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Abstract

We consider variants of alternating auxiliary stack automata and characterize their computa-
tional power when the number of alternations is bounded by a constant or unlimited. In this
way we get new characterizations of NP, the polynomial hierarchy, PSpace, and bounded query
classes like co-DP=NL〈NP[1]〉 and �2P=PNP[O(log n)], in a uniform framework. c© 2002 Elsevier
Science B.V. All rights reserved.

1. Introduction

An auxiliary pushdown automaton is a resource-bounded Turing machine with a
separate resource unbounded pushdown store (PD), that is a last-in =rst-out (LIFO)
storage structure, which is manipulated by pushing and popping. Probably, such ma-
chines are best known for capturing P when their space is logarithmically bounded [4]
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and for capturing the important class LOG(CFL)⊆P when additionally their time is
polynomially bounded [21]. These two milestones in reality form part of an extensive
list of equally striking characterizations (see [24, pp. 373–379]). For example, a stack
(S) is a pushdown store allowing its interior content (that is, symbols other than the
topmost symbol) to be read at any time, a nonerasing stack (NES) is a stack which
cannot be popped, and a checking stack (CS) is a nonerasing stack which forbids
any push operation once an interior stack symbol gets read. Cook’s seminal result [4]
alluded to above, that

AuxPD-DSpace(s(n)) = AuxPD-NSpace(s(n)) =
⋃
DTime(2c·s(n))

when s(n)¿ log n, is in sharp contrast with Ibarra’s [9], who proved that

AuxS-DSpace(s(n)) = AuxS-NSpace(s(n)) =
⋃
DTime(22

c·s(n)
);

AuxNES-DSpace(s(n)) = AuxNES-NSpace(s(n)) =
⋃
DSpace(2c·s(n));

AuxCS-NSpace(s(n)) =
⋃
NSpace(2c·s(n));

AuxCS-DSpace(s(n)) = DSpace(s(n));

where unions are over c and our class nomenclature should be clear (or else refer to
Section 2).
In the wake of [3], pushdown stores were also added to alternating Turing machines

[14,15]. Most notably, AuxPD-alternating automata were shown strictly more powerful
than their deterministic counterparts, and a single alternation level in a s(n) space-
bounded AuxPD-automaton was shown as powerful as any constant number. In the
spirit of Sudborough’s LOG(CFL) characterization [21], Jenner and Kirsig [11] further
used AuxPD-alternating automata with simultaneous resource bounds to capture PH,
the polynomial hierarchy. Subsequently, Lange and Reinhardt [13] helped shed light
on why AuxPD-alternating automata are so powerful. They introduced a new concept:
a machine is empty alternating if it only alternates when all its auxiliary memories
and all its tapes, except a logarithmic space-bounded part, are empty. They proceeded
to show that time-bounded AuxPD-empty alternating automata precisely capture the
ACk -hierarchy.

Alternating auxiliary stack automata were also investigated. For example, Ladner
et al. [14] showed that alternation provably adds power to otherwise nondeterministic
AuxS-space-bounded automata. Further results in the case of unbounded numbers of
alternations are that AuxS- and AuxNES-space-bounded automata are then equally
powerful, i.e., the ability to erase the stack is in fact inessential.
The aim of the present paper is to just about complete the picture aNorded by AuxS-,

by AuxNES-, and by AuxCS-automata, in the presence of alternation or of empty alter-
nation. We distinguish between bounded and unbounded numbers of alternations, and
we consider arbitrary space bounds. In particular, we investigate AuxCS-alternating
automata, a model overlooked by Ladner et al. [14]. We also completely answer
the question posed by Lange and Reinhardt [13] concerning the power of variants of
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empty alternating auxiliary stack automata. More generally, we re=ne previous char-
acterizations in several directions. For example, to our knowledge nothing was known
about AuxS-, AuxNES-, and AuxCS-automata with a constant number of alterna-
tions, with running time restrictions, and=or with the feature of empty alternation. We
consider these models here. Our precise results and their relationships with former work
are depicted in Tables 1 and 2.
The technical depth of our results varies from immediate to more subtle extensions

to previous work. Indeed a baggage of techniques has developed in the literature,
in the form of a handful of fundamental “tricks” underlying all known simulations
(examples: Cook’s “surface con=guration” trick, Ibarra’s and former authors’ “pointer
to a pointer” trick, Ladner et al.’s tricks to simulate alternation). The diQculty, when
analyzing models which combine features for which individual tricks are known, is that
some of the tricks are a priori incompatible. A typical example arises with AuxCS-
empty alternating automata: the standard simulation method used to bound the number
of alternations clashes with the checking stack property, because the checking stack
and the empty alternation appear to be mutually exclusive.
The paper is organized as follows: the next section contains preliminaries, and in

Section 3 we investigate AuxS-, AuxNES-, and AuxCS-alternating automata. Then
Section 4 is devoted to empty alternation, and =nally we summarize our results and
highlight the remaining open questions in Section 5.

