Primitive 2-structures with the \((n - 2)\)-property

Paola Bonizzoni

Dipartimento di Scienze dell'Informazione, Università degli Studi, Via Comelico 39, 20135 Milano, Italy

Communicated by A. Salomaa
Received October 1992
Revised September 1993

Abstract

A fundamental notion in the theory of 2-structures is that of a primitive 2-structure. In (Ehrenfeucht, Rozenberg 1990), it is proved that primitivity is hereditary in the sense that each primitive 2-structure on \(n\) elements, where \(n \geq 3\), contains a primitive substructure on either \(n - 1\) or \(n - 2\) elements. In this paper we determine the class of primitive 2-structures on \(n\) elements that do not contain primitive substructures on \(n - 1\) elements: these 2-structures are said to satisfy the \((n - 2)\)-property. We show that for each \(n \geq 3\), there is a restricted number of primitive 2-structures on \(n\) elements satisfying this property. In fact, for each \(n > 4\), there are four different reversible 2-structures up to isomorphism, satisfying the \((n - 2)\)-property, while for \(n\) odd, there are five different 2-structures with this property.

1. Introduction

The theory of 2-structures, introduced by Ehrenfeucht and Rozenberg [4], is a convenient framework to investigate graphs as well as other mathematical structures in Computer Science [2]. A key notion in this theory which is related to the main result about 2-structures, a strong decomposition theorem [5], is that of a primitive 2-structure. In fact, primitive 2-structures are one of the basic components from which 2-structures are decomposed or constructed [5]. It is shown that understanding primitivity is crucial for the comprehension of 2-structures [3, 4, 6]. The study of this notion is also relevant in graph theory and some related areas where primitivity has
been introduced under different names, in relation to a decomposition of graphs [9,11]. This decomposition is used to obtain fast algorithms for problems on graphs and partial orders [10]. Since graphs are represented by 2-structures, as is shown in [4], the study of primitive 2-structures easily leads to understanding primitive graphs.

Some steps in the direction of the understanding of primitivity have been taken in [3,6] and [7], where this problem is analyzed by expressing the primitivity of a 2-structure in terms of its substructures. In [3] it is proved that primitivity is hereditary in the sense that a primitive 2-structure on \(n \) elements contains a primitive substructure on either \(n-1 \) or \(n-2 \) elements. This means that the primitivity of a 2-structure is preserved by the removal of one or two elements from the 2-structure. This result leaves open the problem of characterizing the class of the primitive 2-structures on \(n \) elements which are minimal in the sense that the removal of any element of the 2-structure results in a substructure which is nonprimitive.

In this paper we solve this problem by describing this class of primitive 2-structures. We prove that for each \(n > 3 \), there is a limited number of 2-structures on \(n \) elements with the \((n-2)\)-property. The characterization of these 2-structures is based on the notion of a chain of clans of a 2-structure, which is a sequence of elements of the 2-structure, \(c = \langle x_1, \ldots, x_n \rangle \), such that when an element \(x_i \in c \), for \(1 < i < n \), is removed from the 2-structure, a unique nontrivial clan consisting of the adjacent elements of \(x_i \) in \(c \), i.e. \(x_{i-1}, x_{i+1} \), is obtained. In fact, the \((n-2)\)-property is related to the existence in a primitive 2-structure of a maximal chain of clans whose elements form the whole domain of the 2-structure, except for at most one element.

We prove that the \((n-2)\)-property is hereditary in the sense that given a 2-structure \(g \) with the \((n-2)\)-property, all primitive substructures of \(g \) on \(n > 3 \) elements have this property.

2. Preliminaries

We now recall some of the basic notions of the theory of 2-structures. Most of the notation here is the same as in the work [4], to where the reader is referred for more details on the theory of 2-structures.

For a finite set \(D \), \(|D|\) denotes its cardinality and \(\emptyset \) denotes the empty set. A 2-edge over \(D \) is an ordered pair \((x, y)\) such that \(x, y \in D \) and \(x \neq y \); \(E_2(D) \) denotes the set of all 2-edges over \(D \). For a 2-edge \((x, y)\), its reverse, denoted \((x, y)^{-1}\), is the 2-edge \((y, x)\). In this paper we consider finite sets only.

Definition 2.1. A 2-structure, is an ordered pair \((D, R)\) such that \(D \) is a nonempty finite set, and \(R \) is an equivalence relation on \(E_2(D) \).

The term “2-structure” is abbreviated as \(2s \). For a \(2s \) \(g = (D, R) \), \(D \) is referred to as the domain of \(g \), and \(R \) as the equivalence relation of \(g \). We use \(\text{dom}(g) \) and \(\text{rel}(g) \) to denote \(D \) and \(R \), respectively. We say that \(e, e' \in E_2(D) \) are \(g \)-equivalent (or simply equivalent) iff \(e \sim R e' \).
Definition 2.2. Let $g=(D, R)$ be a 2s, and let X be a nonempty subset of D. The substructure of g induced by X, denoted $\text{sub}_g(X)$, is the 2s $h=(X, R')$, such that $R'=R\cap(E_2(X) \times E_2(X))$. A 2s h is a substructure of g iff there exists $X \subseteq D$ such that $h=\text{sub}_g(X)$.

Given a 2s $g=(D, R)$ and an element $x \in D$, to simplify the notation, we use g_{-x} rather than $\text{sub}_g(D-\{x\})$ to denote the substructure of g induced by $D-\{x\}$.

A pictorial representation of the 2s g is given by an edge-labeled graph, where equivalent edges get the same edge label, with edges in different equivalence classes getting different edge labels. This is illustrated in Fig. 1. A double arrowed edge with one label denotes an edge that is equivalent to its reverse.

Example 2.1. Let $g=(D, R)$ be a 2s, where R induces on $E_2(D)$ the following partition $\mathcal{P} = \{P_1, P_2, P_3\}$ (see Fig. 1(a)):

- $P_1 = \{(1,3), (3,1), (1,2), (3,2)\}$
- $P_2 = \{(2,1), (2,4), (4,2), (4,1), (4,3), (2,3)\}$
- $P_3 = \{(1,4), (3,4)\}$

Let $X = \{1,3,4\}$, then $\text{sub}_g(X) = (X, R')$, where R' induces on $E_2(X)$ the partition $\mathcal{P}' = \{P'_1, P'_2, P'_3\}$ (see Fig. 1(b))

- $P'_1 = X \cap P_1 = \{(1,3), (3,1)\}$
- $P'_2 = X \cap P_2 = \{(4,3), (4,1)\}$
- $P'_3 = X \cap P_3 = \{(3,4), (1,4)\}$

The following is the central notion of the theory of 2-structures.

Definition 2.3. Let $g=(D, R)$ be a 2s. A clan of g is a subset X of D, such that for all $z \in D-X$, and all $x, y \in X$, $(z, x) R (z, y)$ and $(x, z) R (y, z)$.

