
Theoretical Computer Science 295 (2003) 279–294
www.elsevier.com/locate/tcs

News from the online traveling repairman
Sven O. Krumkea ;∗;1 , Willem E. de Paepeb , Diana Poensgena ,

Leen Stougiec;d ;2
aKonrad-Zuse-Zentrum f�ur Informationstechnik Berlin, Department Optimization, Takustr. 7,

0-14195 Berlin-Dahlem, Germany
bDepartment of Technology Management, Technical University of Eindhoven, P.O. Box 513,

5600MB Eindhoven, The Netherlands
cDepartment of Mathematics, Technical University of Eindhoven, P.O. Box 513, 5600MB Eindhoven,

The Netherlands
dCentre for Mathematics and Computer Science (CWI), P.O. Box 94079, NL-1090 GB Amsterdam,

The Netherlands

Received 26 September 2001; received in revised form 13 December 2001; accepted 27 December 2001

Abstract

In the traveling repairman problem (TRP), a tour must be found through every one of a set of
points (cities) in some metric space such that the weighted sum of completion times of the cities
is minimized. Given a tour, the completion time of a city is the time traveled on the tour before
the city is reached. In the online traveling repairman problem (OLTRP) requests for visits to cities
arrive online while the repairman is traveling. We analyze the performance of algorithms for the
online problem using competitive analysis, where the cost of an online algorithm is compared
to that of an optimal o7ine algorithm.
We show how to use techniques from online-scheduling to obtain a deterministic algorithm

with a competitive ratio of (1+
√
2)2¡ 5:8285 for the OLTRP in general metric spaces. We also

present a randomized algorithm which achieves a competitive ratio of 4=ln 3¡ 3:6410 against
an oblivious adversary. Our results extend to the “dial-a-ride” generalization L-OLDARP of the
OLTRP, where objects have to be picked up and delivered by a server. This improves upon
the previously best competitive ratio of 9 for the OLTRP on the real line and, moreover, the
results are valid for any metric space. For the case of the L-OLDARP our algorithms are the Arst
competitive algorithms.
We also derive the Arst lower bounds for the competitive ratio of randomized algorithms for

the OLTRP and the L-OLDARP against an oblivious adversary. Our lower bounds are (ln 16+1)=

∗ Corresponding author.
E-mail addresses: krumke@zib.de (S.O. Krumke), w.e.d.paepe@tm.tue.nl (W.E. de Paepe), poensgen@

zib.de (D. Poensgen), leen@win.tue.nl (L. Stougie).
1 Research supported by the German Science Foundation (DFG, grant Gr 883=10).
2 Supported by the TMR Network DONET of the European Community ERB TMRX-CT98-0202.

0304-3975/03/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(02)00409 -7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82540075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

280 S.O. Krumke et al. / Theoretical Computer Science 295 (2003) 279–294

(ln 16−1)¿ 2:1282 for the L-OLDARP on the line, (4e−5)=(2e−3)¿ 2:41041 for the L-OLDARP
on general metric spaces, 2 for the OLTRP on the line, and 7

3 for the OLTRP on general metric
spaces.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Online Algorithms; Competitive analysis; Traveling repairman; Latency; Dial-a-ride problem

1. Introduction

In the traveling repairman problem (TRP) [1] a server must visit a set of m points
p1; : : : ; pm in a metric space. The server starts in a designated point 0 of the metric
space, called the origin, and travels at most at unit speed. Given a tour through the m
points, the completion time Cj of point pj is deAned as the time traveled by the server
on the tour until it reaches pj (j=1; : : : ; m). Each point pj has a weight wj, and the
objective of the TRP is to And the tour that minimizes the total weighted completion
time

∑m
j=1 wjCj. This objective is also referred to as the latency.

In this paper we consider an online version of the TRP called the online traveling
repairman problem (OLTRP). Requests for visits to points are released over time while
the repairman (the server) is traveling. In the online setting the completion time of a
request rj at point pj with release time tj is the Arst time at which the repairman visits
pj after the release time tj. The online model allows the server to wait. However,
waiting yields an increase in the completion times of the points still to be served.
Decisions are revocable as long as they have not been executed.
In the dial-a-ride generalization L-OLDARP (for “latency online dial-a-ride problem”)

each request speciAes a ride from one point in the metric space, its source, to another
point, its destination. The server can serve only one ride at a time, and preemption of
rides is not allowed: once a ride is started it has to be Anished without interruption.
An online algorithm does not know about the existence of a request before its release

time. It must base its decisions solely on past information. A common way to evaluate
the quality of online algorithms is competitive analysis [5]: An algorithm is called
c-competitive if its cost on any input sequence is at most c times the cost of an
optimal o7ine algorithm.

