Notes on cycles through a vertex or an arc in regular 3-partite tournaments

1. Introduction

We shall assume that the reader is familiar with standard terminology on directed graphs (see, e.g., Bang-Jensen and Gutin [1]). In this note, if we speak of a cycle, then we mean a directed cycle. If xy is an arc of a digraph D, then we write $x \rightarrow y$ and say x dominates y. If X and Y are two disjoint vertex sets of a digraph D such that every vertex of X dominates every vertex of Y, then we say that X dominates Y, denoted by $X \rightarrow Y$; otherwise denoted by $X \nrightarrow Y$. If D' is a vertex set or a subdigraph of a digraph D, then we define $N_D^+(x)$ as the set of vertices of D' which are dominated by x and $N_D^-(x)$ as the set of vertices of D' which dominate x. The numbers $d_D^+(x) = |N_D^+(x)|$ and $d_D^-(x) = |N_D^-(x)|$ are called the out-degree and in-degree of x in D', respectively. When $D' = D$, $N_D^+(x)$, $d_D^+(x)$ and $d_D^-(x)$ are also denoted by $N^+(x)$, $N^-(x)$, $d^+(x)$ and $d^-(x)$, respectively. For two vertex sets X, Y of a digraph D, we define $X - Y = \{x|x \in X, x \not\in Y\}$. A c-partite tournament is an orientation of a complete c-partite graph. A digraph D is regular, if $d^+(x) = d^-(y) = d^+(y)$ for all $x, y \in V(D)$.

For cycles in regular 3-partite tournaments, Volkmann [2] obtained the following four results.

Theorem 1.1. If D is a regular 3-partite tournament, then every arc of D is contained in a 3- or 4-cycle.

Theorem 1.2. If D is an r-regular 3-partite tournament with $r \geq 2$, then every arc of D is contained in a $4r$, $5r$, or $6r$-cycle.

Theorem 1.3. If D is an r-regular 3-partite tournament with $r \geq 2$, then every arc of D is contained in a $5r$, $6r$, or $7r$-cycle.

Theorem 1.4. If D is an r-regular 3-partite tournament with $r \geq 2$, then D contains a 6-cycle.

In 2007, Stella and Volkmann [3] obtained the following result.

Theorem 1.5. If D is an r-regular 3-partite tournament with $r \geq 3$, then D contains a 9-cycle.

In 2007, Volkmann [4] gave the following problem and conjecture.

Problem 1.6. Let D be an r-regular 3-partite tournament with $r \geq 3$. Is every vertex of D contained in an m-cycle for each $m \in \{6, 9, \ldots, |V(D)|\}$?

Conjecture 1.7. If D is a regular 3-partite tournament, then every arc of D is contained in an m, $(m + 1)$- or $(m + 2)$- cycle for each $m \in \{3, 4, \ldots, |V(D)| - 2\}$. Volkmann [2] gave examples showing that there exists an infinite family of regular 3-partite tournaments D that even has vertices which are not contained in a 3-cycle. Let D be a 3-partite tournament with partite sets V_1, V_2, V_3 such that $|V_1| = |V_2| = |V_3| = r$ and $V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow V_1$. Obviously, D is r-regular and D has only cycles of lengths 3, 6, 9, \ldots, $|V(D)| = 3r$. This shows that Problem 1.6 would be best possible.

Also Volkmann [2] gave examples showing that for each integer t with $3 \leq t \leq |V(D)|$, there exists an infinite family of regular 3-partite tournaments D such that there are at least three arcs in D which are not contained in a cycle of length t. This gives support to Conjecture 1.7.

In this note, we prove that if D is an r-regular 3-partite tournament with $r \geq 2$, then every vertex of D is contained in a 6-cycle and every arc of D is contained in a $5r$- or $6r$-cycle.

* This work is supported by the Mathematical Tianyuan Foundation of China (No. 11026162). 0893-9659/$ – see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2011.09.075
2. Main results

The next lemma is well-known and easy to prove.