2. De�nitions

We assume the reader to be familiar with the basics of complexity theory as con-
tained in the book of BalcEazar et al. [1] and Hopcroft and Ullman [8]. In particu-
lar, �a(n)SpaceTime(s(n); t(n)) (�a(n)SpaceTime(s(n); t(n)), respectively) denotes the
class of all languages accepted by O(s(n)) space- and O(t(n)) time-bounded alternating
Turing machines making no more than a(n) − 1 alternations starting in an existential
(universal, respectively) state. Thus, a(n)= 1 covers nondeterminism and by conven-
tion a(n)= 0 denotes the deterministic case. For simplicity we write N instead of �1

and D for �0. Moreover, if the number of alternations is unrestricted, we simply re-
place �a(n) by A. If we are interested in space and time classes only, we simply write
Space(s(n)) and Time(t(n)), respectively, in our notations. In what follows, we assume
that whenever we refer to a space bound s(n) we implicitly assume that it is space
constructible. We consider

L := DSpace(log n) ⊆ NL := NSpace(log n) ⊆ P ⊆ NP ⊆ PSpace:

In particular, �kP and �kP, for k¿0, denote the classes of the polynomial hierarchy.
In the following we consider Turing machines with two-way input equipped with an

auxiliary pushdown, stack, nonerasing stack, and checking stack storage. A pushdown
is a LIFO storage structure, which is manipulated by pushing and popping. The origin
of the concept is not clear and is attributed by most to Burks et al. [2] and Newell
and Shaw [16]. By stack storage, we mean a stack (S), nonerasing stack (NES),
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or checking stack (CS) as de=ned earlier. Originally, stack automata were introduced
by Ginsberg et al. [5], nonerasing stack automata appear =rst in Hopcroft and Ullman
[7], and checking stack automata in Greibach [6]. The class of languages accepted by
O(s(n)) space-bounded alternating Turing machines with auxiliary stack is denoted by
AuxS-ASpace(s(n)). The in=x S is changed to NES (CS, respectively) for Turing
machines with auxiliary nonerasing stack (checking stack, respectively) storage. Deter-
ministic, nondeterministic, bounded alternating classes, and simultaneously space and
time-bounded classes are appropriately de=ned and denoted. We consider

L ⊆ LOG(DCFL) := AuxPD-DSpaceTime(log n; pol n)

⊆ LOG(CFL) := AuxPD-NSpaceTime(log n; pol n) ⊆ P:

For Turing machines augmented with an auxiliary type X storage, the concept of
empty alternation was introduced in the context of logspace by Lange and Reinhardt
[13]. More precisely, we de=ne an auxiliary storage automaton to be empty alternating
if in moments of alternation, i.e., during transitions between existential and universal
con=gurations and vice versa, the auxiliary storage is empty and all transferred in-
formation is contained in the state and on the s(n) space-bounded Turing tape. We
indicate that a class is de=ned by empty alternation by inserting a letter E in front of
�a(n), �a(n), or A. Thus, e.g., the class of all languages accepted by empty s(n) space-
bounded alternating Turing machines with an auxiliary storage of type X is denoted
by AuxX-EASpace(s(n)), where X is PD, S, NES, or CS in this paper.
Finally, we need notation to describe relativized complexity classes, especially adap-

tive, nonadaptive, and bounded query classes. For a class C of languages let DTime
(t(n))C be the class of all languages accepted by deterministic O(t(n)) time-bounded
Turing machines using an oracle B∈C. If the underlying oracle Turing machine is
nondeterministic, we distinguish between Ladner–Lynch (LL) [12] and Ruzzo–Simon–
Tompa (RST) [19] relativization. In the latter, the oracle tape is written determinis-
tically and the relevant class is for example denoted by NTime(t(n))〈C〉. It is well
known that the polynomial hierarchy may be characterized in terms of oracle access,
i.e., �0P=P and �k+1P=NP�kP for k¿0. By de=nition, the Turing machine may
compute the next query depending on the answers to the previous queries, i.e., it
makes adaptive queries. We de=ne the “nonadaptive query class” DTime(t(n))C|| to be
the class of languages accepted by some deterministic O(t(n)) time-bounded Turing
machine M using an oracle B∈C such that for all inputs x and all computations on
x, a list of all the queries to be made is formed before any querying occurs. We
say that M makes parallel queries. Moreover, for a function r :N→N and a class C
let DTime(t(n))C[r] denote the class of all languages accepted by some deterministic
O(t(n)) time-bounded Turing machine M using an oracle B∈C such that, for all inputs
x and all computations of M on x, the number of queries to the oracle B is at most
r(|x|). For further explanation and results on bounded query classes we refer to [23].
Obviously, all these de=nitions concerning oracle Turing machines and classes can

be adapted in a straightforward manner to space-bounded Turing machines, where the
oracle tape is not subject to the space bound. The class �2P introduced by Papadim-
itriou and Zachos [18] is de=ned as LNP—though in a form that at that time was not
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known to be equivalent to the de=nition just given. It equals LNP[O(log n)], PNP[O(log n)],
LNP
|| , and PNP

|| [23, p. 844, Theorem 8.1], contains �1P∪�1P=NP∪ co-NP and is
contained in �2P∩�2P—even in �2P. Finally, the class DP, diNerence polytime, is
the class of all languages—=rst studied by Papadimitriou and Yannakakis [17]—that
can be written as the diNerence of two NP languages. Obviously, diNerence polytime
DP= {A∩B |A∈NP and B∈ co-NP } and its complement co-DP= {A∪B |A∈NP
and B∈ co-NP }.

