo, 0H/0Ot={[¢,, H], where ¢, is as in

Lemma 15 and Q is defined as in (5.4). Then the hierachy of nonlinear
evolution equation of Q is

oQ 1 - B\, (E,,z 1)}
—~=9 - B.B. . ' ~ '
ot {igz a‘{os,/zs:iz ! '12+<BP2.2>+ B,

.5 ot () G
+ — A‘A,»*»+< T+~ R
i§2 a,{ls/zs:i-»l ! / ~Ai.z Ai71.2

where B,, B,, A,, A, are defined as in Lemmas 16 and 17.
Proof. This follows directly from Lemmas 15, 16, and 17. |
COROLLARY 2. Suppose S. and S, are sufficiently small at t=0,
and for t<l, k=2, OH/Ot=[@,, H], where ¢, (1)=—i*a"*'+

(=)t (a** 1A%, and Q is defined as in (5.4). Then the nonlinear evolution
equation of Q is

a0 1 = B, ) (§k~1 1)}
L L BB, .. L Y st
ot {ak+l{OSJ§k—l e l+(Bk\l,2 By »

1 ~ A —
sl 2t )R
k.2

1<j<k T Ar41,2

Ry Wi

where B, B,, A,, A, are defined as in Lemmas 16 and 17.

Proof. 1If |al - oo, the Laurent expansion of

) 1 o ik (_1)k+l o (_1)k+1 }:k
o (=3)= 2 | G 2 )

= A (=1t (e
=k§l {l:_ak+l+dk+l]+[ ak+llk - ak+1):k ]}

=§ {¢a.k(z)—¢,,_k(~%)}.

Then the corollary follows from Theorem 5 and the assumption. ||

In particular we have the following corollary which is closely related to
the Davey-Stewartson system.
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COROLLARY 3. Suppose S., S, are sufficiently small at t=0, and for
1<, 0H/0t=[i(A* —1/A%), H], Q is defined as in (5.4). Then

o(l+q,)

Q1 +2(8%0x% — 0%/ex3) q4

ot - i —(1)(1 + q;_)
—2(0%/ox3 - 6%3x2) g,

’

0

where

LT 0?2
(—— —7)w=4( )(‘11+‘I2+41‘12)-

+ —_—— ———
ox? 8x3 ox?  8x?

Proof. By setting a = ¢“™® in Corollary 2 and noting that

- 2
B1,1+B1,2=B(2),2_?5.EB0,29

~ 2
Ay + Ay ,= _A%,l+?axAl.la

wy(l+q,)
Q 1 —{(@2/) 6.y +((2/) 6.} g,
ot 0| —we(l+4¢,) 0

+{((2/) ) +((2/1)2,)*} g,

il

4 4
w0=70‘\:30,2+76x141‘1.

Therefore the corollary follows by setting @ =w,. ||

COROLLARY 4. If Qo=( o), 8 11,/0x is sufficiently small in L***

L*¥3~¢ for k< 6. Then the initial value problem of

00 1 = By B\,
E T {— BB, . : -
ot {akH {Osjgkl ’ kﬂ*‘+<3kr1,2)+( By , )}

1 - Ar ) (—‘Zk-f—l 1)}}
+= AAd,_ .+ ’ + - 3.6
a* 1{1§<k A (_Ak+l,2 A > (6)
Q(x, 0)=Qo(x)
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can be locally solved, where B,, B,, A, A, are defined as in Lemmas 16 and
17.

Proof. Since for k<6, 0*11,/0x} is sufficiently small in L>*°~ L*?*,
we can define the scattering data S,(4,0) and §,(1, 4,0) of Q, by
Definition 1. Moreover S.(4, 0), and §5,(/’, 4, 0) are sufficiently small. Thus
we can define S.(4,t), and S,(A’, 4, 1), H by 0H/0t=[¢, ., H] and (5.2),
A(x, 4, t) by (5.1), and Q" by (5.4) successively. Note that Q"(x,0)=
Qolx).