Hence, a subset X of the domain of a 2s g is a clan iff all elements of X are connected by equivalent edges in the same way to each element from outside of X, while each element from outside of X is “connected” in the same way to all elements of X. We use
\(\mathcal{C}(g)\) to denote the set of all clans of \(g\). Obviously, \(\emptyset, D \in \mathcal{C}(g)\) and for each \(x \in D\), \(\{x\} \in \mathcal{C}(g)\). These clans are called trivial. We use \(\mathcal{C}_2(g)\) to denote the set of nontrivial clans of a 2s \(g\). Obviously for each \(X \in \mathcal{C}_2(g)\), \(|X| \geq 2\), and \(D \notin \mathcal{C}_2(g)\). To simplify the notation we write \(\mathcal{C}_2(g) = \{X\}\).

We recall some basic properties of clans of a 2s. The next proposition describes the relationship between clans of a 2s and clans of its substructures.

Proposition 2.1 ([4]). Let \(g = (D, R)\) be a 2s and let \(X\) be a nonempty subset of \(D\) and let
\(h = \text{sub}_X(D)\). If \(Y \in \mathcal{C}(h)\), then \(Y \cap X \in \mathcal{C}(h)\).

Proposition 2.2 ([4]). Let \(g = (D, R)\) be a 2s and let \(X, Y \in \mathcal{C}(g)\). Then
1. \(X \cap Y \in \mathcal{C}(g)\),
2. if \(X \cap Y \neq \emptyset\), then \(X \cup Y \in \mathcal{C}(g)\) and
3. if \(Y - X \neq \emptyset\), then \(X - Y \in \mathcal{C}(g)\).

Example 2.2. Let \(g = (D, R)\) be the 2s of Fig. 1(a). Then
\[\mathcal{C}(g) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2, 3, 4\}, \{1, 3\}\} \quad \text{and} \quad \mathcal{C}_2(g) = \{1, 3\}\).

A subclass of the class of 2-structures that plays an important role in proving properties of 2-structures is that of the reversible 2-structures.

Definition 2.4. A 2s \(g = (D, R)\) is a reversible 2-structure, abbreviated r2s, iff for all \(e_1, e_2 \in E_2(D)\), \(e_1 R e_2\) implies \(e_1^{-1} R e_2^{-1}\).

Example 2.3. Let \(g = (D, R)\) be a 2s, where \(R\) induces on \(E_2(D)\) the following partition
\[\mathcal{P} = \{P_1, P_2, P_3, P_4\}\] see Fig. 2
\[P_1 = \{(1, 5), (5, 1), (3, 5), (5, 3), (2, 4), (4, 2), (1, 3), (3, 1)\},\]
\[P_2 = \{(2, 1), (2, 3), (4, 3), (4, 1)\},\]
\[P_3 = \{(3, 4), (1, 4), (3, 2), (1, 2)\},\]
\[P_4 = \{(5, 4), (4, 5), (5, 2), (2, 5)\}.

Clearly, \(g\) is a reversible 2s.

Given an arbitrary 2-structure \(g\), there is an easy construction that allows one to consider a reversible version of \(g\) which is defined as follows.

Definition 2.5. Let \(g = (D, R)\) be a 2s. The reversible version of \(g\), denoted \(\text{rver}(g)\), is the 2s \(g' = (D, R')\), where \(R'\) is the equivalence relation on \(E_2(D)\) defined by \(e_1 R e_2\) iff \(e_1 R e_2\) and \(e_1^{-1} R e_2^{-1}\).

In [4] some basic properties of the reversible version of a 2s are proved. These explain the importance of reversible 2-structures in proving properties of 2-structures.
Proposition 2.3. Let \(g \) be a 2s.

1. \(\text{rver}(g) \) is reversible.
2. A 2s \(h \) is a substructure of \(g \) iff \(\text{rver}(h) \) is a substructure of \(\text{rver}(g) \).
3. \(\mathcal{C}(g) = \mathcal{C}(\text{rver}(g)) \).

By this result a 2s and its reversible version, which is a reversible 2s, have the same set of clans. Moreover, if \(h \) is a substructure of \(g \), then \(h \) has the same set of clans as \(\text{rver}(h) \), which is the substructure of \(\text{rver}(g) \) induced by the same subset of the domain that induces \(h \) in \(g \). By this fact, all properties concerning clans of a 2s \(g \) and its substructures, can be proved using \(\text{rver}(g) \) instead of \(g \) itself. It can be easily seen that the condition to be satisfied by a set in order for it to be a clan is simpler for an r2s. In fact, given an r2s \(g = (D, R) \), a subset \(X \) of \(D \) is a clan of \(g \) when for all \(z \in D - X \), and all \(x, y \in X \), \((z, x) R (z, y) \). Hence it is convenient to prove properties about clans using reversible 2-structures instead of arbitrary 2-structures. In this sense \(\text{rver}(g) \) can be considered as a "normal form" for a 2s.

Let us recall in the following some natural notions about 2-structures that are particularly useful in the theory of reversible 2-structures. Some of these notions are extensively illustrated in [6].

Definition 2.6. Let \(g = (D, R) \) be a 2s. A 2-edge \(e \in E_2(D) \) is symmetric iff \(e R e^{-1} \), otherwise \(e \) is asymmetric.

A 2s \(g \) is called symmetric if it consists of only symmetric edges; \(g \) is antisymmetric iff \(g \) consists of only asymmetric edges.

Given a 2s \(g = (D, R) \), the equivalence relation \(R \) induces a partition \(\mathcal{P} \) of all 2-edges over \(D \). Thus, depending on the context, \(g \) can also be conveniently represented in the form \(g = (D, \mathcal{P}) \). The partition \(\mathcal{P} \) is denoted \(\text{part}(g) \) when not named explicitly. In the paper we will use the notation \(g = (D, \mathcal{P}) \), when we mean \(\mathcal{P} \) to be a partition, otherwise we will denote \(g \) in the form \((D, R) \), when \(R \) is meant to be the equivalence relation of \(g \).
For $P \in \mathcal{P}$, P^{-1} denotes the set $\{ e^{-1} : e \in P \}$. If g is an r2s, then by Definition 2.4, $P^{-1} \in \mathcal{P}$. Clearly for each $P \in \mathcal{P}$, either $P = P^{-1}$ and all edges in P are symmetric edges and P is called symmetric, or $P \cap P^{-1} = \emptyset$ and all edges in P are asymmetric and P is called antisymmetric. Given $P \in \mathcal{P}$, the symmetric closure of P, denoted by $\text{sym}(P)$, is the set $P \cup P^{-1}$.

For an r2s g, and each $P \in \mathcal{P}$, a feature of g is defined as the set $\{ P, P^{-1} \}$ if P is antisymmetric, or as the singleton $\{ P \}$ if P is symmetric. In particular a feature is called symmetric if it consists of a singleton, otherwise it is called antisymmetric.

The 2s g can be described through the set of its features, and hence g is represented in the form $g = (D, \mathcal{F})$, where \mathcal{F} is the set of all its features.