3. Alternating auxiliary stack automata

In this section we consider alternating auxiliary stack automata with and without
runtime restrictions.

3.1. Automata without runtime restrictions

Ladner et al. [14] showed that

AuxS-ASpace(s(n)) = AuxNES-ASpace(s(n)) =
⋃

c
DTime(22

2c·s(n)
)

if s(n)¿ log n. Auxiliary checking stacks were not considered—not even mentioned—in
that paper. We complete the picture by showing that when the number of alternations
is unbounded, s(n) space-bounded alternating checking stacks are as powerful as stacks
and nonerasing stacks. The following proof follows the lines of Ladner et al. [14, p.
152, Theorem 5.1].

Theorem 1. Let X be a stack storage and s(n)¿ log n, then

AuxX-ASpace(s(n)) =
⋃

c
DTime(22

2c·s(n)
):

Proof. The inclusion from left to right follows from the result of Ladner et al. [14].
For the converse inclusion it suQces to prove

⋃

c
ASpace(22

c·s(n)
) ⊆ AuxCS-ASpace(s(n))

because ASpace(s(n))=
⋃
c DTime(2c·s(n)) if s(n)¿ log n, which is due to Chandra

et al. [3].
In principle we proceed as in the step-by-step simulation of an alternating 22

c·s(n)

space-bounded Turing machine M by an auxiliary nonerasing stack automaton, by
nondeterministically guessing ID’s of M into the stack and after each guess verifying
that they combine into a valid and successful computation. Since the ID’s are words of
length 22

c·s(n)
each symbol of an ID is preceded by a binary address, which runs from

0 to 22
c·s(n) − 1. Since the length of the address is only 2c·s(n), thus O(s(n)) storage is

suQcient to record a pointer to a particular bit position within an address. Therefore,
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an s(n) space-bounded alternating checking stack can verify that two physically con-
secutive addresses are numerically consecutive, and it can be checked that the address
of a symbol deep in the checking stack which is being scanned in read mode matches
the address of the symbol on top of the checking stack. This matching ability is used
by the alternating checking stack to verify that the guessed sequence is valid and suc-
cessful using universal branching, because one branch of the computation can read
from the checking stack, while another branch retains the information for future use.
Thus, even a checking stack is enough to do the simulation. For a detailed description
we refer the reader to Ladner et al. [14, p. 152, Lemma 5.2].

In case s(n)= log n we obtain the following corollary.

Corollary 2. Let X be a stack storage, then

AuxX-ASpace(log n) =
⋃

k
DTime(22

nk

):

Now, let us take a look at variants of alternating auxiliary stack automata with a
bounded number of alternations.

Theorem 3. Let X be a stack storage. If s(n)¿ log n and k¿1, then

AuxX-�kSpace(s(n)) ⊆
⋃

c
NSpace(22

c·s(n)
):

Proof. Recall that the alternation-bounded PDA Theorem of Ladner et al. [15, pp.
100–104, Section 5] shows that for constant k

AuxPD-�kSpace(s(n)) ⊆
⋃

c
NSpace(2c·s(n)) (1)

if s(n)¿ log n. The main idea in the intricate argument used by Ladner et al. to prove
(1) is to generalize the notion of realizable pairs of auxiliary pushdown automata sur-
face con=gurations. A pair (ID; U ), where ID is a surface con=guration and U a set
of (popping) surface con=gurations, is realizable if there is a consistent computation
tree (including all children at a universal node and precisely one child at an existential
node) whose root is labeled ID, whose leaves have labels which are members of U ,
such that ID and all surface con=gurations in U have the same pushdown height, and
the pushdown does not dip below this height during the computation described by the
tree. The de=nition of a realizable pair (ID; U ) gives rise to a recursive nondeter-
ministic algorithm, which is roughly bounded by the space to store a set of surface
con=gurations, that is 2c·s(n) for some constant c.
In the case of an auxiliary stack automaton we cannot use this algorithm directly, but

we may adapt it for our needs. Since the major diNerence between a pushdown and a
stack is that the latter is also allowed to read but not to change the interior content, we
have to face and overcome this problem. When in read mode, an alternating auxiliary
stack automaton M can be viewed as an alternating @nite automaton with 2c·s(n) states
for some constant c (the input to the automaton is its stack content). Thus, the behavior
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of M in this mode can be described by a table whose entries are sets of surface
con=gurations. This idea was also used by several authors, see, e.g., Ladner et al.
[14, p. 148], where the tables are called response sets. An entry (ID; U ) in the table
T means that there is a computation tree whose root is labeled ID, all leaves have
labels in U , the only way out of a con=guration in U is to push or pop, and the
whole computation described by the tree is done in read mode. Obviously, there are

at most 22
c′·s(n)

tables for some constant c′. We call a pair (ID; T ) an extended surface
con=guration if ID is an ordinary surface con=guration and T is a table as described
above.
Now we alter the algorithm of Ladner et al. for auxiliary pushdown automata, so

that it works on extended surface con=gurations and sets, by adapting the derivation
relations accordingly. A careful analysis shows that it may be implemented on a Turing
machine with a constant number of alternations. The space is bounded by the number of

extended surface con=gurations which is roughly 22
c′′·s(n)

for some constant c′′. Since the
constant-bounded alternation hierarchy for space-bounded Turing machines collapses by
Immerman [10] and SzelepcsEenyi [22], we obtain our result.

