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Abstract 

The present study applies the Principal Component Analysis (PCA), Minimum Noise Fraction (MNF) and 
Independent Component Analysis (ICA) transformation on calibrated (orthorectified, cross-track illumination and 
atmospherically corrected) Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 
Shortwave Infrared (SWIR) data in the hostile terrain of Udaipur area. The area has continuous geological sequences, 
various rock types and economic deposits of lead and zinc, copper, micas and marbles. The proposed Band 
Combination (BC) derived from PCA (R: PC2, G: PC1, B: PC3), MNF (R: MNF2, G: MNF1, B: MNF3) and ICA 
(R: IC2, G: IC3, B: IC1) has shown its effectiveness in lithological mapping. The BC derived from ICA shows a 
great success over BC of PCA and MNF transform to discriminate various lithological units. The lithological map 
derived from BC of ICA transform shows strong agreement with the published lithology map and field investigation. 
Therefore, ASTER SWIR data coupled with less explored advanced image enhancement technique like ICA are 
recommended as a rapid and cost effective tool for lithological discrimination and mapping. 
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1. Introduction  

The utility of remotely sensed data in geological applications such as lithological discrimination, 
mineral detection, mineral potential and hydrothermal alteration mapping at various scales have shown a 
great success5,17,24, 26,27,29. Spaceborne multispectral sensors, particularly Landsat Thematic Mapper (TM) 
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and Enhanced Thematic Mapper (ETM+) launched in 1982 and 1999 with 5 and 8 spectral channels 
respectively have been well employed for such applications6,26. However, the launch of the Advanced 
Spaceborne Thermal Emission Reflection Radiometer (ASTER) in December 1999 with three spectral 
bands in the Visible/near Infrared (VNIR) region, six spectral bands in the Shortwave Infrared (SWIR) 
region and five spectral bands in the Thermal Infrared (TIR) region with 15m, 30m and 90m spatial 
resolution has provided a new prospective of investigating earth’s surface material for various 
applications5,7,21,27. The enhanced resolutions, high Signal to Noise Ratio (SNR), the effective spectral 
coverage and global data availability makes ASTER more suitable particularly for operational geological 
applications. The three subsystems of ASTER sensor, i.e. VNIR, SWIR and TIR has different roles to 
play in spectroscopy for geological applications such as the VNIR region provides spectral features of 
transition metals such as iron, SWIR region is very effective for analyzing spectral characteristics of 
carbonate, hydrate and hydroxide minerals, and TIR region is effective for characterization of silicates3, 

7. The ASTER sensor acquires earth’s surface imagery in the VNIR, SWIR and TIR wavelength regions 
and has offered a great opportunity of using these datasets for mapping of various lithological units1,7,26, 
minerals5, hydrothermal alteration such as propylitic, argillic, phyllic and potassic zone4,15,16,19. Various 
image enhancement techniques such as Principle Component Analysis (PCA), Minimum Noise Fraction 
(MNF), Band Ratios (BRs), Band Combinations (BCs) and Spectral Indices (SIs) 6,7,18,19,27; spectral 
mapping algorithms such as Spectral Angle Mapper (SAM), Spectral Feature Fitting (SFF), Matched 
Filter (MF), Constrained Energy Minimization (CEM), Linear Spectral Unmixing (LSU), Mixture Tuned 
Matched Filter (MTMF) have been well employed on ASTER datasets to obtain the lithological, mineral 
and hydrothermal alteration maps with reasonable accuracies5,8,12,15-17,28. Most of the full and sub-pixel 
spectral algorithms require target spectra or endmember to detect and classify them, which needs a 
rigorous procedure of spectral data extraction either from image, laboratory or spectral library14. In this 
study, discussion is restricted to PCA, MNF and ICA derived BCs, which further implemented on ASTER 
SWIR data to discriminate the various lithological units. Most of the previous studies on lithological 
mapping using ASTER data are carried out by employing PCA, MNF and BRs derived BCs. To the best 
of our knowledge rare publication available as per as the utility of ICA for lithological mapping is 
concerned. The area under investigation consist of various economic deposits (such as lead and Zinc, 
copper, micas, barytes and marbles) and hydrothermal alteration, which has not been investigated using 
ASTER data. Therefore, the objective of the present study is to demonstrate the utility of less explored 
ICA on ASTER SWIR data for lithological discrimination and mapping in the Udaipur area, Rajasthan. 