Example 2.4. Let g be the r2s of Example 2.3. P_1, P_4 are symmetric, and P_2, P_3 are antisymmetric; hence g is neither symmetric nor antisymmetric. Then g can be described through the set of its features, i.e. $g = (D, \mathcal{F})$, where $\mathcal{F} = \{ F_1, F_2, F_3 \}$, $F_1 = \{ P_1 \}$, $F_2 = \{ P_4 \}$ and $F_3 = \{ P_2, P_3 \}$. F_1, F_2 are symmetric, while F_3 is antisymmetric.

The following subclass of the class of 2-structures is important in the theory of 2-structures.

Definition 2.7. Let $g = (D, R)$ be a 2s. Then g is primitive iff g contains only trivial clans.

It is proved in [5] that primitive 2-structures are one of the basic types from which each 2s can be constructed or decomposed.

Next lemma follows directly from the definition of a clan and of a primitive 2s.

Lemma 2.1. Let $g = (D, R)$ be a primitive 2s and let $x_0 \in D$ such that $X \in \mathcal{C}_2 (g_{x_0})$. Then for each $z \in D$, $z \neq x_0$, $X \notin \mathcal{C}(g_{-z})$.

An important notion that arises in the theory of 2-structures, when we assume an algebraic perspective, is that of isomorphism between different 2-structures [4]. This notion is naturally defined as follows:

Definition 2.8. Let $g_1 = (D_1, R_1)$ and $g_2 = (D_2, R_2)$, be 2-structures. A function $\phi : D_1 \rightarrow D_2$, is an isomorphism from g_1 onto g_2, iff ϕ is a bijection such that for all x, y, $u, v \in D$, $(\phi(x), \phi(y))$ and $(\phi(u), \phi(v))$ are g_2-equivalent iff $(x, y), (u, v)$ are g_1-equivalent.

We will use this notion in order to enumerate the objects in the class of primitive 2-structures that satisfy the $(n - 2)$-property.

3. The $(n - 2)$-property

In [3] it has been proved that primitivity is hereditary in the following sense.

Proposition 3.1. Let g be a primitive 2s such that $|\text{dom}(g)| \geq 3$. Then there exists a primitive substructure h of g such that either $|\text{dom}(h)| = |\text{dom}(g)| - 1$ or $|\text{dom}(h)| = |\text{dom}(g)| - 2$.
In this paper we investigate primitive 2-structures on \(n > 4 \) elements which are minimal in the sense that they do not contain primitive substructures on \(n-1 \) elements. This condition for a primitive 2-structure is referred to as the \((n-2)\)-property.

Definition 3.1. Let \(g = (D, R) \) be a primitive 2-structure. Then \(g \) satisfies the \((n-2)\)-property iff for every \(x \in D \), each substructure \(g_{-x} \) of \(g \) induced by \(D - \{x\} \) is not primitive.

Obviously by Proposition 3.1, a primitive 2s satisfying the \((n-2)\)-property contains a primitive substructure induced by \(D - \{x, y\} \) for some \(x, y \in D \).

4. The local and global elements of a 2s

In the next sections, we investigate the existence of 2-structures with the \((n-2)\)-property. Since this property concerns clans of substructures, and the notion of clan is simpler for reversible 2-structures, as seen in Section 2, it will be easier to analyze the \((n-2)\)-property for the class of reversible 2-structures. Furthermore, the results obtained in the paper about this class of 2-structures can be easily extended to the case of arbitrary 2-structures (see Proposition 2.3). Hence, in the rest of the paper we will consider only reversible 2-structures, except in the last section, where we determine the class of arbitrary 2-structures with the \((n-2)\)-property.

A fundamental step to analyze primitive 2-structures consists in investigating reductions for these 2-structures, that is how primitivity is changed by the removal of elements from the domain.

In this section we investigate methods of “destroying” the primitivity of an r2s \(g \). Given a substructure \(h \) of \(g \), there are two methods of “destroying” the primitivity of \(h \) by extending it by one element of \(g \), these are referred as “local” and “global”.

Lemma 4.1 ([3]). Let \(g = (D, R) \) be an r2s, let \(D_0 \subseteq D \) be such that \(|D_0| \geq 3 \) and \(\text{sub}_g(D_0) \) is primitive and let \(x \in D - D_0 \) be such that \(\text{sub}_g(D_0 \cup \{x\}) \) is not primitive. Then \(\text{sub}_g(D_0 \cup \{x\}) \) has a unique nontrivial clan, and moreover either

1. \(D_0 = \mathcal{E}_2(\text{sub}_g(D_0 \cup \{x\})) \), or
2. \(\{x, y\} = \mathcal{E}_2(\text{sub}_g(D_0 \cup \{x\})) \), for some \(y \in D_0 \).

Let \(g = (D, R) \) be an r2s and \(D_0 \subseteq D \), such that \(|D_0| \geq 2 \) and \(\text{sub}_g(D_0) \) is primitive. We call \(x \in D - D_0 \) local for \(D_0 \) in \(g \), iff \(\text{sub}_g(D_0 \cup \{x\}) \) has a unique 2-element clan \(\{x, k\} \), and in this case we denote the element \(k \in D_0 \) by \(\text{uni}_g(D_0, x) \). We call \(x \) global for \(D_0 \) in \(g \) iff \(D_0 \) is the only nontrivial clan of \(\text{sub}_g(D_0 \cup \{x\}) \).

In Lemma 4.4 we shall prove that an r2s \(g = (D, R) \), satisfying \((n-2)\)-property has two elements \(x, y \in D - \{x, y\} \), which are both local for \(D - \{x, y\} \) in \(g \).

Before introducing this result, we give some technical lemmas which will be used to prove it.
Lemma 4.2. Let \(g = (D, R) \) be an \(r_2s \) and let \(\{ x, a \} = \mathcal{C}_2(g) \) for \(a, x \in D \). Then \(\text{sub}_g(D - \{ x \}) \) is a primitive substructure of \(g \).

Proof. If \(|D| = 3 \), the lemma is immediate, so assume that \(|D| > 3 \). Let \(h = \text{sub}_g(D - \{ x \}) \). Assume to the contrary that \(h \) is nonprimitive. Hence \(h \) contains a nontrivial clan; let \(X \) be such a clan.

(i) Suppose that \(a \notin X \). Then for all \(t_1, t_2 \in X \subset D - \{ x \} \), \((a, t_1) R (a, t_2) \). Since \(\{ x, a \} = \mathcal{C}_2(g) \), \((x, t) R (a, t) \) for all \(t \in X \), thus implying that \((x, t_1) R (x, t_2) \). This implies that \(X \) is a nontrivial clan of \(g \), where \(X \neq \{ x, a \} \), thus contradicting the fact that there is a unique nontrivial clan in \(g \).

(ii) Suppose that \(a \in X \). Then for each \(d \in D - \{ x \} \), \(d \notin X \), \((d, a) R (d, t) \) for all \(t \in X \). Since \(\{ x, a \} = \mathcal{C}_2(g) \), \((d, a) R (d, x) \), consequently \((d, x) R (d, t) \). This implies that \(X \cup \{ x \} \neq \{ x, a \} \) is a clan of \(g \) that is nontrivial, since \(X \subset D - \{ x \} \), but this contradicts the fact that there is only one nontrivial clan in \(g \).