1.1. Related work

Feuerstein and Stougie [7] presented a 9-competitive algorithm for the OLTRP on
the real line and a 15-competitive algorithm for the L-OLDARP on the real line for the
special case that the server has inAnite capacity. In the same paper lower bounds of
1 +

√
2 and 3 on the competitive ratio of any deterministic algorithm for the OLTRP

and the L-OLDARP, respectively, are proved.
The o7ine traveling repairman problem TRP is known to be NP-hard [1]. In the

special case when the metric space is the real line, the TRP can be solved in polynomial
time [1]. However, up to now, the complexity of the TRP on weighted trees remains
unsettled. Approximation algorithms for the TRP have been studied in [2,4,8].

S.O. Krumke et al. / Theoretical Computer Science 295 (2003) 279–294 281

Table 1
Deterministic upper and lower bounds for the OLTRP and the L-OLDARP

Deterministic Previous best Deterministic
UB UB LB

OLTRP (1 +
√
2)2¡5:8285 9, see [7] 1 +

√
2, see [7]

(Corollary 8) (real line)
L-OLDARP (1 +

√
2)2¡5:8285 15, see [7] 3, see [7]

(Theorem 7) (real line, server capac. ∞)

Table 2
Randomized upper and lower bounds for the OLTRP and the L-OLDARP

Randomized Randomized
UB LB

OLTRP 4
ln 3¡3:6410 (Corollary 12) general:

7
3 (Theorem 16)
real line:
2 (Theorem 17)

L-OLDARP 4
ln 3¡3:6410 (Theorem 11) general:

4e−5
2e−3¿2:4104 (Theorem 14)
real line:
ln 16+1
ln 16−1¿2:1282 (Theorem 15)

1.2. Contribution and paper outline

Our main results are competitive algorithms and randomized lower bounds for the
OLTRP and the L-OLDARP. Our algorithms improve the competitive ratios given in [7],
and, moreover, the results are valid for any metric space and not just the real line.
For the case of the L-OLDARP our algorithms are the Arst competitive algorithms. The
randomized lower bounds are the Arst ones for the OLTRP and the L-OLDARP.
Our algorithms are adaptations of the GREEDY-INTERVAL algorithm for online

scheduling presented in [9,10] and of the randomized version given in [6]. Our lower
bound results are obtained by applying Yao’s principle in conjunction with a technique
of Seiden [12]. An overview of the results is given in Tables 1 and 2.
In Section 2 we deAne the problems formally. Section 3 contains the deterministic

algorithm INTERVAL� and the proof of its competitive ratio. In Section 4 we present
the randomized algorithm RANDINTERVAL� which achieves a better competitive ratio.
In Section 5 we prove lower bounds on the competitive ratio of randomized algorithms
against an oblivious adversary.

2. Preliminaries

An instance of the online dial-a-ride problem OLDARP consists of a metric space
M =(X; d) with a distinguished origin o∈X and a sequence �= r1; : : : ; rm of requests.

282 S.O. Krumke et al. / Theoretical Computer Science 295 (2003) 279–294

We assume that M has the property that for all pairs of points (x; y)∈M there is a
continuous path p : [0; 1]→X in X with p(0)= x and p(1)=y of length d(x; y) (see
[3] for a thorough discussion of this model). Examples of metric spaces that satisfy the
above condition are the Euclidean space Rp and a metric space induced by a connected
undirected edge-weighted graph.
Each request rj =(tj; aj; bj; wj) speciAes a ride, deAned by two points: aj ∈X , the

ride’s source, and bj ∈X , its destination, and a weight wj¿0. Each request rj is
released at a nonnegative time tj¿0, its release time. For t¿0 we denote by �6t (�=t)
the set of requests in � released no later than time t (exactly at time t). A server is
located at the origin o∈X at time 0 and can move at most at unit speed. We consider
the case in which the server can serve only one ride at a time, and in which preemption
of rides is not allowed.
An online algorithm learns of the existence of request rj only at its release time

tj. In particular, it has neither information about the release time of the last request
nor about the total number of requests. Hence, at any moment in time t, an online
algorithm can base its decisions only on the requests in �6t . An o7ine algorithm has
complete knowledge about the sequence � already at time 0.
Given a sequence � of requests, a feasible route for � is a sequence of moves of

the server such that the following conditions are satisAed: (a) The server starts in the
origin o, (b) each ride requested in � is served, and (c) the repairman does not start
to serve any ride (in its source) before its release time. Let CS

j denote the completion
time of request rj on a feasible route S. The length of a route S, denoted by
l(S), is deAned as the diPerence between the time when S is completed and its start
time.

De�nition 1 (L-OLDARP, OLTRP). Given a request sequence �= r1; : : : ; rm the problem
L-OLDARP is to And a feasible route S minimizing

∑m
j=1 wjCS

j . The online traveling
repairman problem (OLTRP) is the special case of L-OLDARP in which for each request
rj source and destination coincide, i.e., aj = bj.

We denote by ALG(�) the objective function value of the solution produced by an
algorithm ALG on input �. We use OPT to denote an optimal o7ine algorithm.