2. Location and geological setting of the study area 

The study area (Fig. 1) of arid to semiarid climate is situated in the south eastern part of Rajasthan 
(India), which comprises a continuous geological sequences and various rock types (Fig. 1b) from oldest 
Archean to recent alluvium formations. It has occurred during three orogenic cycles represented by 
terrains named Banded Gneissic Complex (BGC), Aravalli Super Group (ASG) and Delhi Super Group 
(DSG)23. The BGC in Rajasthan can be dived into three major rock groups as Mangalwar Complex (MC), 
Sandmata Complex (SC) and Hindoli Group (HG)10. The MC dominantly consist of heterogeneous 
assemblage of amphibolite-facies metamorphites comprising of migmatites, composite gneisses, 
feldspathic mica schist, sillimanite-kyanite, mica schist, hornblende schist, granite gneiss and amphibolite 
along with minor carbonates10. The BGC is overlain by the ASG, which can be divided into two principal 
facies sequences i.e. the self facies in the East comprising mafic, volcanics, coarse clastics and carbonates, 
and carbonate free deep sea facies in the West containing dominantly phyllites with the quartzite bands22. 
The shelf facies is further subdivided into volcanic dominated Delwara group and the volcanic free Debari 
group25. The Delwara group occupies the lowermost sequence in the ASG and mainly comprises of mafic 
volcanic, clean-washed quartzite, quartz pebble conglomerate and banded iron formation, whereas the 
Debari group constituent the middle ASG and consist of coarse clastics, carbonates and phyllites25. The 
litho-sequence comprising greywacke and phyllite is designated as the Udaipur formation, which is 
overlain by a carbonate sequence hosting Pb-Zn mineralization of Zawar formation25.  
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Fig. 1. The location and geology setting of the study area. (a) Location Map; (b) Lithological Map (prepared after GSI 1982) with 
Visited Spot and Major Locations; (c) The False Colour Composite (FCC) Map prepared from ASTER VNIR Image (R: band3, 

G: band2, B: band1) shows the topography and land cover class. 
 
The carbonate free and pelites dominant sequence arenite bands of ASG is named as Jharol group and 

mainly composed of phyllites, chlorite schist, garnetiferous mica schist10,23. The area has gone under a 
high degree of metamorphism and the major lineaments trend shows NE-SW and E-W direction. These 
rocks exhibit various folding and hydrothermal alteration, which could be further linked with 
identification of new economic deposits in the area. The major lithological units found in the study area 
are conglomerate, granite, gneiss, phyllite, mica schist, dolomite, quartzite, volcanics and pegmatites, etc. 
shown in the Fig. 1b. 

3. Satellite image and collateral datasets 

A cloud free Level 1B (geometric and radiometric corrected) ASTER data of the month March 2004 
was obtained from Earth Remote Sensing Data Analysis Centre (ERSDAC) Japan for the study. The data 
consist of 3 VNIR, 6 SWIR and 5 TIR spectral bands. In this study, six spectral bands of the SWIR region 
were selected for the processing. The detailed specification of the ASTER sensor is given in Table 1. 
Collateral datasets such as the Geological Survey of India (GSI) district resource map (1:250000 scale) 
and published literature of the Udaipur and Rajsamand districts of Rajasthan was used as a geological 
guide to interpret and assess the image results. Due to the challenging topography and hostile conditions 
of the study area only few spots were visited to verify the image derived lithological map. In this study, 
ENVI® 4.8 and ArcGIS® 9.3 software packages was used to process the ASTER imagery and preparation 
of GIS layers respectively.  