Then (i) and (ii) imply that the assumption that \(h \) is not primitive leads to a contradiction. Thus the lemma holds. \(\Box \)

Corollary 4.1. Let \(g = (D, R) \) be an \(r_2s \) such that \(|D| \geq 3 \). The following statements are equivalent:

1. \(\{ x, a \} = \mathcal{C}_2(g) \), with \(x, a \in D \),
2. \(x \) is local for \(D - \{ x \} \) in \(g \), where \(\text{uni}_g(D - \{ x \}, x) = a \).

Proof. Follows from Lemma 4.2 and the definition of a local element. \(\Box \)

We now define a new notion of locality and globality of an element in an \(r_2s \): that of an element \(x \) that is local or global for the domain of the primitive \(r_2s \) obtained by removing \(x \) from \(g \). In this case, \(x \) is called \(r \)-local or \(r \)-global (we use the prefix \(r \)-). These notions will simplify the comprehension of the lemmas in the rest of the paper.

Definition 4.1. Let \(g = (D, R) \) be an \(r_2s \) and let \(x \) be an element of \(D \). Then \(x \) is \(r \)-local in \(g \) iff \(x \) is local for \(D - \{ x \} \) in \(g \), and \(x \) is \(r \)-global in \(g \) iff \(x \) is global for \(D - \{ x \} \) in \(g \).

Let us now investigate the local and global elements in a primitive \(r_2s \) with the \((n-2)\)-property.

Lemma 4.3. Let \(g = (D, R) \) be a primitive \(r_2s \) satisfying the \((n-2)\)-property and let \(|D| = 4 \). Then each element \(x \in D \) is either local or global for \(D - \{ x, y \} \) in \(g \), for any \(y \in D - \{ x \} \).

Proof. Since \(g \) satisfies the \((n-2)\)-property, \(g_{-d} \) and \(g_{-d'} \) are not primitive for all \(d, d' \in D \). Suppose that \(X_1 \in \mathcal{C}_2(g_{-d}) \) and \(X_2 \in \mathcal{C}_2(g_{-d'}) \). Then \(|X_1| = |X_2| = 2 \), and \(X_1 \neq X_2 \), otherwise by Lemma 2.1, we contradict the fact that \(g \) is primitive. Moreover the following condition (a) is verified: if \(X_1 = \{ d', k \} \), \(X_2 = \{ d, k' \} \), for \(k, k' \in D - \{ d, d' \} \), then \(k \neq k' \). In fact, if \(k = k' \), then it follows that \(\{ d, d', k \} \) is a clan of \(g \), which contradicts the primitivity of \(g \).
Let us determine the nontrivial clans of g_{-y} for an arbitrary element $y \in D$. Clearly, any 2-element subset of $D - \{y\}$ can be a nontrivial clan of g_{-y}. Assume that g_{-y} has at least two nontrivial clans X_1 and X_2. Obviously, $|X_1 \cap X_2| = 1$, hence let $X_1 = \{a, b\}$ and $X_2 = \{x, a\}$ for $\{a, b, x\} = D - \{y\}$. By Lemma 2.1 and condition (a), we have that $\{y, b\}$ is the unique nontrivial clan of g_{-x}. Hence, by Lemma 2.1 and condition (a), it follows that g_{-y} has no nontrivial clans, which is not possible. Thus, g_{-y} must have a unique nontrivial clan. This proves that x is either local or global for $D - \{x, y\}$ for any $y \in D - \{x\}$.

The next result will be important for investigating the $(n-2)$-property of primitive 2-structures.

Lemma 4.4. Let $g = (D, R)$ be a primitive r2s that satisfies the $(n-2)$-property. Then there exist two elements $x, y \in D$ such that $\text{sub}_g(D_0), D_0 = D - \{x, y\}$, is primitive and x, y are both local for D_0 in g, where $\text{uni}_g(D_0, x) \neq \text{uni}_g(D_0, y)$.

Proof. Since g satisfies the $(n-2)$-property, there exists $D_0 \subseteq D$ such that $\text{sub}_g(D_0)$ is primitive and $D_0 = D - \{x, y\}$ for $x, y \in D$. Since g_{-x} and g_{-y} are not primitive, by Lemma 4.1 (or Lemma 4.3 if $|D| = 4$), each of x, y, is local or global for D_0 in g. We have three cases to consider.

(i) x, y are both local for D_0 in g.

(ii) x is local and y is global for D_0 in g. Since x is local for D_0 in g, then $\{x, a\} = \mathcal{S}_2(g_{-y})$ for some $a \in D_0$ and by Corollary 4.1, a is local for $D - \{a, y\}$ in g. Let $D' = D - \{a, y\}$. Thus $\text{sub}_g(D')$ is primitive. Since g_{-x} is not primitive, by Lemma 4.1 (or Lemma 4.3 if $|D| = 4$), y is local or global for D' in g. Let us assume that y is global. This implies that $(y, x) R (y, d)$, for $x, d \in D - \{a, y\}$. Since y is also global for D_0 in g, $(y, a) R (y, d)$, which implies that $(y, x) R (y, a)$. Consequently, since $\{x, a\} = \mathcal{S}_2(g_{-y})$, it follows that $\{x, y\}$ is a clan of g, and this contradicts the fact that g is primitive. Thus y must be local for D' in g. Hence, a and y are both local for $D - \{y, a\}$ in g.

(iii) x is global and y is local for D_0 in g. This case is analogous to the previous one.

(iv) x, y are global for D_0 in g. This implies that D_0 is a trivial clan of g, which leads to a contradiction.

By cases (i), (ii), (iii) and (iv), it follows that there exist two elements $x_1, x_2 \in D$ that are local for $D - \{x_1, x_2\} = D'$ in g. Let us assume that $\text{uni}_g(D', x_1) = \text{uni}_g(D', x_2) = a$. Thus, by the definition of a local element, we have that $\{x_1, x_2, a\}$ is a nontrivial clan of g, which leads to a contradiction. Hence, $\text{uni}_g(D', x_1) \neq \text{uni}_g(D', x_2)$. Thus the lemma holds.

The following lemmas illustrate properties of local elements in an r2s.

Lemma 4.5. Let $g = (D, R)$ be an r2s and let $D_0 \subseteq D$ be such that $\text{sub}_g(D_0)$ is primitive and $x, y \in D - D_0$ are local for D_0 in g and let $\text{uni}_g(D_0, x) = x_1$ and $\text{uni}_g(D_0, y) = y_1$. If $x_1 \neq y_1$, then $(x, y) R (x_1, y_1)$.

Proof. Since x is local for D_0 in g, then $(y, x) R (y_1, x_1)$; similarly since y is local for D_0 in g, $(x_1, y) R (x_1, y_1)$ and consequently $(x, y) R (x_1, y)$. □
Fig. 3 illustrates Lemma 4.5.