De�nition 2 (Competitive deterministic algorithm). A deterministic online algorithm
ALG for the L-OLDARP is c-competitive, if there exists a constant c such that for
any request sequence �: ALG(�)6c·OPT(�).

A randomized online algorithm is a probability distribution over a set of deterministic
online algorithms. The objective value produced by a randomized algorithm is therefore
a random variable. In this paper we analyze the performance of randomized online
algorithms against an oblivious adversary. An oblivious adversary knows the online
algorithm and the distributions it uses, but does not see the realizations of the random
choices made by the online algorithm and therefore has to generate a request sequence
in advance. We refer to [5] for details on the various adversary models.

S.O. Krumke et al. / Theoretical Computer Science 295 (2003) 279–294 283

De�nition 3 (Competitive randomized algorithm). A randomized online algorithm
RALG is c-competitive against an oblivious adversary if for any request sequence �: E
[RALG(�)]6c·OPT(�).

3. A deterministic algorithm

Our deterministic strategy is an adaption of the GREEDY-INTERVAL algorithm pre-
sented in [9,10] for online scheduling. The proof of performance borrows concepts of
the proofs in [9,10].

Algorithm INTERVAL�
Phase 0: In this phase the algorithm is initialized.
Set L to be the earliest time when a request could be completed by OPT. We can
assume that L¿0, since L=0 means that there are requests released at time 0 with
source and destination o. These requests are served at no cost. For i=0; 1; 2; : : : ; deAne
Bi := �i−1L, where �∈ [1 +√

2; 3] is Axed.
Phase i, for i=1; 2; : : : : At time Bi compute a transportation schedule Si for the set
of yet unserved requests released up to time Bi with the following properties:
(i) Schedule Si starts at the endpoint xi−1 of schedule Si−1 (we set x0 := o).
(ii) Schedule Si ends at a point xi with an empty server such that d(o; xi)6 Bi.
(iii) The length of schedule Si, denoted by l(Si), satisAes

l(Si)6

{
B1 if i = 1

Bi + Bi−1 if i ¿ 2:

(iv) The transportation schedule Si maximizes the sum of the weights of requests
served among all schedules satisfying (i)–(iii).

If i=1, then follow S1 starting at time B1. If i¿2, follow Si starting at time �Bi until
�Bi+1, where � := (�+ 1)=(�(�− 1)).

To justify the correctness of the algorithm Arst notice that �¿1 for any �¿1+
√
2.

Moreover, it holds that the transportation schedule Si computed at time Bi can actually
be Anished before time �Bi+1, the time when transportation schedule Si+1, computed at
time Bi+1, needs to be started: S1 is Anished latest at time B1+B1 = 2B16 �+1

�−1B1 = �B2
since �63. For i¿2, schedule Si is also Anished in time: By condition (iii), l(Si)6Bi+
Bi−1 = (1+1=�)Bi. Hence, schedule Si is Anished latest at time �Bi+(1+ 1

�)Bi=(�+
1)=(�− 1)Bi= �Bi+1.

Lemma 4. Let Ri be the set of requests served by schedule Si computed at time Bi,
i=1; 2; : : : ; and let R∗

i be the set of requests in the optimal o?ine solution which are

284 S.O. Krumke et al. / Theoretical Computer Science 295 (2003) 279–294

completed in the time interval (Bi−1; Bi]. Then

k∑
i=1

w(Ri)¿
k∑

i=1
w(R∗

i) for k = 1; 2; : : : :

Proof. We Arst argue that for any k¿1 we can obtain from the optimal o7ine solution
S∗ a schedule S which starts in the origin, has length at most Bk , ends with an empty
server at a point with distance at most Bk from the origin, and which serves all requests
in
⋃k

i=1 R
∗
i .

Consider the optimal o7ine transportation schedule S∗. Start at the origin and follow
S∗ for the Arst Bk time units with the modiAcation that, if a request is picked up in
S∗ before time Bk but not delivered before time Bk , omit this action. Observe that
this implies that the server is empty at the end of this schedule. We thereby obtain a
schedule S of length at most Bk which serves all requests in

⋃k
i=1 R

∗
i . Since the server

moves at unit speed, it follows that S ends at a point with distance at most Bk from
the origin.
We now consider phase k and show that by the end of phase k, at least requests of

weight
∑k

i=1 w(R
∗
i) have been scheduled by INTERVAL�. If k =1, the transportation

schedule S obtained as outlined above satisAes already all conditions (i)–(iii) required
by INTERVAL�. If k¿2, then condition (i) might be violated, since S starts in the
origin. However, we can obtain a new schedule S ′ from S starting at the endpoint
xk−1 of the schedule from the previous phase, moving the empty server from xk−1
to the origin and then following S. Since d(xk−1; o)6Bk−1, the new schedule S ′ has
length at most Bk−1 + l(S)6Bk−1 + Bk which means that it satisAes all the properties
(i)–(iii) required by INTERVAL�.
Recall that schedule S and thus also S ′ serves all requests in

⋃k
i=1 R

∗
i . Possibly,

some of the requests from
⋃k

i=1 R
∗
i have already been served by INTERVAL� in previous

phases. As omitting requests can never increase the length of a transportation schedule,
in phase k, INTERVAL� can schedule at least all requests from(

k⋃
i=1

R∗
i

)∖(
k−1⋃
i=1

Ri

)
:

Consequently, the weight of all requests served in schedules S1; : : : ; Sk of INTERVAL�
is at least w(

⋃k
i=1 R

∗
k)=

∑k
i=1 w(R

∗
k) as claimed.