Corollary 2 then implies that for ¢t <1, Q" satisfies (5.6). So Q can be
solved by setting Q(x, 1) =Q"(x, t)=F {H(A+ ('), (;};)>4 for r<1. 1

For the rest of the paper, we say Q, is sufficiently small and smooth if
0, satisfies the assumption of Coroliary 4.

COROLLARY 5. If Qg is sufficiently small and smooth. Then the initial
value problem of

0 w(l+gq,)
a0 1 +2(8%/0x? — 0%/0x2) q,
t i) —w(l+q,) 0 ’
—2(8%/0x} - 3*/0x3) q;
62 62 52 62
(5E+5;§>w=4(5;?—5x—§> (91 +92+9.9>2) (5.7)

Q(x,0) = Q(x)
can be locally solved.

Proof. The corollary can be proved by the same method as in the proof
of Corollary 4, but with ¢, , replaced by i(4*— 1/A%), and with Corollary 2
replaced by Corollary 3. |

6. AN APPLICATION: SOLVABILITY OF THE DAVEY-STEWARTSON EQUATIONS

We start with the consideration of the following two boundary value
problems: given Ae C, |A| #0, 1,

P,(D)m(x, i) = Q(x) m(x, A),
m—(}), as |x|—oc;

P,(D)g(x, 1) = O(x) g(x, 4),
g— (", as |x[->o0.
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From the discussion in previous sections, we know that if Q is sufficiently
small and smooth, the scattering problems of (6.1), (6.2) can be solved by

defining

1/4
()

1 sgn(ldl— 1)
an JA?

when |A|#1;
S (A, Ay=R(A', A), when |i]=|i|=1,

S((A) = (_ZQT’?z‘*'qj’?l)(fb A’)a

R is as in Theorem 3.

1 sen(l4— 1)

S =3

(—1G &+ 280 A,

when JA| #1;
SLy(A, A)=R'(1, 1), when || =|l"|=1,

R’ is as in Theorem 3

except that W,, W, are replaced by
Wile, 1) = = (@ Vo + €445 (e, e, ),
Ke, )= “an (91¥22— e®q, L) —e”, e, 1),

where ¥, =( 52;) satisfies

avy
q’z(x’/l, i):eu%< { )+IG|(X—}’,/1) Q(Y) !112(}”/1’/1) dy

Besides

o i 1 1 1
0;A(x, A)=e SL.(A)< ZA(x, /T)+<_1/I>>’

if [A]l#1

(63)

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)
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R 2n _ ) ) . . .
(A— _A+)(x, em) = J‘O e‘”‘Sd(ehﬁ, e'tl) elx-(fe + ey

X(ef¢A+(x, e'¢)+< 1,¢>> d¢ (6.10)
4
oy
A(X,/l)—b(()), if |A|—>oo’ (611)
swissin(a(e ()
it 1A £1, 61

2n ) . ) .
(A~ — A" ) x, e®) = J. S,(e, ™) X (et ret)
i}

—ig
x(A’+(x,ei¢)+(e1 )) db:; (6.13)
0 o
A’(x,l)—><0>, if |A] - cC. (6.14)
Moreover
1
(1—CH)‘1A=CH< {1)
(1—CH’)‘A’=CH’(1{'1>,
where
1. 1 I
—<e™US () hx, —=), if JA#],
Hh(x, 2)={ * . A (6.15)
T,,<1+—2i’> hix, ), if JAl=1.
. ) 1 ,
e""“S’JA)h(x, —;), if |Al#1,
H'h(x, )= # (6.16)

r\ —1
T9<1+-T2‘4) h(x, 4), it A=1,
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and
| . . .
Tah(x, A)=7 [ Sule®, iy e e eh (x, ) dp,  (617)
T h(x f Sy(e®, 3) e AN (x o) dg, (6.18)

for |A| = 1. Thus by a similar method as in the proof of Theorem 4, there
exist Q" and Q' such that

P,(D)ym=Q"m, (6.19)

P,(D)g=0'g. (6.20)

Now let us define 4*= (2; :;) for A= (2‘ o), and an operator U
%1Cve\r; l;y U, /L)—(h:’ff ””f’) for , h,e L*(CxC)n C'(Cx

LemMMa 18. Suppose Q is sufficiently small and smooth, and m(x, 1) =
(), glx, A)= (2) satisfy (6.1), (6.2). Then

-m=g.