3.2. Automata with restricted running time

Now we turn our attention to simultaneous space and time bounds. Here we obtain
the following, which can be shown by a phase-by-phase simulation preserving the
number of alternations on both sides.

Theorem 4. Let X be a stack storage. If s(n)¿ log n, then

⋃

c
AuxX-ASpaceTime(s(n); 2c·s(n)) =

⋃

c
ATime(2c·s(n)):

Proof. The inclusion from left to right is obvious. For the other inclusion it is suQcient
to show how to simulate an alternating 2c·s(n), for some c, time-bounded Turing machine
M by an alternating auxiliary checking stack automaton with appropriate space and time
bounds.
The auxiliary checking stack automaton A simulates the alternating phases of M as

follows: (1) If M starts in an existential (universal, respectively) con=guration, then A
also does and deterministically writes the initial con=guration of M onto the checking
stack. (2) If the automaton A tries to simulate an existential (universal, respectively)
phase of M , the machine A begins existentially (universally, respectively) writing a
sequence of at most 2c·s(n) con=gurations on the checking stack. Of course, A has
not yet checked that the sequence represents a valid computation of M . Note that, in
the universal case, all sequences up to the given length will be generated on diNerent
branches. Now we distinguish two cases: (2.1) If the last guessed con=guration is a
halting con=guration of M , then we immediately check validity, which can be done
deterministically in O(s(n)) space. In case A was simulating an existential (univer-
sal, respectively) phase, A accepts (rejects, respectively) if the guessed sequence of
con=gurations is an accepting (rejecting, respectively) computation of M , otherwise A
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rejects (accepts, respectively). (2.2) Let ID be the last con=guration guessed and as-
sume that it is nonhalting. Then A alternates, continues the simulation of the next phase
along one branch, where the information in the checking stack remains for future use
with no read operation having been performed along that branch, and checks whether
the guessed sequence is a valid computation along the other branch. The acceptance
condition for this “checking” branch is as follows: Assume that A was simulating an
existential (universal, respectively) phase of M . Then the checking branch is accept-
ing (rejecting, respectively) if the guessed sequence is a valid existential (universal,
respectively) computation, otherwise this branch is rejecting (accepting, respectively).
Note that as in case (2.1) the necessary checks can be done deterministically in the
appropriate space bound. This completes the description of A.
Obviously, the automaton A accepts the same language as M and uses only O(s(n))

space. Moreover, since A simulates M phase by phase, the running time of A is bounded
by 2c

′·s(n) for some constant c′. Thus the claim follows.

Since PSpace=ATime(pol n) we conclude:

Corollary 5. If X is a stack storage, then

AuxX-ASpaceTime(log n; pol n) = PSpace:

Note that in the previous proof the number of alternations is preserved during the
simulations, but we have to be careful in the deterministic case, since the simulation
for the inclusion from right to left uses at least a nondeterministic auxiliary stack
automaton. Thus, we can merely state:

Corollary 6. Let X be a stack storage. If s(n)¿ log n and k¿1, then
⋃

c
AuxX-�kSpaceTime(s(n); 2c·s(n)) =

⋃

c
�kTime(2c·s(n)):

But what about the deterministic case? The following theorem answers this question
for auxiliary stack and nonerasing stack automata and can be shown by step-by-step
simulations.

Theorem 7. Let s(n)¿ log n. We have:

(i) Let X be a stack or nonerasing stack, then
⋃

c
AuxX-DSpaceTime(s(n); 2c·s(n)) =

⋃

c
DTime(2c·s(n)):

(ii)
⋃
c AuxCS-DSpaceTime(s(n); 2c·s(n))=DSpace(s(n)).

Proof. (1) The inclusion from left to right is obvious, and the converse follows by a
simple step-by-step simulation of the 2c·s(n) time-bounded deterministic Turing machine
M writing the con=guration sequence to the (nonerasing) stack. If ID is the con=gu-
ration on top of the stack, the successor of ID can be computed deterministically in
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2c·s(n) time and s(n) space, and added to the stack. Thus, the overall running time is
bounded by 2c

′·s(n), for some c′.
(2) The inclusion from right to left is obvious. The other direction is seen as follows:

Trivially,

AuxCS-DSpaceTime(s(n); 2c·s(n)) ⊆ AuxCS-DSpace(s(n))

and the latter class is contained in DSpace(s(n)), if s(n)¿ log n, which was shown by
Ibarra in [9].