The previous lemma gives us the following bound on the number of phases that
INTERVAL� uses to process a given input sequence �.

Corollary 5. Suppose that the optimum o?ine schedule is completed in the interval
(Bp−1; Bp] for some p¿1. Then the number of phases of the Algorithm INTERVAL�
is at most p. Schedule Sp computed at time Bp by INTERVAL� is completed no later
than time �Bp+1.

Proof. By Lemma 4 the weight of all requests scheduled in the Arst p phases equals
the total weight of all requests. Hence all requests must be scheduled within the Arst

S.O. Krumke et al. / Theoretical Computer Science 295 (2003) 279–294 285

p phases. Since, by construction of INTERVAL�, schedule Sp computed in phase p
completes by time �Bp+1, the claim follows.

To prove competitiveness of INTERVAL� we need an elementary lemma which can
be proven by induction.

Lemma 6. Let ai; bi ∈ R+0 for i=1; : : : ; p, for which
(i)
∑p

i=1 ai=
∑p

i=1 bi;

(ii)
∑p′

i=1 ai¿
∑p′

i=1 bi for all 16p′6p.

Then
∑p

i=1 "iai6
∑p

i=1 "ibi for any nondecreasing sequence 06"16 · · ·6"p.

Theorem 7. Algorithm INTERVAL� is �(�+1)=(�−1)-competitive for the L-OLDARP for
any �∈ [1+√2; 3]. For �=1+√2, this yields a competitive ratio of (1+

√
2)2¡5:8285.

Proof. Let �= r1; : : : ; rm be any sequence of requests. By deAnition of INTERVAL�,
each request served in schedule Si completes no later than time �Bi+1 = � + 1=
�(�− 1)Bi+1. Summing over all phases 1; : : : ; p yields

INTERVAL�(�)6
�+ 1

�(�− 1)
p∑

i=1
Bi+1w(Ri) = � · �+ 1

�− 1
p∑

i=1
Bi−1w(Ri): (1)

From Lemma 4 we know that
∑k

i=1 w(Ri)¿
∑k

i=1 w(R
∗
i) for k =1; 2; : : : ; and from

Corollary 5 we know that
∑p

i=1 w(Ri) =
∑p

i=1 w(R
∗
i). Therefore, application of

Lemma 6 to the sequences ai :=w(Ri) and bi :=w(R∗
i) with the weighing sequence

"i :=Bi−1; i=1; : : : ; p, gives

� · �+ 1
�− 1

p∑
i=1

Bi−1w(Ri)6 � · �+ 1
�− 1

p∑
i=1

Bi−1w(R∗
i): (2)

Denote by C∗
j the completion time of request rj in the optimal o7ine solution OPT(�).

For each request rj denote by (B#j ; B#j+1] the interval that contains C∗
j . Then

� · �+ 1
�− 1

p∑
i=1

Bi−1w(R∗
i) = � · �+ 1

�− 1
m∑

j=1
B#jwj6� · �+ 1

�− 1
m∑

j=1
wjC∗

j : (3)

Eqs. (1)–(3) together yield

INTERVAL�(�)6 � · �+ 1
�− 1 · OPT(�):

The value �=1 +
√
2 minimizes the function f(�) := �(�+ 1)=(�− 1) in the interval

[1 +
√
2; 3], yielding (1 +

√
2)2¡5:8285 as competitive ratio.

Corollary 8. For �=1+
√
2, algorithm INTERVAL� is (1 +

√
2)2-competitive for the

OLTRP.

286 S.O. Krumke et al. / Theoretical Computer Science 295 (2003) 279–294

4. An improved randomized algorithm

In this section we use techniques developed in [6] to devise a randomized algorithm
RANDINTERVAL�. At the beginning, RANDINTERVAL� chooses a random number
$∈ (0; 1] according to the uniform distribution. From this moment on, the algorithm
is completely deterministic, working in the same way as the deterministic algorithm
INTERVAL� presented in the previous .section For i¿0 deAne B′

i := �i−1+$L, where
again L is the earliest time that a request could be completed by OPT. As stated before
in the case of INTERVAL� we can assume that L¿0.
The diPerence between RANDINTERVAL� and INTERVAL� is that all phases are

deAned using B′
i := �i−1+$L instead of Bi := �i−1L, i¿1. To justify the accuracy of

RANDINTERVAL�, note that in the correctness proof for the deterministic version, we
only made use of the fact that Bi+1 = �Bi for i¿0. This also holds for the B′

i . Hence,
any choice of the parameter �∈ [1+√2; 3] yields a correct version of RANDINTERVAL�.
We will show later that the optimal choice for RANDINTERVAL� is �=3.
The proof of Lemma 4 also holds also with Bi replaced by B′

i for each i¿0. We
thus obtain the following lemma.