Lemma 4.6. Let \(g = (D, R) \) be an \(r2s \) and let \(x, y \in D \) be such that \(\text{sub}_g(D_0), D_0 = D - \{x, y\}, \) is primitive and both \(x, y \) are local for \(D_0 \) in \(g \), where \(x_1 = \text{uni}_g(D_0, x) \neq \text{uni}_g(D_0, y) = y_1 \). If \(g \) is not primitive, then \(\mathcal{C}_2(g) = \{ \{x, x_1\}, \{y, y_1\}\} \).

Proof. If \(g \) is not primitive, \(g \) contains a nontrivial clan \(X \). Since \(x, y \) are both local for \(D_0 \) in \(g \), \(\{x, x_1\} = \mathcal{C}_2(g - x) \) and \(\{y, y_1\} = \mathcal{C}_2(g - y) \). By Proposition 2.1, \(X - \{x\} \in \mathcal{C}(g - x) \) and \(X - \{y\} \in \mathcal{C}(g - y) \). By the uniqueness of the nontrivial clan in \(g - x \) and \(g - y \), we have \(X = \{x, x_1\} \), or \(X = \{y, y_1\} \) or \(X = \{x, y\} \). Since \(x \) is local, if \(X = \{x, y\} \), then \(X \cup \{x_1\} \) is clan of \(g \), but this is a contradiction. Now we prove that \(\{x, x_1\} \in \mathcal{C}_2(g) \) iff \(\{y, y_1\} \in \mathcal{C}_2(g) \). In fact, let \(\{d, \text{uni}_g(D_0, d)\} \) be a clan of \(g \), for \(d \in \{x, y\} \) and \(d' = \{x, y\} - d \). Thus \((d', d) R (d', \text{uni}_g(D_0, d)) \), by Lemma 4.5 \((d', \text{uni}_g(D_0, d)) R (\text{uni}_g(D_0, d'), d) \), which implies that \((d', d) R (\text{uni}_g(D_0, d'), d) \) and since \(d' \) is local, it follows that \(\{d', \text{uni}_g(D_0, d')\} \) is a clan of \(g \). Thus the lemma holds.

Given a primitive reversible 2-structure \(g = (D, R) \) satisfying the \((n - 2)\)-property, there are two local elements \(x, y \in D \) for \(D - \{x, y\} \) in \(g \). Now we analyze how the primitivity of the 2-structure \(g \) is destroyed by removing \(\text{uni}_g(D_0, x) \) from \(g \) (see Corollary 4.2). Similarly to the case of Lemma 4.1, there are two methods of "destroying" the primitivity of \(g \) by removing \(\text{uni}_g(D_0, x) \). These methods are analogously referred to as "local" and "global".

Lemma 4.7 (Global–local rule). Let \(g = (D, R) \) be an \(r2s \) such that \(|D| > 4 \). Let \(x, y \in D \) be such that \(\{x, a\} = \mathcal{C}_2(g - x), \{y, b\} = \mathcal{C}_2(g - y), \) with \(a, b \in D \). Let \(g - a \) be nonprimitive. Then either

1. \(y \) is \(r \)-global in \(g - a \), or
2. \(y \) is \(r \)-local in \(g - a \), where \(\{y, k\} = \mathcal{C}_2(g - a) \), for \(k \in D - \{x, y\} \), such that \(k \neq b \) iff \(g \) is primitive.
Proof. By Corollary 4.1, \(x, y \) are local for \(D - \{x, y\} \) in \(g \). By Lemma 4.2, since \(\{x, a\} = \mathcal{C}_2(g_{-a}) \), \(\text{sub}_g(D_0) \) is primitive, \(D_0 = D - \{a, y\} \). Since \(g_{-a} = \text{sub}_g(D_0 \cup \{y\}) \) is not primitive, by Lemma 4.1, \(y \) is \(r \)-local or \(r \)-global in \(g_{-a} \). Assume that \(y \) is \(r \)-local where \(\{y, k\} = \mathcal{C}_2(g_{-a}) \). Assume first that \(k = x \). Since \(y \) is local for \(D - \{x, y\} \), it follows that \(\{y, x, b\} \) is a nontrivial clan of \(g_{-a}(|\text{dom}(g_{-a})| \geq 4) \), which contradicts the fact that \(\{y, k\} \) is the unique nontrivial clan of \(g_{-a} \). Thus \(k \in D - \{x, y\} \).

Let us now prove that \(k \neq b \) iff \(g \) is primitive. Let \(g \) be primitive. Since \(\{y, b\} = \mathcal{C}_2(g_{-a}) \), \((x, y), (x, b) \) are not equivalent. Thus \(\{y, b\} \) cannot be a clan of \(g_{-a} \). Hence \(k \neq b \). On the other end assume that \(k \neq b \). Let \(g \) be nonprimitive. By Lemma 4.6, \(\mathcal{C}_2(g) = \{\{y, b\}, \{x, a\}\} \), which implies by Proposition 2.1 that \(\{y, b\} \in \mathcal{C}_2(g_{-a}) \). Since \(\{y, k\} \) is the unique nontrivial clan of \(g_{-a} \), \(k = b \), thus obtaining a contradiction. Hence if \(k \neq b \), \(g \) must be primitive. \(\square \)

Lemma 4.8. Let \(g = (D, R) \) be a primitive 2-s such that \(|D| = 4 \). Let \(x, y \in D \) be local for \(D_0 \) in \(g \), where \(D_0 = D - \{x, y\} \) and \(\text{uni}_g(D_0, x) = a \) for \(a \in D \). Let \(g_{-a} \) be nonprimitive. Then \(y \) is \(r \)-global in \(g_{-a} \).

Proof. Let \(X \) be a nontrivial clan of \(g_{-a} \). Since \(\{y, b\} = \mathcal{C}_2(g_{-x}) \) and \(g \) is primitive, \(X \neq \{y, b\} \). Thus \(X = \{x, t\} \) for \(t \in \{y, b\} \). If \(X = \{x, y\} \), then since \(\{x, a\} = \mathcal{C}_2(g_{-x}) \), it follows that \(\{x, y, a\} \) is a nontrivial clan of \(g \), which contradicts the assumption that \(g \) is primitive. Hence \(\{x, b\} = D - \{y, a\} \) is the unique nontrivial clan of \(g_{-a} \). \(\square \)

Corollary 4.2 follows directly from the definition of a local element, the global–local rule (4.7) and Lemma 4.8.

Corollary 4.2. Let \(g = (D, R) \) be a primitive 2-s and let \(x, y \in D \) be such that \(\text{sub}_g(D_0) \), \(D_0 = D - \{x, y\} \), is a primitive substructure of \(g \) and \(x, y \) are local for \(D_0 \) in \(g \), with \(\text{uni}_g(D_0, x) = a \), for \(a \in D_0 \). Let \(g_{-a} \) be nonprimitive. Then \(y \) is \(r \)-global in \(g_{-a} \), or

1. \(y \) is \(r \)-global in \(g_{-a} \), or
2. \(y \) is \(r \)-local in \(g_{-a} \), where \(\{y, k\} = \mathcal{C}_2(g_{-a}) \), for \(k \in D_0 \), \(k \neq \text{uni}_g(D_0, y) \).

