JOURNAL OF APPROXIMATION THEORY 3, 114-116 (1970)

Letter to the Editor

Convergence of Cubic Spline Interpolants

The purpose of this note is to communicate the proof of a result ascribed to us by Meir and Sharma in their recent paper [1].

Let C denote the space of all continuous functions f on [0, 1] which are periodic: f(0) = f(1). This space is assigned the supremum norm. Let a "point group" be prescribed:

We assume that for each $n, 0 = x_0^{(n)} < \cdots < x_n^{(n)} = 1$. For each n, let S_n denote the linear subspace of C consisting of all periodic cubic splines with "joints" $x_0^{(n)}, \dots, x_n^{(n)}$. Thus, $s \in S_n$ if, and only if, $s \in C$, $s' \in C$, and on each of the intervals $[x_0^{(n)}, x_1^{(n)}], \dots, [x_{n-1}^{(n)}, x_n^{(n)}]$, s reduces to a cubic polynomial. For each n and for each $f \in C$, let $L_n f$ denote the unique element of S_n which interpolates to f at the joints $x_0^{(n)}, \dots, x_n^{(n)}$. The operator L_n is a linear projection of C onto S_n .

An important problem which is still unsolved in the theory of spline approximation is to determine a simple necessary and sufficient condition on the point group in order that $L_n f$ converge uniformly to f for all $f \in C$.

Define $h_i^{(n)} = x_i^{(n)} - x_{i-1}^{(n)}$ and $h^{(n)} = \max_{1 \le i \le n} h_i^{(n)}$.

The condition $h^{(n)} \to 0$ implies that $\bigcup_{n=1}^{\infty} S_n$ is *dense* in C. This implication follows, for example, from Theorem 2 of [2]. By Banach's Theorem, one obtains then the following result:

THEOREM. If $h^{(n)} \rightarrow 0$, then the following conditions are equivalent:

- (1) $L_n f \rightarrow f$ (uniformly) for all $f \in C$.
- (2) $\limsup \|L_n\| < \infty$.

The effect of this theorem is to focus attention on the problem of estimating $||L_n||$. Several such estimates were given in [2]. In [1], Meir and Sharma prove that if the number $m_n = \max_{|i-j|=1} h_i^{(n)}/h_j^{(n)}$ is less than $\sqrt{2}$, then

$$||f - L_n f|| \leq [1 + \frac{3}{4}m_n(2 - m_n^2)^{-1}] \omega(f; h^{(n)}).$$

This result can be strengthened as follows.

THEOREM. If $m_n < 2$, then $||L_n|| < 6(2 - m_n)^{-1}$ and $||f - L_n f|| < 30(2 - m_n)^{-1}\omega(f; h^{(n)})$. Consequently, the condition $\limsup m_n < 2$ is sufficient to guarantee $L_n f \to f$ for all $f \in C$. Proof. One starts with Eq. (1), p. 96, of [2], written in the form

$$q_i h_i \lambda_{i-1} + 2h_i \lambda_i + p_i h_i \lambda_{i+1} = 3p_i h_i h_{i+1}^{-1} (f_{i+1} - f_i) + 3q_i (f_i - f_{i-1}).$$
(A)

Denote the right member of this equation by r_i , and set $\mu_i = h_i \lambda_i$. In the notation, the dependence upon n is suppressed. Equation (A) becomes

$$q_i h_i h_{i-1}^{-1} \mu_{i-1} + 2\mu_i + p_i h_i h_{i+1}^{-1} \mu_{i+1} = r_i .$$
(B)

Now refer to Eq. (2), p. 97, of [2]. Let $||f|| \leq 1$ and s = Lf. Then on the interval $[x_{i-1}, x_i]$, we have

$$|s(x)| \leq |A_{i}(x)| + |B_{i}(x)| + |\lambda_{i-1}| |C_{i}(x)| + |\lambda_{i}| |D_{i}(x)|$$

$$= 1 + |\mu_{i-1}| \frac{h_{i}}{h_{i-1}} \frac{C_{i}(x)}{h_{i}} - |\mu_{i}| \frac{D_{i}(x)}{h_{i}}$$

$$\leq 1 + \max\{m |\mu_{i-1}|, |\mu_{i}|\} \frac{C_{i}(x) - D_{i}(x)}{h_{i}}$$

$$\leq 1 + \frac{1}{4} \max\{m |\mu_{i-1}|, |\mu_{i}|\}$$

$$\leq 1 + \frac{m}{4} \max\{m |\mu_{i-1}|, |\mu_{i}|\}$$

Let $|\mu_i| = \max |\mu_i|$. From Eq. (B) we have

$$2 |\mu_j| \leq |r_j| + q_j m |\mu_j| + p_j m |\mu_j| = |r_j| + m |\mu_j|.$$

Hence,

$$\max_{1\leqslant i\leqslant n} |\mu_i|\leqslant |r_j|(2-m)^{-1}.$$

Since $||f|| \le 1$, we have $|r_i| \le 6p_im + 6q_i \le 6m$. Thus, $\max |\mu_i| \le 6m(2-m)^{-1}$. From an inequality above we, therefore, obtain

$$|s(x)| \leq 1 + \frac{3}{2}m^2(2-m)^{-1} < 6(2-m)^{-1}$$
.

This establishes the asserted bound on $||L_n||$. Now let f be any element of C and let s be its best approximation in S_n . Meir and Sharma, improving upon results in [2], have shown in [1] that $||f - s|| \le 5\omega(f; h)$. Consequently,

$$||f - Lf|| = ||(f - s) - L(f - s)||$$

= ||(I - L)(f - s)||
 $\leq ||I - L|| ||f - s||$
 $\leq (1 + ||L||) ||f - s||$
 $\leq [2 + \frac{3}{2}m^{2}(2 - m)^{-1}] 5\omega(f; h)$
 $\leq 30(2 - m)^{-1}\omega(f; h).$

These results emphasize what was pointed out in [2], namely, that the convergence depends not on the boundedness of $K_n = \max_i h_i^{(n)}/\min_i h_i^{(n)}$ but upon the magnitude of $m_n = \max_{|i-j|=1} h_i^{(n)}/h_j^{(n)}$.

CONJECTURE. In order that $L_n f \to f$ for all $f \in C$, it is necessary that $\limsup m_n < 2$.

CHENEY AND SCHURER

References

- 1. A. MEIR AND A. SHARMA, On uniform approximation by cubic splines, J. Approximation Theory 2 (1969), 270–274.
- 2. E. W. CHENEY AND F. SCHURER, A note on the operators arising in spline approximation, J. Approximation theory 1 (1968), 94-102.

E. W. CHENEY*

Department of Mathematics, Michigan State University, East Lansing, Michigan 48823

F. SCHURER

Technological University Eindhoven, Eindhoven, The Netherlands

Received October 3, 1969

* The first author was supported by the Air Force Office of Scientific Research.

Printed in Belgium

116