Lemma 9. Let Ri be the set of requests scheduled in phase i¿1 of Algorithm RAND
INTERVAL� and denote by R∗

i the set of requests that are completed by OPT in the
time interval (B′

i−1; B
′
i]. Then

k∑
i=1

w(Ri)¿
k∑

i=1
w(R∗

i) for k = 1; 2; : : : :

We can now use the proof of Theorem 7 with Lemma 4 replaced by Lemma 9.
This enables us to conclude that for a sequence �= r1; : : : ; rm of requests the expected
objective function value of RANDINTERVAL� satisAes

E[RANDINTERVAL�[(�)]6 E
[
� · �+ 1

�− 1
m∑

j=1
B′
#j
wj

]

= � · �+ 1
�− 1

m∑
j=1

wjE[B′
#j
]; (4)

where (B′
#j
; B′

#j+1
] is the interval containing the completion time C∗

j of request rj in
the optimal solution OPT(�).
To prove a bound on the performance of RANDINTERVAL� we compute E[B′

#j
].

Notice that B′
#j
is the largest value �k+$L; k ∈Z, which is strictly smaller than C∗

j .

Lemma 10. Let z¿L and $∈ (0; 1] be a random variable uniformly distributed
on (0; 1]. DeAne B by B := max{�k+$L: �k+$L¡z and k ∈Z}. Then, E[B](� − 1)=
(� ln �) · z.

S.O. Krumke et al. / Theoretical Computer Science 295 (2003) 279–294 287

Proof. Suppose that �kL6z¡�k+1L for some k¿0. Observe that

B =

{
�k−1+$L if $¿ log�

z
�kL ;

�k+$L otherwise:

Hence

E[B] =
∫ log�(z=�

kL)

0
�k+$L d$+

∫ 1

log�(z=�kL)
�k−1+$L d$

= �kL
[
1
ln �

�$
]log�(z=�kL)

0
+ �k−1L

[
1
ln �

�$
]1
log�(z=�kL)

=
(�− 1)
(� ln �)

· z:

This completes the proof.

From Lemma 10 we can conclude that E[B′
#j
] = (� − 1)=(� ln �) ·C∗

j . Using this
result in inequality (4), we obtain

E[RANDINTERVAL�(�)]6 � · �+ 1
�− 1

�− 1
� ln �

·
m∑

j=1
wjC∗

j =
�+ 1
ln �

· OPT(�):

Minimizing the function g(�) := (�+1)=(ln �) over the interval [1+
√
2; 3], we conclude

that the best choice is �=3.

Theorem 11. Algorithm RANDINTERVAL� is (� + 1)=(ln �)-competitive for the
L-OLDARP against an oblivious adversary, where �∈ [1+√

2; 3]. Choosing �=3 yields
a competitive ratio of 4= ln 3¡3:6410 for RANDINTERVAL� against an oblivious
adversary.

Corollary 12. For �=3, algorithm RANDINTERVAL� is (4= ln 3)-competitive for the
OLTRP against an oblivious adversary.

5. Lower bounds

In this section we show lower bounds for the competitive ratio of any randomized
algorithm against an oblivious adversary for the problem L-OLDARP. The basic method
for deriving such a lower bound is Yao’s principle (see also [5,11,12]). Let X be
a probability distribution over input sequences '= {�x: x ∈ X}. We denote the ex-
pected cost of the deterministic algorithm ALG according to the distribution X on '
by EX [ALG[(�x)]. Yao’s principle can now be stated as follows.

Theorem 13 (Yao’s principle). Let {ALGy: y ∈ Y} denote the set of deterministic
online algorithms for an online minimization problem. If X is a distribution over
input sequences {�x: x∈X} such that

inf
y∈Y

EX [ALGy(�x)]¿ QcEX [OPT(�x)]

288 S.O. Krumke et al. / Theoretical Computer Science 295 (2003) 279–294

Fig. 1. The star with three rays used in the lower bound construction.

for some real number Qc¿1, then Qc is a lower bound on the competitive ratio of any
randomized algorithm against an oblivious adversary.

We use a method explained in [12] to compute a suitable distribution once our ground
set of request sequences has been Axed.