The results in this subsection in the case s(n)= log n yield an alternate characteriza-
tion of the polynomial hierarchy, to be contrasted with that given by Jenner and Kirsig
[11, p. 94, Theorem 3.4] in terms of auxiliary pushdown automata, where

AuxPD-�k+1SpaceTime(log n; pol n) = �kP

for k¿1 was shown.

Corollary 8. (1) Let X be a stack or nonerasing stack. For k¿0, we @nd

AuxX-�kSpaceTime(log n; pol n) = �kP:

(2) For checking stacks we have

AuxCS-�0SpaceTime(log n; pol n) = DSpace(log n)

and

AuxCS-�kSpaceTime(log n; pol n) = �kP if k ¿ 1:

Note that [11, pp. 98–99] claims the case k¿1 of part 2 of Corollary 8 as well as
the auxiliary checking stack characterization of PSpace given in Corollary 5.

4. Empty alternating auxiliary stack automata

Lange and Reinhardt [13] exhibit a close connection between (RST) relativized com-
plexity classes and empty alternation. Here we obtain similar results for empty alter-
nating auxiliary stack automata. We start with a lemma generalizing a result of Lange
and Reinhardt [15, p. 501, Theorem 10].

Lemma 9. Let X be a stack storage and assume that s(n)¿ log n. If we have AuxX-
NSpace(log n)⊆C1 and AuxX-NSpace(log n; pol n)⊆C2, for some C1 and C2, then

(1) AuxX-EASpace(s(n))⊆ ⋃
cDTime(2c·s(n))C1

|| and

(2)
⋃
c AuxX-EASpaceTime(s(n); 2c·s(n))⊆ ⋃

cDTime(2c·s(n))C2

|| .

Proof. We only prove the =rst statement. A similar construction proves the second.
Let M be an empty alternating s(n) space-bounded automaton with auxiliary storage
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type X. For each x, we denote the set of all s(|x|) space-bounded con=gurations of
M such that the auxiliary storage is empty by C(x). Obviously, |C(x)|6|x| · cs(|x|), for
some constant c.
Consider the naturally induced alternating graph accessibility problem on a graph

G=(V; E) with nodes V =C(x)∪{accept; reject}, where the union is disjoint, such
that ID∈C(x) is an existential (universal, respectively) node if and only if ID is
an existential (universal, respectively) con=guration. The edge relation is de=ned as
(ID1; ID2)∈E if and only if ID1 and ID2 belong to C(x) and there is a computa-
tion of M on input x such that ID2 can be reached from ID1 without any alterna-
tion. Moreover, (ID; accept)∈E if and only if ID is in C(x) and there is a com-
putation of M on input x such that an accepting halting con=guration (not necessar-
ily in C(x)) is reached. Analogously, we have (ID; reject)∈E if a rejecting halting
con=guration can be reached. Obviously, the edge relation can be computed by a
nondeterministic s(n) space-bounded automaton with auxiliary storage X. Thus, E is
in C1.
With one parallel query to E we can compute the alternating graph structure, whose

accessibility problem is then solved by a deterministic 2c
′·s(n) time-bounded Turing

machine, such that |x| · cs(|x|)62c
′·s(|x|), for some constant c′. This proves the stated

claim.

4.1. Automata without runtime restrictions

With the help of the above lemma we can now extend the argument in [13, p. 498,
Theorem 5] and show that the empty alternation hierarchy for auxiliary stack automata
collapses to its nondeterministic level.

Theorem 10. Let X be a stack storage. If s(n)¿ log n, then

AuxX-EASpace(s(n)) = AuxX-NSpace(s(n)):

Proof. The inclusion from right to left is obvious. For the other direction let M be an
empty alternating s(n) space-bounded automaton with an auxiliary stack (nonerasing
stack, checking stack, respectively) storage. By the results of Ibarra [9] we have

(1) AuxS-NSpace(s(n))=
⋃
c DTime(22

c·s(n)
),

(2) AuxNES-NSpace(s(n))=
⋃
c DSpace(2c·s(n)), and

(3) AuxCS-NSpace(s(n))=
⋃
c NSpace(2c·s(n))

if s(n)¿ log n. Observe that
⋃
cNSpace(2c·s(n)) equals

⋃
cDSpace(2c·s(n)) by Savitch’s

theorem [20].
By standard simulation techniques we =nd that

⋃

c
DTime(2c·s(n))

⋃
k DTime(2n

k
)

|| ⊆ ⋃

c
DTime(22

c·s(n)
)
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and
⋃

c
DTime(2c·s(n))PSpace|| ⊆ ⋃

c
DSpace(2c·s(n));

which implies by Lemma 9 and the above mentioned results (1)–(3) that

AuxX-EASpace(s(n)) ⊆ ⋃

c
DTime(2c·s(n))C|| ⊆ AuxX-NSpace(s(n));

where C=AuxX-NSpace(log n), for all three types of auxiliary stack automata con-
sidered.

For s(n)= log n we obtain from Theorem 10 the following corollary.