Lemma 2.1. If D is an r-regular 3-partite tournament with partite sets V_1, V_2, V_3 and v is a vertex of D, then $|V_1| = |V_2| = |V_3| = r$ and $d^+(v) = d^-(v) = r$.

Lemma 2.2. If D is an r-regular 3-partite tournament with partite sets U, V, W and u is a vertex of U, then $d^+_V(u) = d^-_W(u)$ and $d^-_W(u) = d^-_V(u)$.

Proof. Obviously, $d^+(u) = d^+_V(u) + d^+_W(u)$ and $d^-(u) = d^-_W(u) + d^-_V(u)$. By Lemma 2.1, $d^+(u) = |W| = r$, so $d^+_V(u) = d^-_W(u)$. Similarly, $d^-_W(u) = d^-_V(u)$. □

Theorem 2.3. If D is an r-regular 3-partite tournament with $r \geq 2$, then every vertex of D is contained in a 6-cycle and every arc of D is contained in a 5- or 6-cycle.

Proof. Let V_1, V_2, V_3 be the partite sets of D, and let a be an arbitrary vertex of D and ab be an arbitrary arc of D containing a. Obviously, it is enough to prove that a is in a 6-cycle and ab is in a 5- or 6-cycle. Without loss of generality, we suppose that $a \in V_1$ and $b \in V_2$. By Lemma 2.1, $|V_1| = |V_2| = |V_3| = r$ and $d^+(v) = d^-(v) = r$, for any vertex v of D. We now distinguish two cases.

Case 1. $V_3 \to a \to V_2$.

By Lemma 2.2, $d^+_V(x) \geq 1$ and $d^-_V(y) \geq 1$ for any $x \in V_2$, $y \in V_3$. So there are at least r arcs from V_2 to V_3.

Subcase 1.1. There are exactly r arcs from V_2 to V_3.

We array the vertices of V_2 into $b_1 = b, b_2, \ldots, b_r$ and the vertices of V_3 into c_1, c_2, \ldots, c_r such that $b_i \to c_i$ and $V_3 - \{c_1\} \to b_1$ and $a \to b_1$. As $d^-(b) = r, b \to V_1 - \{a\}$. Similarly, $V_1 - \{a\} \to c_1$.

Let $a_2 \in V_1 - \{a\}$ be arbitrary. Then $aba_2c_1b_2c_2a$ is a 6-cycle through ab.

Subcase 1.2. There are more than r arcs from V_2 to V_3.

First, we prove that ab is in a 5- or 6-cycle.

Suppose that $V_2 \not\to N^+_V(b)$. Let x be a vertex in $N^+_V(b)$ such that $d^+_V(x) \geq 1$. Let $y \in N^+_V(x)$ be arbitrary. By Lemma 2.2, there is an arc yz, where $z \in V_3 - \{x\}$. Obviously, $abxyz$ is a 5-cycle through ab.

Suppose that $V_2 \to N^+_V(b)$ and $b \to V_3$. Obviously, $V_1 \to V_2 \to V_3$. So $abxyza$ is a 6-cycle through ab, where $y \in V_1 - \{a\}, z \in V_2 - \{b\}, x, u \in V_3$ and $x \neq u$.

Suppose that $V_2 \to N^+_V(b)$ and $b \not\to V_3$. Let $x \in N^+_V(b)$ be arbitrary. As $V_2 \to x$, by Lemma 2.2, $x \to V_1$. Let $z \in V_3 - N^+_V(b)$ be arbitrary. As $z \to b$, there is an arc yz where $y \in V_1 - \{a\}$ by Lemma 2.2. So $abxyz$ is a 5-cycle through ab.

Second, we prove that ab is in a 6-cycle. Obviously, there is a vertex $x \in V_1$ such that $d^+_V(x) \geq 2$, so by Lemma 2.2, there is an arc xy where $y \in V_1 - \{a\}$. By Lemma 2.2, there is an arc yz where $z \in V_2$. As $a \to z$, there is an arc zu where $u \in V_3 - \{x\}$ by Lemma 2.2. As $d^+_V(x) \geq 2$, there is an arc ux where $u \in V_2 - \{z\}$. Obviously, $abxyzu$ is a 6-cycle containing a.