5.1. A General lower bound for the L-OLDARP

We provide a general lower bound where the metric space is a star, which consists
of three rays of length 2 each. The center of the star is the origin, denoted by o. The
server capacity equals one.
Let the rays of the star be named A; B and C. Let xA be the point on A with distance

x to o, 0¡x62. Points on B and C will be denoted in the same manner. Fig. 1 contains
an illustration of the star-shaped metric space.
Let k ∈N, k¿2 be arbitrary. At time 0 there is one request from o to 1A with

weight 1, denoted by r1 = (0; o; 1A; 1). With probability) there are no further requests.
With probability 1 −) there are k requests at time 2x, where x∈ (0; 1] is chosen
according to a density function p. The density p satisAes)+

∫ 1
0 p(x) dx=1 and will

be determined suitably in the sequel. Each of the k requests released at time 2x has
weight 1. With probability 1

2 (1−)) these requests will be given from 2xB to 2xB and
with probability 1

2 (1 −)) from 2xC to 2xC . This yields a probability distribution X
over the set '= {�x;R: x∈ [0; 1]; R ∈ {B; C}} of request sequences where �0; R= r1
for R∈{B; C}, and

�x;R = r1; (2x; 2xR; 2xR; 1); : : : ; (2x; 2xR; 2xR; 1)︸ ︷︷ ︸
k times

for 0¡ x 6 1 and R ∈ {B; C}:

Fig. 2 illustrates the construction.
We Arst calculate the expected cost EX [OPT(�x;R)] of an optimal o7ine algorithm

with respect to the distribution X on '. With probability) there is only request r1 to
be served, and in this case the o7ine cost is 1. Now consider the situation where there
are k additional requests at position 2xB or 2xC . Clearly, the optimal o7ine cost is

S.O. Krumke et al. / Theoretical Computer Science 295 (2003) 279–294 289

Fig. 2. Lower bound construction: (a) Situation at time 0; (b) a set of k new requests arrives at time 2x
either in 2xB or 2xC , where x is chosen according to a density p such that) +

∫ 1
0 p(x)dx=1.

Fig. 3. Two main cases in the lower bound construction: (a) case 1: 2x¿2y, i.e., new requests arrive after
ALGy has started to serve r1; (b) case 2: 2x62y, i.e., new request arrive before ALGy starts serving r1.

independent of the ray on which the requests arrive. First serving request r1 and then
the k requests yields the objective function value 1 + k(2 + 2x), whereas Arst serving
the set of k requests and then r1 results in a total cost of 2kx + 4x + 1. Hence, for
k¿2, we have

EX [OPT(�x;R)] =)+
∫ 1

0
(2kx + 4x + 1)p(x) dx: (5)

The strategy of a generic deterministic online algorithm ALGy can be cast into the
following framework: ALGy starts serving request r1 at time 2y where y¿0, unless
further requests are released before time 2y. If the sequence ends after r1, the online
costs are 2y + 1. Otherwise, two cases have to be distinguished.
If 2x¿2y, that is, the set of k requests is released after the time at which ALGy

starts the ride requested in r1, the algorithm must Arst Anish r1 before it can serve
the k requests. In this case, the cost of ALGy is at least 2y + 1 + k(2y + 2 + 2x) (see
Fig. 3(a)).

290 S.O. Krumke et al. / Theoretical Computer Science 295 (2003) 279–294

If 2x62y, the server of ALGy has not yet started r1 and can serve the k requests
before r1. To calculate the cost it incurs in this case, let l denote the distance of ALGy’s
server to the origin at time 2x. Then 06l6y since otherwise, the server cannot start
r1 at time 2y. We may assume that ALGy is either on ray B or C, since moving onto
ray A without serving r1 is clearly not advantageous.
Now, with probability 1

2 , ALGy’s server is on the “wrong” ray (see Fig. 3(b)). This
yields cost of at least (2x+(l+2x))k +6x+ l+1 for ALGy. Being on the “right” ray
will cost (2x + (2x − l))k + 6x − l+ 1. Putting this together, we get that for y61:

EX [ALGy(�x;R)]¿)(2y + 1) +
∫ 1

y
(2y + 1 + k(2y + 2 + 2x))p(x) dx

+
1
2

∫ y

0
(4kx + 6x + kl+ l+ 1)p(x) dx

+
1
2

∫ y

0
(4kx + 6x − kl− l+ 1)p(x) dx:

This results in

EX [ALGy(�x;R)]¿)(2y + 1) +
∫ 1

y
(2y + 1 + k(2y + 2 + 2x))p(x) dx

+
∫ y

0
(4kx + 6x + 1)p(x) dx:

=: F(y): (6)

Observe that for y¿1 we have that

EX [ALGy(�x;R)]¿)(2y + 1) +
∫ 1

0
(4kx + 6x + 1)p(x) dx ¿ F(1):

Hence in what follows it suRces to consider the case y61. To maximize the expected
cost of any deterministic online algorithm on our randomized input sequence, we wish
to choose) and a density function p such that miny∈[0;1] F(y) is maximized. We use
the following heuristic approach (cf. [12]): Assume that) and the density function p
maximizing the minimum have the property that F(y) is constant on [0; 1]. Hence
F ′(y)= 0 and F ′′(y)= 0 for all y∈ (0; 1). DiPerentiating we And that

F ′(y) = 2

(
)+ (1 + k)