Corollary 11. (1) We have

AuxS-EASpace(log n) =
⋃

k
DTime(2n

k
):

(2) Let X be a nonerasing or checking stack, then

AuxX-EASpace(log n) = PSpace:

4.2. Automata with restricted running time

Obviously, since empty alternating �0 and �1 machines are nothing other than or-
dinary deterministic and nondeterministic automata, we pro=t from the results in Sub-
section 3.2 and refer in these cases to Corollary 6 and Theorem 7. Moreover, for an
unbounded number of alternations the upper bound was already settled in Lemma 9.
For the lower bound, we obtain the following, where we have to distinguish between
stack and nonerasing (checking) stack automata. We start with auxiliary stack automata
and adapt an argument from [13, p. 501, Theorem 10].

Lemma 12. Let s(n)¿ log n, then

DSpace(s(n))NP[O(s(n))] ⊆ ⋃

c
AuxS-E�2SpaceTime(s(n); 2c·s(n)):

Proof. Let M be a s(n) space-bounded oracle Turing machine with an oracle A∈NP,
making at most O(s(n)) queries to A. Further, since NP=AuxS-NSpaceTime(log n;
pol n) by Corollary 8, let MA and M XA be the auxiliary automata accepting A and its
complement, respectively. Note that M XA is a machine with universal states only.
We simulate M with an auxiliary stack automaton M ′ as follows. First M ′ existen-

tially guesses all answers to the O(s(n)) queries to the oracle A and writes them on
the space-bounded tape. Then it starts simulating the deterministic steps of M . If M
asks the ith oracle question, M ′ looks up the answer from the space-bounded tape.
In case the look up is “yes”, the machine M ′ simulates the machine MA for oracle
set A, and rejects if MA does. The simulation of this machine is possible, because of
the assumption on A. Otherwise, i.e., the answer looked up is “no”, the veri=cation is
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postponed. Then M ′ continues the simulation of M . If M accepts, M ′ empties its stack,
then universally alternates, and restarts M ’s simulation. Now the “yes” query answers
are taken for granted. Thus, it remains to verify the “no” answers. This is done by
simulating M XA which accepts the complement of A, where M ′ rejects if M XA rejects.
Then M ′ continues with the simulation of M , and accepts if the original machine M
accepts. It is easy to see that M ′ only alternates twice and satis=es the required space
and time bounds. For the latter observe, that the length of the oracle query is at most
2c·s(n), for some constant c. Thus, the space and time bound, respectively, needed for
the simulation of MA or M XA on an oracle query are bounded by c′ · s(n) and 2c

′′·s(n),
respectively, for some constants c′ and c′′.

The diQculty in the nonerasing (checking) stack case is that after verifying a “yes”
answer to a query, one can not empty the stack anymore. Thus, the empty alter-
nating machine can not universally alternate in order to verify the remaining “no”
answers. The next lemma shows that with one more alternation, we can overcome this
problem.

Lemma 13. Let X be a nonerasing or checking stack and s(n)¿ log n. Then

DSpace(s(n))NP[O(s(n))] ⊆ ⋃

c
AuxX-E�3SpaceTime(s(n); 2c·s(n)):

Proof. We =rst proceed as in the proof of Lemma 12 by =rst guessing the query
answers to the oracle, and writing them on the space-bounded tape. Then the simulation
of the deterministic steps of the original machine are done, where all answers to the
query questions are looked up from the tape. If the original machine accepts, we can
alternate universally, because up to this point the stack was not used. In the universal
phase, the “yes” and “no” answers are veri=ed in parallel, as follows. The deterministic
simulation of the original machine is restarted. If the ith oracle question is asked, the
machine branches universally, verifying (1) the answer to the oracle along one branch
and (2) continuing the simulation along the other. If the look-up answer is “yes”, then
in (1) the machine alternates existentially and runs the auxiliary stack automaton for
the oracle A. Otherwise, i.e., the look-up answer is “no”, in (1) the machine runs the
auxiliary stack automaton for the complement of A. Finally, the machine accepts if the
original machine accepts.
As we see, the simulation is restructured in such a way that the stack is used only

at the very end of each branch. The price we have to pay for that is an additional
alternation compared to Lemma 12. Thus, three alternations are suQcient in the case of
nonerasing and checking stacks. Moreover, it is easy to verify that the required space
and time bounds are satis=ed.

The above two lemmata together with Lemma 9 show that for s(n)¿ log n we have
sandwiched

⋃

c
AuxS-E�2SpaceTime(s(n); 2c·s(n))
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and

⋃

c
AuxX-E�3SpaceTime(s(n); 2c·s(n));

where X is a nonerasing or checking stack, as well as the corresponding unbounded
alternating classes in between DSpace(s(n))NP[O(s(n))] and the nonadaptive query class
⋃
cDTime(2c·s(n))NP

|| . Note that the NP oracle in the latter class is because of Corol-
lary 6. In the case s(n)= log n, these bounded query classes are known to be equal
due to Wagner [23, p. 838, Corollary 3.7.1]. Fortunately, this generalizes to arbi-
trary space bounds greater than log n, as a careful analysis of translational methods
reveals.