 
Table 1. ASTER sensor specification (Gomez et. al [9]) 

INDI

Rajsamand 

Udaipur 

Study Area 

Rajastha

(a

(c

(b) 
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Characteristics VNIR SWIR TIR 

Spectral coverage 

 

 

 

 

 

Spatial resolution (m) 

Swath width (km) 

Signal quantization level 
(bits) 

Band 1      0.52-0.60 μm 

Band 2      0.63-0.69 μm 

Band 3N   0.76-0.86 μm 

Band 3B   0.76-0.86 μm 

(N: Nadir looking) 

(B: Backward looking) 

15 

60 

8 

Band 4       1.6-1.7 μm 

Band 5       2.145-2.185 μm 

Band 6       2.185-2.225 μm 

Band 7       2.235-2.285 μm 

Band 8       2.295- 2.365 μm 

Band 9       2.36-2.43 μm 

30 

60 

8 

Band 10      8.125-8.475 
μm 

Band 11      8.475-8.825 
μm 

Band 12      8.925-9.275 
μm 

Band 13      10.25-10.95 
μm 

Band 14      10.95-11.65 
μm 

 

90 

60 

12 

4. ASTER image processing and analysis 

4.1. ASTER image pre-processing 

  

 
Fig. 2. The flow chart of adopted methodology for lithological discrimination and mapping  

The spatial subset of 2448 km2 Level1B radiance at sensor ASTER SWIR spectral bands has gone 
under orthorectification by projecting the raw image to the Universe Transvers Macerator (UTM) 43 zone 
and True North, followed by cross track illumination correction to remove the effects of energy overspill 
from band 4 into bands 5 and 9. The SWIR bands should be corrected for cross track illumination effects 
before any further processing for better and accurate results11. Subsequently, these bands were subjected 
to atmospheric correction using Fast Line of Sight Atmospheric Analysis Spectral Hypercubes 
(FLAASH) model of the ENVI® 4.8 software, which incorporates MODTRAN® radiation transfer code 
to remove the atmospheric attenuations to produce reflectance imagery in a such a way that a spectral 
curve from each pixel of multispectral image can be derived for target detection, discrimination and 
classification14. The FLAASH model needs various parameters to convert raw image to reflectance 
image, which was derived from the metadata of the original image. The ASTER Digital Elevation Model 
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(DEM) of 30 m spatial resolution of the area has been used to derive average elevation of the terrain and 
then the elevation value was used in the FLAASH. To evaluate the atmospheric correction result two 
basic features of the earth’s surfaces such as vegetation (appeared in red colour on the FCC) and 
limestone/calcite (commonly appeared as white or bright tone), which shows distinct spectral signature 
was used to evaluate the result of FLAASH model by comparing their image and ASTER band pass 
resampled library spectra of the Jet Propulsion Library (JPL) available in ENVI® 4.8. After preprocessing 
of ASTER image it has been further subjected to image noise reduction and enhancement techniques such 
as PCA, MNF and ICA Transform. The detailed flow chart of the methodology adopted in ASTER image 
processing and analysis for lithological discrimination and mapping is shown in Fig. 2. 

4.2. ASTER image enhancement and analysis 
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Fig. 3. Proposed BCs derived from PCA, MNF and ICA Transform for Lithological Discrimination and Mapping. (a) BC derived 
from PCA (R: PC2, G: PC1, B: PC3); (b) BC derived from MNF (R: MNF2, G: MNF1, B: MNF3); and (c) BC derived from ICA 

(R: IC2, G: IC3, IC1) shows major Lithological Units (refer Fig. 1b for the legend of lithological units). Masked region 
(vegetation and water bodies) is shown in black colour. 

 
 

Fig. 4. The Field Photographs of the study area during Field Investigation. (a). Phyllite with Mica Schist; (b). Weathered 
Conglomerate with volcanic tuffs; (c) Mica Schist; (d). Highly fractured Quartzite; (e). Ferruginous Quartzite; (f). Dolomitic 

Stone/Marble in mining area. Photographs were taken by looking straight to the exposures. 
 

Image enhancement techniques such as PCA, MNF and ICA transform have been implemented on 
the calibrated SWIR spectral bands of the ASTER image. These image enhancement techniques are also 
called as spectral data reduction as they reduce the spectral redundancy of the image. The PCA transform 
is a multivariate statistical technique and used to produce uncorrelated output bands, to segregate noise 
components and to reduce the spectral dimensionality of the data in a such a way that first PC band 
contains a high variance or eigen value, the second PC band contains second high variance and the last 

(a) (b) 

(c) (d) 

(f) (e) 
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PC band contains the minimum variance, high correlation and noise20,29 and hence PCA transform helps 
to enhance and separate spectral signatures from the background5. The MNF is the enhanced version of 
the PCA, which consist of two cascaded PCA rotations. The first PC rotation performs noise whitening 
and resulting in transformed data in which the noise has unit variance and no band to band correlation 
whereas the second rotation uses PCs derived from the original image data after they have been noise-
whitened by first rotation and rescaled by the noise standard deviation. Similar to PCA output bands the 
first MNF band contains of high variance, the second MNF band contains the second high variance, but 
the last MNF band is highly correlated and noisy17.  