∫ 1

y
p(x) dx − (k − 2y)p(y)

)

and

F ′′(y) = −2(k − 1)p(y)− 2(k − 2y)p′(y):

From the condition F ′′(y)= 0 for all y∈ (0; 1) we obtain the diPerential equation
−2(k − 1)p(x)− 2(k − 2x)p′(x) = 0;

S.O. Krumke et al. / Theoretical Computer Science 295 (2003) 279–294 291

which has the general solution

p(x) = �(k − 2x)1=2(k−1): (7)

The value of �¿0 is obtained from the initial condition)+
∫ 1
0 p(x) dx=1 as

� =
1−)∫ 1

0 (k − 2x)1=2(k−1) dx
=

(1 + k)()− 1)
(k − 2)(1+k)=2 − k(1+k)=2 : (8)

It remains to determine). Recall that we attempted to choose) and p in such a
way that F is constant over the interval [0; 1]. Hence in particular we must have
F(0)=F(1). Using

F(0) =)+
∫ 1

0
(1 + k(2 + 2x))p(x) dx

and

F(1) = 3)+
∫ 1

0
(4kx + 6x + 1)p(x) dx

and substituting p and � from (7) and (8), respectively, we obtain

) =
(k − 2)(1+k)=2(1 + k)

(k − 2)(1+k)=2k + k(1+k)=2 :

We now use the distribution obtained this way in (6) and (5). This results in

EX [ALGy(�x;R)]¿
(1 + k)(−5(k − 2)(2+k)=2

√
k +

√
k − 2kk=2(3 + 4k))√

k − 2(3 + k)((k − 2)(1+k)=2
√
k + kk=2)

and

EX [OPT(�x;R)]

=

√
k − 2k(1+k)=2(1 + k)(3 + 2k)− (k − 2)(2+k)=2(1 + k)(4 + 3k)√

k − 2((k − 2)(1+k)=2k(3 + k) + k(1+k)=2(3 + k))
:

Hence we conclude that

EX [ALGy(�x;R)]
EX [OPT(�x;R)]

¿
−5(k − 2)1+k=2k +

√
k − 2k(1+k)=2(3 + 4k)√

k − 2k(1+k)=2(3 + 2k)− (k − 2)(2+k)=2(4 + 3k)
: (9)

For k →∞, the right hand side of (9) converges to (4e−5)=(2e−3). Hence by Yao’s
Principle we obtain the following result:

Theorem 14. Any randomized algorithm for the L-OLDARP has a competitive ratio
greater or equal to (4e − 5)=(2e − 3)¿2:4104 against an oblivious adversary.

292 S.O. Krumke et al. / Theoretical Computer Science 295 (2003) 279–294

5.2. A lower bound on the real line

The lower bound construction on the star uses the fact that the online server does
not know on which ray to move if it wants to anticipate the arrival of the k requests at
time 2x. If the metric space is the real line, there are only two rays, and this argument
is no longer valid. The server can move towards the point 2x (of course still at the
risk that there will be no requests at all on this ray) in anticipation of the set of k
requests. Essentially the same construction therefore leads to a slightly worse lower
bound.

Theorem 15. Any randomized algorithm for the L-OLDARP on the real line has com-
petitive ratio greater or equal to (ln 16+1)=(ln 16− 1)¿2:1282 against an oblivious
adversary.

Proof. We use the following request set: At time 0 there is one request r1 = (0; 0;−1;
1). With probability) there are no further requests.
With probability 1−) there are k requests at time 2x from 2x to 2x where x∈ (0; 1]

is chosen according to the density function p(x), where)+
∫ 1
0 p(x) dx=1. Again, this

yields a probability distribution X over a set '= {�x: x∈ [0; 1]} of request sequences
where

�x =




r1 for x = 0

r1; (2x; 2x; 2x; 1); : : : ; (2x; 2x; 2x; 1)︸ ︷︷ ︸
k times

for 0¡x61:

By a similar argumentation as in the previous section we obtain

EX [OPT(�x)] =)+
∫ 1

0
(2kx + 4x + 1)p(x) dx

and

EX [ALGy(�x)]¿)(2y + 1) +
∫ y

0
(2kx + 4x + 1)p(x) dx

+
∫ 1

y
(2y + 1 + k(2y + 2 + 2x))p(x) dx:

By choosing

p(x) = �(k − x + kx)−2k=(−1+k);

� =
1−)∫ 1

0(k − x + kx)−2k=(−1+k) dx
=

(1 + k)(1−))
k(1+k)=(1−k) − (−1 + 2k)(1+k)=(1−k) ;

and

) =
−1 + k + 2k2

k(−1 + 2k + k−2k=(−1+k)(−1 + 2 k)2k=(−1+k))
;

S.O. Krumke et al. / Theoretical Computer Science 295 (2003) 279–294 293

we obtain

EX [ALGy(�x)]
EX [OPT(�x)]

¿ 1 +
2

(1 + k)(−2 + k(1+k)=(1−k)(−1 + 2k)(1+k)=(−1+k))
: (10)

For k →∞, the right-hand side of (10) converges to (ln 16 + 1)=(ln 16 − 1). The
theorem now follows from Yao’s Principle.