The global–local rule (4.7) is useful in proving the main results of the paper about the \((n-2)\)-property (Theorems 6.1, 6.2) since it describes the nontrivial clans of nonprimitive substructures on \(n - 1 \) elements contained in primitive reversible 2-structures on \(n \) elements. In fact, given a 2-structure that satisfies the \((n-2)\)-property, there are two elements \(x, y \) that are local for \(D_0 = D - \{x, y\} \), where \(\text{uni}_g(D_0, x) = a \) and \(\text{uni}_g(D_0, y) = b \). By the global–local rule (4.7) we can determine the clans of \(g_{-a} \) and \(g_{-b} \). If \(y \) is \(r \)-local, then since \(\{y, k\} = \mathcal{C}_2(g_{-a}) \) and \(\{x, a\} = \mathcal{C}_2(g_{-x}) \), we can apply the global–local rule (4.7) to compute the clans of \(g_{-k} \) and repeat this step each time an \(r \)-local element is obtained. Thus the global–local rule (4.7) gives a general rule for determining how primitivity is violated when single elements are removed from an r2s with the \((n-2)\)-property. The way in which primitivity is destroyed is described by the notion of a chain of clans of an r2s, illustrated in the next section.
A chain of clans of an r2s g consists of a sequence c of different elements of g such that when each element x of c is removed, g_{-x} contains a unique nontrivial clan consisting of the two adjacent elements to x in the sequence. Now we observe that the sequence x, y, a, k obtained by the global–local rule (4.7) is a chain of clans, and by applying again this rule a longer chain can be computed.

5. Chains of clans

In this section we define the notion of a chain of clans of an r2s and analyze properties of chains of clans of an r2s. This notion plays an important role in studying primitive 2-structures satisfying the $(n-2)$-property.

By (x_1, \ldots, x_m), we denote the sequence of elements x_1, \ldots, x_m.

Definition 5.1. Let $g = (D, R)$ be an r2s. A chain of clans of g is a sequence $c = (x_1, \ldots, x_m)$ of different elements of D such that $m \geq 3$ and for all $i \in \{1, \ldots, m-2\}$,

$$\{x_i, x_{i+2}\} = \mathcal{C}_2(g_{-x_i}).$$

Clearly, Definition 5.1 also holds for arbitrary 2-structures.

Example 5.1. Let $g = (D, R)$ be the r2s of Fig. 2. The sequence $c = (1, 2, 3, 4)$ is a chain of clans of g. The r2s g is not primitive since $\mathcal{C}_2(g) = \{\{1, 3\}, \{2, 4\}\}$.

By the global–local rule (4.7), it follows that an r2s containing a chain of clans of length $m > 4$ is a primitive r2s, as is proved in next lemma.

Lemma 5.1. Let $g = (D, R)$ be an r2s and let $c = (x_1, \ldots, x_m)$ be a chain of clans of g such that $m > 4$. Then g is primitive.

Proof. By the definition of a chain of clans $\mathcal{C}_2(g_{-x_i}) = \{x_{i-1}, x_{i+1}\}$, $\mathcal{C}_2(g_{-x_{i+1}}) = \{x_i, x_{i+2}\}$, and $\mathcal{C}_2(g_{-x_{i+2}}) = \{x_{i+1}, x_{i+3}\}$. Since $x_{i+3} \neq x_{i-1}$, the global–local rule (4.7) implies that g is primitive. \square

Example 5.2. Let g be the r2s of Fig. 4. The sequence $c = (1, 2, 3, 4)$ is a chain of clans. Then g is primitive but does not satisfy the $(n-2)$-property.

We give some lemmas concerning properties of chains of clans of an r2s. Obviously, by Lemma 5.1 these properties refer to primitive 2-structures whenever the chains of clans have length $m > 4$.

Lemma 5.2. Let $g = (D, R)$ be an r2s and let $c = (x_1, \ldots, x_m)$ be a chain of clans of g. Then

$$(z, x_j) R (z, x_{j+2k}),$$

where $z \in D$, $z \notin \{x_j, \ldots, x_{j+2k}\}$ and $1 \leq j \leq m$ and $1 \leq j + 2k \leq m$.

Proof. Since \(\mathcal{C}_2(g - x_{j+1}) = \{x_j, x_{j+2}\} \), then \((z, x_j) R (z, x_{j+2})\), for \(z \notin \{x_j, x_{j+1}, x_{j+2}\}\).

By transitivity of \(R \) the lemma follows. \(\square \)

The next lemmas describe what clans are obtained when the extreme elements of a chain of clans are removed and primitivity is violated.

Lemma 5.3. Let \(g = (D, R) \) be an \(r2s \) such that \(|D| > 4\), and let \(c = \langle x_1, \ldots, x_m \rangle \) be a chain of clans of \(g \). Then

1. if \(g - x_m \) is not primitive, \(x_{m-1} \) is \(r \)-local or \(r \)-global in \(g - x_m \).
2. if \(g - x_1 \) is not primitive, \(x_2 \) is \(r \)-local or \(r \)-global in \(g - x_1 \).

Proof. By the definition of a chain of clans, \(\mathcal{C}_2(g - x_m) = \{x_{m-1}, x_m\} \). By Lemma 4.2, \(\mathcal{C}_2(g - x_m) \) is a primitive \(r2s \). Hence, if \(g - x_m \) is not primitive, by Lemma 4.1, \(x_{m-1} \) is \(r \)-local or \(r \)-global in \(g - x_m \). Since \(c' = \langle x_m, \ldots, x_1 \rangle \) is a chain of clans, from statement (1) of the lemma, statement (2) follows. \(\square \)

Remark 5.1. Let \(g = (D, R) \) be a primitive \(r2s \) such that \(c = \langle x_1, \ldots, x_4 \rangle \) is a chain of clans of \(g \), and \(|D| = 4\). Then \(x_3, x_2 \) are \(r \)-local in \(g - x_4 \) and \(g - x_1 \), respectively. It is easy to verify that this follows from Lemma 4.8.

The following lemma describes what happens when \(x_m \) is removed from \(g \), and \(x_{m-1} \) is \(r \)-local in \(g - x_m \), where \(x_m, x_{m-1} \) are elements of a chain of clans of \(g \).

Lemma 5.4. Let \(g = (D, R) \) be an \(r2s \) such that \(|D| > 4\), and let \(c = \langle x_1, \ldots, x_m \rangle \) be a chain of clans of \(g \) such that \(x_{m-1} \) is \(r \)-local in \(g - x_m \), where \(\{x_{m-1}, k\} = \mathcal{C}_2(g - x_m) \). Then \(k \neq x_i \), for \(i \in \{2, \ldots, m\} \).