 
 
The MNF transform has been extensively used in multispectral and hyperspectral data for feature 

extraction, noise whitening and spectral data reduction. The PCA and MNF transform have been 
extensively used in the lithological and alteration mapping15,16,18,19,21. Both PCA and MNF transform are 
based on second order statistics whereas ICA transform uses higher order statistics for the signal 
separation and feature extraction. The ICA could reveal more spectral information as compared to PCA 
and MNF13 and which could further enhance the image for better lithological discrimination. The key 
benefit of ICA includes the extraction of feature even it covers a small fraction in pixels13. Similar to 
both PCA and MNF output bands the first IC band contains of high variance, the second IC band contains 
second high variance and the last IC band contains minimum variance, high correlation and noise. After 
computing PCA, MNF and ICA transform various BCs were tested and evaluated with a published 
lithology map to select an optimum BC for each transformation to discriminate the lithological units in 
the area. The optimum BCs derived from PCA (R: PC2, G: PC1, B: PC3), MNF (R: MNF2, G: MNF1, 
B: MNF3) and ICA (R: IC2, G: IC3, B: IC1) is shown in the Fig. 3a, 3b and 3c respectively, exhibits 
different levels of lithological discrimination. After preparing BCs masking of vegetation and water 
bodies was carried out using the Normalized Difference Vegetation Index (NDVI) and ASTER band 4 
respectively.  

The proposed BC derived from PCA is easily able to discriminate pegmatites, phyllite and schist, 
but fails to discriminate various rock types such as conglomerate, quartzite ridges, synsedimentional 
volcanic and pyroclastic whereas the proposed BC derived from MNF is almost able to discriminate these 
rock types but fails to specify a distinct lithological boundary for discrimination and mapping.  

The proposed BC derived from ICA shows an enhanced perspective and each lithological unit were 
easily identified, discriminated as well as able to specify the distinct boundary between them. It is also 
important to mention here that BC derived from ICA also offers to identify small outcrops, which was 
not well distinguish in PCA and MNF BCs. The lithological map derived from ICA BC of ASTER SWIR 
was further verified with published GSI district resource map of the area. A field verification (Fig. 4) of 
the few sites in the area was also carried to evaluate the image derived lithology map and shows good 
agreement as with published lithology map. It has been observed that there was also some difference in 
the spatial distribution of lithological units between image results and published lithology map mainly 
due to the difference in the scale. The image based lithological map seems to provide much finer 
resolution as compared to published lithology map of 1:250000 scale. 

5. Conclusion and future work 

The study illustrated the effectiveness of ICA over PCA and MNF transform on ASTER SWIR data 
to discriminate the lithological units in the area. The proposed BC derived from ICA (R:IC2, G:IC3, 
B:IC1) has tremendous potential to discriminate various lithological units such as conglomerate, granite, 
gneiss, phyllites, mica schists, dolomitic and calcitic marble, synsedimentional volcanic, quartzite and 
pegmatites. The study has shown the effectiveness SWIR spectral bands of ASTER data in lithological 
mapping. The lithological map derived from image analysis could be further linked with the 
hydrothermal alteration zone and economic deposits such as lead-zinc and copper of the area. Thus, 
ASTER SWIR bands coupled with the advanced image enhancement technique like ICA is recommended 
as a rapid and cost effective tool for lithological discrimination and mapping in the hostile terrain of 
Rajasthan and other geological areas. The Future work could explore the development of lithological 
indices based on ICA transform for more accurate lithological identification and mapping. The Further 
work could also focused to explore these techniques on easily assessable multispectral imageries of 
Landsat 7 and 8 for regional lithological mapping.  
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