Case 2. $V_3 \to a \to V_2$.

Obviously, V_2 can be divided into two nonempty parts V'_2, V''_2 such that $V''_2 \to a \to V'_2$. Similarly, V_3 can be divided into two nonempty parts V'_3, V''_3 such that $V''_3 \to a \to V'_3$. Let $V' = V'_2 \cup V'_3$ and $V'' = V''_2 \cup V''_3$. Obviously, $N^+(a) = V', N^-(a) = V'$ and $|V'| = |V''| = r$.

First, we prove that ab is in a 5- or 6-cycle.

If $V'_3 \not\to b$, then there is an arc $bx, x \in V'_2$. By Lemma 2.2, there is an arc $xy, y \in V_1 - \{a\}$. As $x \in V'$ and $|V''| = r$, there is an arc yz where $z \in V''$ by Lemma 2.1. Otherwise $V'' \to y, d^+(y) \geq r + 1$, a contradiction. So $abxyz$ is a 5-cycle through ab.

If $V'_3 \to b$, then there is an arc $bx, x \in V_1 - \{a\}$. Suppose that $x \to V''$. Let yz be an arc in V''. Obviously, $abxyz$ is a 5-cycle through ab. Suppose that $x \not\to V''$. There is an arc $xy, y \in V' - \{b\}$. If $V'_1 \to y$, then there is an arc yz where $z \in V''$. Clearly, $abxyz$ is a 5-cycle through ab. If $V'_1 \to y$, then there is an arc zy, where $z \in V_1 - \{a, x\}$. As $y \in V'$ and $|V''| = r$, there is an arc zu where $u \in V'$ by Lemma 2.2. So $abxyzu$ is a 6-cycle through ab.

Second, we prove that ab is in a 6-cycle. Obviously, there are arcs between V'_2 and V'_3. Without loss of generality, assume that there is an arc xy from V'_2 to V'_3. By Lemma 2.2, there is an arc yz where $z \in V_1 - \{a\}$.

If $z \to V''$, then let uv be an arbitrary arc in V''. Clearly, $abxyzuv$ is a 6-cycle containing a. If $z \not\to V''$, then there is an arc zu where $u \in V' - \{y\}$.

Suppose that $V_1 \not\to u$. There is an arc uv, where $u \in V_1 - \{a, z\}$. As $u \in V'$ and $|V''| = r$, there is an arc vw where $w \in V''$ by Lemma 2.1. So $abxyzuvw$ is a 6-cycle containing a.

Suppose that $V_1 \to u$ and $u \neq x$. Obviously, $abxyzuv$ is a 6-cycle containing a. If $u \in V'_2$, then $u \to V_2$. Let v be a vertex of V''_2. Obviously, $abxyzuv$ is a 6-cycle containing a.

Suppose that $V_1 \to u$ and $u = x$. Obviously, $abxyzuv$ is a 6-cycle containing a. If $v \to V_2 - \{y\}$, then there is an arc $vw, w \in V_3 - \{y\}$. So $abxyzuvw$ is a 6-cycle containing a. If $v \to V_3 - \{y\}$, then $z \to v$ by the fact $v \to a$ and Lemma 2.1. Let w be a vertex of V''_3. Clearly, $abxyzuvw$ is a 6-cycle containing a. This completes the proof. □
Obviously, Theorems 1.2–1.4 are corollaries of the theorem above. Considering Theorem 1.1, we give the following conjectures.

Conjecture 2.4. If D is an r-regular 3-partite tournament with $r \geq 2$, then every arc of D is contained a $3k - 1$- or $3k$-cycle for $k = 2, 3, \ldots, r$.

Conjecture 2.5. If D is an r-regular 3-partite tournament with $r \geq 2$, then every arc of D is contained a $3k$- or $3k + 1$-cycle for $k = 1, 2, \ldots, r - 1$.

References