Proof. Let us assume that \(k = x_j \) for some \(x_j \) in the chain of clans of \(g \). Obviously \(k \neq x_m \). Hence \(\mathcal{C}_2(g - x_m) = \{x_{m-1}, x_1\} \) and by Lemma 4.2, \(\mathcal{C}_2(g - x_m) \) is a primitive \(r2s \). Then by Lemma 4.1, if \(g - x_j \) is not primitive, \(x_m \) is \(r \)-local or \(r \)-global in \(g - x_j \). If
Let \(j \in \{2, \ldots, m-1\} \), then by the definition of a chain of clans \(\mathscr{C}_2(g-x_j) = \{x_{j-1}, x_{j+1}\} \). Hence \(x_m \) must be \(r \)-local, thus implying that \(\mathscr{C}_2(g-x_j) = \{x_{m}, t\} \), where \(t \in D - \{x_{m}, x_j\} \). Consequently \(x_{j+1} \) must be equal to \(x_m \). (Obviously \(x_m \neq x_{j-1} \) because \(x_m \) is the last element in the chain of clans). This implies that \(x_j = x_{m-1} \), and consequently the previous assumption \(\mathscr{C}_2(g-x_m) = \{x_{m-1}, x_j\} \) is not verified when \(j \in \{2, \ldots, m\} \). Thus the lemma holds.

6. The main theorem

In this section we prove the main result of this paper stating that there exists a restricted number of primitive 2-structures satisfying the \((n-2)\)-property.

The proof of this result consists of the following steps. Let \(g \) be a primitive 2s satisfying the \((n-2)\)-property. We show first that there exists a chain of clans of \(g \) which has length at least four. We let then \(c \) be a maximal chain of clans, and show that \(c \) contains all the elements of the domain excepting at most one element. This result gives a characterization of 2-structures with the \((n-2)\)-property, in terms of chains of clans. Finally, in Propositions 6.1, 6.2 and 6.3, we completely describe all 2-structures that have this characterization.

Lemma 6.1. Let \(g=(D, R) \) be a primitive 2s satisfying the \((n-2)\)-property. Then \(g \) contains a chain of clans \(c=\langle x_1, x_2, \ldots, x_m \rangle \) such that \(4 \leq m \leq |D| \).

Proof. By Lemma 4.4, there exists \(D_0 = D - \{x, y\} \), such that \(\text{sub}_g(D_0) \) is primitive and \(x, y \) are both local for \(D_0 \) in \(g \). Let \(a = \text{uni}_g(D_0, x) \) and \(b = \text{uni}_g(D_0, y) \). Hence \(\mathscr{C}_2(g-x) = \{x, a\} \) and \(\mathscr{C}_2(g-x) = \{y, b\} \), and thus the sequence \(a, y, x, b \) is a chain of clans of \(g \) as required. \(\square \)

Next Theorem 6.1 shows the characterization of the 2-structures satisfying the \((n-2)\)-property in terms of their chain of clans; such a result is obtained by proving that if more than one element of the domain of an 2s \(g \) is not contained in the maximal chain of clans \(c \) of \(g \), then \(g \) must not be primitive. Moreover, the chain \(c \) must be either cyclic or bordered as specified in Definition 6.1.

Definition 6.1. Let \(c=\langle x_1, \ldots, x_m \rangle \) be a chain of clans of an 2s \(g \). Then \(c \) is cyclic iff \(x_2, x_{m-1} \) are \(r \)-local in \(g-x_1, g-x_m \), respectively, with \(\mathscr{C}_2(g-x_1) = \{x_2, x_m\} \) and \(\mathscr{C}_2(g-x_m) = \{x_{m-1}, x_1\} \). The chain \(c \) is bordered iff \(x_2, x_{m-1} \) are \(r \)-global in \(g-x_1, g-x_m \), respectively.

In the above definition, cyclic means that \(c \) has only local elements, and hence for each \(i, 1 \leq i \leq m \), also \(\langle x_i, \ldots, x_m, x_1, \ldots, x_{i-1} \rangle \) is a chain of clans. If the extreme elements of \(c \) are global, then \(c \) cannot be cycled around and \(c \) is called bordered.

Lemma 6.2. Let \(g=(D, R) \) be a 2s such that \(|D| \geq 4\), and let \(c=\langle x_1, \ldots, x_m \rangle \) be a chain of clans of \(g \). If \(c \) is bordered or \(c \) is a cyclic chain with \(m = |D| \), then \(g \) is primitive.
Proof. By Lemma 5.1, if \(m > 4 \), then \(g \) is primitive. If \(c \) is cyclic, then by Remark 5.1, \(|D| > 4 \). This implies that \(m > 4 \), and hence \(g \) is primitive. So assume that \(m = 4 \) and \(c \) is bordered. By the definition of a chain of clans, \(x_2 \) and \(x_3 \) are local for \(D - \{ x_2, x_3 \} \). By Lemma 4.6, if \(g \) is nonprimitive \(\mathcal{Q}_2(g) = \{ \{ x_2, x_4 \}, \{ x_1, x_3 \} \} \). By Proposition 2.1, it follows that \(\{ x_2, x_4 \} \in \mathcal{Q}_2(g_{-x_1}) \), which leads to a contradiction since \(D - \{ x_1, x_2 \} \) is the unique nontrivial clan of \(g_{-x_1} \). Thus \(g \) must be a primitive \(r_2s \). □

Theorem 6.1. Let \(g = (D, R) \) be an \(r_2s \) such that \(|D| \geq 4 \). Then \(g \) satisfies the \((n-2)\)-property if \(g \) contains a chain of clans \(c = \langle x_1, \ldots, x_m \rangle \) of maximal length such that one of the following statements holds:

1. If \(m \) is odd, then \(c \) is cyclic or bordered, \(D = \{ x_1, \ldots, x_m \} \).
2. If \(m \) is even, then \(c \) is bordered, \(D = \{ x_1, \ldots, x_m \} \) or \(D = \{ x_1, \ldots, x_m, z \} \), where \(g_{-z} \) is nonprimitive.

Proof. We first assume that \(g \) satisfies the \((n-2)\)-property and prove that either statement (1) or (2) holds.

Let \(c = \langle x_1, \ldots, x_m \rangle \) be a maximal chain of clans of \(g \) (by Lemma 6.1 such a chain exists and \(m \geq 4 \)). Then by Lemma 5.3, \(x_2 \) is r-local or r-global in \(g_{x_1} \), and \(x_{m-1} \) is r-local or r-global in \(g_{-x_m} \). These two cases have to be considered.

Case 1. Let us assume that \(x_{m-1} \) is r-local in \(g_{-x_m} \).