Theorem 14. If s(n)¿ log n, then

DSpace(s(n))NP[O(s(n))] =
⋃

c
DTime(2c·s(n))NP

|| :

Proof. For a language L over the alphabet � we de=ne the mapping

Ts(L) = {w#2s(|w|)−|w| |w ∈ L };

where # =∈�. Then by easy calculations we =nd that

L∈DSpace(s(n))NP[O(s(n))] if and only if Ts(L) ∈ LNP[O(log n)]:

Since LNP[O(log n)] = PNP
|| , which is due to Wagner [23, p. 838, Corollary 3.7.1], lan-

guage Ts(L) is also a member of PNP
|| . Hence, by translational methods again, we

have

Ts(L) ∈ PNP
|| if and only if L ∈ ⋃

c
DTime(2c·s(n))NP

|| :

This proves the stated claim.

As an immediate corollary we obtain:

Corollary 15. Let X be a stack storage. If s(n)¿ log n, then

⋃

c
DTime(2c·s(n))NP

|| =
⋃

c
AuxX-E�kSpaceTime(s(n); 2c·s(n))

=
⋃

c
AuxX-EASpaceTime(s(n); 2c·s(n));

where k =2 if X is a stack and k =3 if X is a nonerasing or checking stack.
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For the special case s(n)= log n the above corollary results in a characterization
of �2P, using �2P=PNP

|| =LNP[O(log n)] =PNP[O(log n)] proven by Wagner [23, p. 844,
Theorem 8.1]. A similar result was obtained by Lange and Reinhardt [13, p. 501,
Theorem 10] for empty alternating polytime machines.

Corollary 16. Let X be a stack storage, then we have

Z2P=AuxX-E�kSpaceTime(log n; pol n)

=AuxX-EASpaceTime(log n; pol n);

where k =2 if X is a stack and k =3 if X is a nonerasing or checking stack.

Thus, it remains to classify one empty alternation on auxiliary nonerasing and check-
ing stack automata. Again, we =nd a close connection with bounded query classes,
restricting the oracle access to a single question only.

Theorem 17. Let X be a nonerasing or checking stack storage. If s(n)¿ log n, then

⋃

c
AuxX-E�2SpaceTime(s(n); 2c·s(n)) = NSpace(s(n))〈NP[1]〉:

Proof. First we prove the inclusion from right to left. Let M be a nondeterministic s(n)
space-bounded Turing machine with an oracle A∈NP queried exactly once. Further,
since NP=AuxX-NSpaceTime(log n; pol n) by Corollary 8, let MA and M XA be the
auxiliary automata accepting A and its complement, respectively. Observe that M XA is a
machine with universal states only.
We simply simulate M ’s nondeterministic moves by an auxiliary nondeterminis-

tic automaton M ′ with storage X. If M starts writing deterministically on the oracle
tape, the ID of M is stored on the space-bounded worktape, M ′ guesses the answer
to that oracle question, stores it in the =nite control, and proceeds with the simu-
lation of M . If M accepts, the veri=cation of the oracle answers has to be done.
In case the answer was “yes”, the machine M starts the simulation of MA using
ID to deterministically reconstruct the oracle question. If MA accepts, then M ′ ac-
cepts. The “no” answer is checked by M by alternating universally—the stack stor-
age is empty, because it was not used up to now—and simulating M XA. Here M

′ ac-
cepts, if M XA does. Thus, two empty alternations suQce. Observe, that the length of
the oracle query is at most 2c·s(n), for some constant c. Thus, the space and time
bound, respectively, needed for the simulation of MA or M XA on an oracle query
are bounded by c′ · s(n) and 2c

′′·s(n), respectively, for some constants c′

and c′′.
For the converse inclusion let M be a s(n) space and 2c·s(n) time-bounded empty

alternating �2 auxiliary nonerasing (checking) stack automaton. Let C(x) be the set of
all con=gurations of M on input x with empty auxiliary nonerasing (checking) stack
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storage. De=ne the oracles

A∃;M = { ID#2s(n)−|ID| |M starting in ID ∈ C(x) accepts

with at most 2c·s(n) exist: moves only }
and

A∀;M = { ID#2
s(n)−|ID| |M starting in ID ∈ C(x) accepts

with at most 2c·s(n) univ: moves only }:
For the simulation we consider two cases. Either M =rst writes to the stack in the
existential or in the universal phase. Note that in the former case M will in fact never
have had the chance to alternate at all. Thus, the simulation by a s(n) space-bounded
nondeterministic Turing machine M ′ runs as follows: Machine M ′ nondeterministically
guesses whether the =rst write instruction is performed during the existential or uni-
versal phase of M . In the former case, M ′ asks the question “ID0#2

s(n)−|ID0| ∈A∃;M ”,
where ID0 is the initial con=guration of M , and accepts if the answer is “yes”. In the
latter case, where the stack is not used in existential moves, M ′ simulates M step-by-
step until it reaches the ID where the alternation appears, and asks the complement of
A∀;M . If the answer to the question “ID#2

s(n)−|ID| ∈ co-A∀;M ” is “yes”, then M ′ rejects.
Otherwise, it accepts. Since A∃;M and the complement of A∀;M both belong to NP our
claim follows.