5.3. Lower bounds for the OLTRP

For the OLTRP we provide a general lower bound, again using a star with three rays
of length 2 as a metric space.

Theorem 16. Any randomized algorithm for the OLTRP has competitive ratio greater
or equal to 7

3 against an oblivious adversary.

Proof. Let k ∈ N be arbitrary. With probability)=(k+1)=(k+2), the input sequence
consists of only one request r1 at distance 1 from the origin, released at time 1, and
with weight 1. The ray on which this request occurs is chosen uniformly at random
among the three rays.
With probability 1−) there will be an additional series of k requests at distance 2

from the origin, each with weight equal to 1. These requests are released at time 2,
and the ray on which they occur is chosen uniformly among the two rays that do not
contain r1.
The cost for the adversary is given by

EX [OPT(�x)] =)(1−))(2k + 5) =
3k + 6
k + 2

:

It is easy to show that no online algorithm can do better than one whose server is in
the origin at time 1 and, at time 2, at distance 06y61 from the origin on the ray
where r1 is located. Using this fact, we get

EX [ALGy(�x)]¿)(3− y) + (1−))((4 + y)k + 7 + y) =
7k + 10
k + 2

:

This leads to

EX [ALGy(�x)]
EX [OPT(�x)]

¿
7k + 10
3k + 6

: (11)

By letting k → ∞ and applying Yao’s Principle once more, the theorem follows.

On the real line, a lower bound is obtained by the following very simple randomized
request sequence. With probability 1

2 we give a request at time 1 in −1, and with
probability 1

2 we give a request at time 1 in +1. This leads to the following theorem.

Theorem 17. Any randomized algorithm for the OLTRP on the real line has competi-
tive ratio greater or equal to 2 against an oblivious adversary.

294 S.O. Krumke et al. / Theoretical Computer Science 295 (2003) 279–294

Acknowledgements

The authors would like to thank GSunther Rote (FU Berlin) and RenTe Sitters
(University of Eindhoven) for independently suggesting to choose an optimized base
for the exponentially growing intervals in our algorithms. This led to an improvement
in the competitive ratios of both the deterministic and randomized algorithm.

References

[1] F. Afrati, C. Cosmadakis, C. Papadimitriou, G. Papageorgiou, N. Papakostantinou, The complexity of
the traveling repairman problem, Informat. Theor. Appl. 20 (1) (1986) 79–87.

[2] S. Arora, G. Karakostas, Approximation schemes for minimum latency problems, Proc. 31st Annu.
ACM Symp. on Theory of Computing, 1999, pp. 688–693.

[3] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, M. Talamo, Algorithms for the on-line traveling
salesman, Algorithmica 29 (4) (2001) 560–581.

[4] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, M. Sudan, The minimum latency
problem, Proc. 26th Annu. ACM Symp. Theory of Computing, 1994, pp. 163–171.

[5] A. Borodin, R. El-Yaniv, Online Computation and Competitive Analysis, Cambridge University Press,
Cambridge, 1998.

[6] S. Chakrabarti, C.A. Phillips, A.S. Schulz, D.B. Shmoys, C. Stein, J. Wein, Improved scheduling
algorithms for minsum criteria, Proc. 23rd Internat. Colloq. on Automata, Languages and Programming,
Lecture Notes in Computer Science, Vol. 1099, Springer, Berlin, 1996, pp. 646–657.

[7] E. Feuerstein, L. Stougie, On-line single server dial-a-ride problems, Theoret. Comput. Sci. 268
(2001) 91–105.

[8] M. Goemans, J. Kleinberg, An improved approximation ratio for the minimum latency problem, Proc.
7th Annu. ACM-SIAM Symp. on Discrete Algorithms, 1996, pp. 152–158.

[9] L.A. Hall, A.S. Schulz, D.B. Shmoys, J. Wein, Scheduling to minimize average completion time: oP-line
and on-line approximation algorithms Math. Oper. Res. 22 (1997) 513–544.

[10] L. Hall, D.B. Shmoys, J. Wein, Scheduling to minimize average completion time: oP-line and on-line
algorithms, Proc. 7th Annu. ACM–SIAM Symp. on Discrete Algorithms, 1996, pp. 142–151.

[11] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, Cambridge, 1995.
[12] S. Seiden, A guessing game and randomized online algorithms, Proc. 32nd Annu. ACM Symp. on the

Theory of Computing, 2000, pp. 592–601.

	News from the online traveling repairman
	Introduction
	Related work
	Contribution and paper outline

	Preliminaries
	A deterministic algorithm
	An improved randomized algorithm
	Lower bounds
	A General lower bound for the L-OLDARP
	A lower bound on the real line
	Lower bounds for the OLTRP

	Acknowledgements
	References