Moreover Q = Q* if and only if
Um=g.

Proof. (1/A) m=g directly follows by the uniqueness property. On the
other hand, since

U(P,(Dym)= —P;(D) Uim),
U(@m)= —Q*U(m),
SO
P,(D) U(m)=Q*U(m),

and the lemma is completed by the uniqueness property. |
Remark. The “if” part of Lemma 18 still remains valid without the
smallness and smoothness assumption on Q.

LemMma 19. If Q is the solution of (5.7) given by Corollary 5. Then
Q(x,0) = Q*(x, 0) implies Q(x, t)=Q*(x, t), for t < 1.
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Proof. We first consider the systems (6.1) and (6.2) with Q(x) replaced

by Q(x,0). Since Q(x,0) is sufficiently small and smooth, there exist
m(x, 4,0), g(x, 4, 0) satisfy (6.1), and (6.2). By Lemma 18, we have

1
;m(x, i, 0)=g(x, 4, 0), (6.21)

U(m)(x, 4, 0)=g(x, 4, 0). {6.22)

Now let us define 4, 4', S, S., S, S, H, H at t=0 as in (6.3) to (6.8),
(6.15), and (6.16). Morecover we define

S.(4, 1) =S(4, 0) VD W1} (6.23)
S (e, 2, 1)=S,(e?, 4,0) e tVA—vleh} (6.24)
Si(4, t) = §.(4, 0) e' WA —v(-UD} (6.25)
Si(e, 4, 1) = S,(e®, i, 0) et h - veh) (6.26)

where Y(4) = i(A* — 1/4%).

Successively define A(x, 4, 1), A'(x, 4,¢) by (6.9)(6.11), (6.12)}-(6.14),
m(x, A, t), g(x, A, t) by (6.3), (6.4), and H, H' by (6.15), (6.16), Q"(x, t) and
Q’'(x, t) by (6.19), (6.20).

Q" = Q follows from the assumption. Thus by (6.19), (6.20) Lemma 18
and the remark following it, it is sufficient to show that

1
I m(xs t) =g(x7 t)s
Uim)(x, t)y=g(x, t).

By (6.21), (6.9), (6.12), we have S,(4,0)=(1/4) S.(4, 0). And (6.21),
(6.10), (6.13) imply S,(e®, A, 0)= S (e, 4, 0). Therefore by (6.23)-(6.26)

|
S(4, 1)==S.(4 1),
A
Sd(ei¢, ’{’ t) = S:i(ew’ /17 t)

Thus

1
Zm(x’ t) =g(x’ t)



56 DERCHYI WU

follows from (6.3), (6.4), and (6.9)-(6.14). On the other hand, by (6.22),
(6.9), (6.12), we have —(1/]A|?> 1) S.(—1/4, 0) = S’(4, 0). And (6.22), (6.10),
(6.13) imply S,(—e®, —2,0)=S,(e®, 4,0). Thus (6.23)-(6.26) result in

1 1
- S (——_, t) =S4, 1),
14)2 2 )
Sa(—e®, —i 1)="8y(e" 4, 1).

So (6.3), (6.4), (6.9)-(6.14) imply
Um)x, t)y=g(x,1). 1

THEOREM 6. If vo— 1 is sufficiently small and smooth, then the initial
value problem of the Davey—Stewartson system

o @7
i?—?+wv+2< —-)v=0;

F) ox2 ax?
2 2 &
—_— —— =4 — — = 2
(rvam)e (-am) o
v(x, 0)=v,

can be locally solved.

Proof. Set g,=v—1, g;=6—11in Q=(_ %) in Corollary 5. Then the
theorem follows directly from Corollary 5 and Lemma 19. |}
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