Finally, consider the class NSpace(s(n))〈NP[1]〉 in more detail. In general

DSpace(s(n))C ⊆ NSpace(s(n))〈C〉 ⊆ ⋃

c
DTime(2c·s(n))C

for any C if s(n)¿ log n, since we use RST relativization. Trivially, the =rst inclusion
also holds in the case of bounded query classes, in particular for one query to the
oracle. The second inclusion is not known to carry over to the setting of bounded
query classes, but in our case, the next theorem implies

NSpace(s(n))〈NP[1]〉 ⊆ ⋃

c
DTime(2c·s(n))NP[2]:

Indeed we can characterize the class NSpace(s(n))〈NP[1]〉 as the complement of a “dif-
ference” set.

Theorem 18. If s(n)¿ log n and C=
⋃
cNTime(2c·s(n)), then

NSpace(s(n))〈NP[1]〉 = {A ∪ B |A ∈ C and B ∈ co-C }:

Proof. First we prove the inclusion from right to left. Consider a language A∪B with
A∈C and B∈ co-C. We construct the oracle set

A⊕ co-B = { 1x#2s(|x|)−|x| | x ∈ A } ∪ { 2x#2s(|x|)−|x| | x ∈ co-B }
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as the marked union of A and the complement of B padded by # symbols to an
exponential length in s(n). Note that A⊕ co-B belongs to the class NP. Then a nonde-
terministic s(n) space-bounded Turing machine on input x decides membership in A∪B
by existentially guessing the word 1x#2

s(|x|)−|x| or 2x#2
s(|x|)−|x| onto the oracle tape. If

the answer to the question “1x#2
s(|x|)−|x| ∈A ⊕ co-B” is “yes”, the machine accepts. It

also accepts if the answer to the question “2x#2
s(|x|)−|x| ∈A⊕ co-B” is “no”. Otherwise,

it rejects. Thus, one question to an NP oracle suQces to decide x∈A∪B.
For the converse inclusion let M be a nondeterministic s(n) space-bounded Turing

machine with an oracle A∈NP queried exactly once. Further let MA be the nondeter-
ministic polynomial time-bounded machine accepting A.
We modify M ’s behavior such that the oracle query is asked at the very end of each

computation. This is done as follows: If M starts writing deterministically on the oracle
tape, the ID is stored on the space-bounded worktape, M guesses the answer to that
oracle question, stores it in the =nite control, and proceeds with the computation. If M
wants to accept, the oracle is questioned using ID to recompute the question. In case the
answer coincides with the previously stored guess, then the machine accepts. Otherwise,
it rejects. Moreover, by introducing dummy queries, which have to be answered “yes”,
we may assume that on each computation the oracle is queried once.
From now on we assume that M is in the normal form described above. Next we

de=ne sets

Ayes = { x | there is a computation path of M along which M

accepts x with a single oracle query; answered “yes” }

and

Ano = { x | there is a computation path of M along which M

accepts x with a single oracle query; answered “no” }:
Obviously, the language Ayes ∪Ano equals the set accepted by M with oracle A queried
exactly once. Thus, it remains to show that Ayes ∈C and Ano ∈ co-C.
To check x∈Ayes a nondeterministic Turing machine M ′ guesses a reachable ID,

where M starts writing deterministically on the oracle tape and whose “yes” answer
leads to acceptance. Then the machine deterministically veri=es in time 2c

′·s(n), for
some constant c′, that the ID is reachable from the initial con=guration. If so M ′ starts
the simulation of MA using ID to deterministically reconstruct the oracle question.
If MA accepts, then M ′ accepts. Otherwise, machine M ′ rejects. The length of the
oracle query is at most 2c

′′·s(n), for some constant c′′. Hence it is easy to see that the
simulation of MA on an oracle query meets the required exponential time bound. Thus,
machine M ′ is 2c

′′′·s(n) time bounded, for some constant c′′′. Hence, Ayes ∈C.
For the set Ano we proceed in a similar way. The complement of Ano is accepted

by a nondeterministic Turing machine by cycling through all reachable ID’s, where
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M starts writing deterministically on the oracle tape and whose “no” answer leads to
acceptance, verifying that all answers to the oracle are “yes”. Analogously to above
this can be done by simulating machine MA on all questions is sequence, hence leading
to a nondeterministic Turing machine operating in 2c

′′′·s(n) time, for some constant c′′′.
Thus, Ano ∈ co-C which proves our claim.

For our favourite space bound s(n)= log n this results in:

Corollary 19. NL〈NP[1]〉 = co-DP.

As an immediate consequence of the above corollary together with Theorem 17 we
obtain

Corollary 20. Let X be a nonerasing or checking stack, then

co-DP = AuxX-E�2SpaceTime(log n; pol n):

5. Conclusions

Tables 1 and 2 summarize the known complexity class characterizations based on
AuxS-, AuxNES-, and AuxCS-alternating and empty alternating automata. The pic-
ture is complete in the case of empty alternating automata. In the case of alternating
automata, the picture is complete, with only three exceptions involving bounded num-
bers of alternation greater than one (table entry A⊆ · ⊆B). These entries indicate that
the corresponding space-bounded AuxS-, AuxNES-, and AuxCS-alternating automata
classes are somewhere between A and B, but what is their precise status?
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