We now show that \(c \) is cyclic and \(D = \{ x_1, \ldots, x_m \} \), where \(m \) is odd. In this case, since \(x_{m-1} \) is r-local, \(\mathcal{Q}_2(g_{-x_m}) = \{ x_{m-1}, z \} \), for \(z \in D - \{ x_{m-1}, x_m \} \), and moreover by Remark 5.1, \(|D| > 4 \). It follows that \(z \not\in c \), otherwise \(x_1, \ldots, x_m, z \) would be a chain of clans, contradicting the assumption that \(c \) has maximal length. Furthermore, by Lemma 5.4, we must have that \(z = x_1 \), and hence, \(\mathcal{Q}_2(g_{-x_m}) = \{ x_{m-1}, x_1 \} \). Consequently, \(x_2, \ldots, x_m, x_1 \) is also a chain of clans, and it is easy to verify that it is maximal. Moreover, \(x_m \) is r-local in \(g_{-x_1} \). In fact, by Lemma 5.3, \(x_m \) is r-global or r-local in \(g_{-x_1} \). On the other hand, \(x_2 \) is r-local or r-global in \(g_{-x_1} \). This implies that \(\mathcal{Q}_2(g_{-x_1}) = \{ x_2, x_m \} \). Hence \(c \) is cyclic.

Now we consider separately these two cases: \(m \) is odd or even.

(i) If \(m \) is odd, we obtain that \(\{ x_1, \ldots, x_m \} \) is a clan of \(g \). Hence, by primitivity of \(g \), it must be \(D = \{ x_1, \ldots, x_m \} \). In fact, assume that \(z \) is an arbitrary element in \(D - \{ x_1, \ldots, x_m \} \). Since \(m \) is odd, by Lemma 5.2, \((z, x_m) R (z, x_i) \) for every \(i \) such that \(i \equiv 1 \pmod{2}, 1 \leq i < m \). By Lemma 5.2, \((z, x_{m-1}) R (z, x_j) \) for each \(j \) such that \(j \equiv 0 \pmod{2}, 1 < j < m - 1 \). Since \(\{ x_1, x_{m-1} \} \) is a clan of \(g_{-x_m} \), \((z, x_1) R (z, x_{m-1}) \). It follows by transitivity of \(R \) that \((z, x_k) R (z, x_{k'}) \), for every \(x_k, x_{k'} \in c \). Thus the set \(\{ x_1, \ldots, x_m \} \) is a nontrivial clan of \(g \).

(ii) If \(m \) is even, we obtain that \(\{ x_1, x_{m-1} \} \) is a nontrivial clan of \(g \). This case violates primitivity of \(g \), hence it cannot occur. In fact, by Lemma 5.2, \((x_m, x_{m-1}) R (x_m, x_1) \). Since \(X = \{ x_1, x_{m-1} \} \) is a clan of \(g_{-x_m} \), it follows that \(X \) is a clan of \(g \).

Case 2. Assume that \(x_{m-1} \) is r-global in \(g_{-x_m} \).

By Case 1, also \(x_2 \) is r-global in \(g_{-x_1} \), and hence \(c \) is bordered. We show that: (i) if \(m \) is odd, then \(D = \{ x_1, \ldots, x_m \} \), (ii) if \(m \) is even, then either \(D = \{ x_1, \ldots, x_m, z \} \), for \(z \not\in c \), or \(D = \{ x_1, \ldots, x_m \} \).
(i) Assume \(m \) is odd. If \(|D| > m \), then there exists \(z \in D \), such that \(z \notin c \). Since \(c \) is bordered, i.e. \(x_2, x_{m-1} \) are \(r \)-global, by Lemma 5.2, for any element \(x_i \in c \), \(1 < i < m \), \((x_i, x_2) R (z, x_2) \) and \((x_i, x_{m-1}) R (z, x_{m-1}) \), where \((z, x_2)\) is equivalent to \((z, x_{m-1})\); it follows by transitivity of \(R \) that \((x_i, x_{m-1}) R (x_i, x_2) \). Consequently, by applying Lemma 5.2, it follows that \((x_j, x_{j+1})\) and \((x_j, x_{j-1})\) are equivalent for \(j \) odd, \(1 < j < m \). Hence \(\{x_{j-1}, x_{j+1}\} \) is a nontrivial clan of \(g \), as this is a clan of \(g_{-x_j} \), which leads to a contradiction. Hence, it must be \(|D| = m \).

(ii) Assume \(m \) is even. If \(|D| > m + 1 \), we show that \(g \) is nonprimitive. By Lemma 5.2, given an element \(x_i \in c \), either \((z, x_i) R (z, x_{m-1}) \) or \((z, x_i) R (z, x_2) \), for all \(z \in D - \{x_1, \ldots, x_m\} \). Since \(x_2 \) and \(x_{m-1} \) are \(r \)-global, it follows that \((z_1, x_i) R (z_2, x_i)\), for all \(z_1, z_2 \in D - \{x_1, \ldots, x_m\} \) and \(x_i \in c \). Thus the set \(D - \{x_1, \ldots, x_m\} \) is a nontrivial clan of \(g \), which contradicts the fact that \(g \) is primitive. Hence, it must be \(|D| = m \) or \(|D| = m + 1 \).

Thus Cases (1) and (2) prove the two statements (1) or (2) of the theorem and this shows one direction of the theorem.

Let us assume now that \(g \) satisfies statement (1) or (2) of the theorem. By Lemma 6.2, \(g \) is primitive, moreover for any \(d \in c \), \(g_{-d} \) is nonprimitive. Hence \(g \) satisfies the \((n-2)\)-property. The propositions that follow completely describe the \(r2s \) \(g \) satisfying statement (1) or (2).

The following proposition describes the \(r2s \) \(g \) containing a chain \(c \) which is cyclic and verifies statement (1) of Theorem 6.1. In this case \(g \) has only one feature and it is antisymmetric, i.e. \(\mathcal{F} = \{P, P^{-1}\} \). The set \(P \), can be seen as a set of asymmetric edges of a graph with set of vertices \(D \), while the edges in \(P^{-1} \) are the nonedges of such graph. Then it turns out that \(g \) represents a particular graph (see Fig. 9), a tournament, which is a graph on vertex set \(D \), such that for any pair of elements \(x, y \in D \), there exists exactly one asymmetric edge that connects \(x \) and \(y \) [8].

Hence, we give the following definition.

Definition 6.2. An \(r2s \) \(g = (D, \mathcal{F}) \) is a tournament iff \(\mathcal{F} = \{P, P^{-1}\} \).

Proposition 6.1. Let \(g = (D, \mathcal{F}) \) be a primitive \(r2s \) such that \(|D| = m \), and \(m > 3 \) is odd. Let \(c = \langle x_1, \ldots, x_m \rangle \) be a chain of clans of \(g \) such that \(c \) is cyclic. Then \(g \) is a tournament, where \(\mathcal{F} = \{P, P^{-1}\} \) and

\[P = \{ (x_i, x_j) : 1 \leq i < j \leq m, i \equiv 0 \pmod{2}, j \equiv 1 \pmod{2} \ \text{or vice versa} \} \]

\[\cup \{ (x_i, x_j) : 1 \leq j < i \leq m, i, j \equiv 0 \pmod{2}, \text{or } i, j \equiv 1 \pmod{2} \} . \]

Proof. Assume that \(rel(g) = R \). We show that \(P \) is a set of equivalent edges which are asymmetric. Let \(e = (x_i, x_j) \) be an arbitrary edge in \(P \) such that \(1 \leq i < j \leq m \). Since \(c \) is cyclic, \(\langle x_i, \ldots, x_k, x_{k+1} \rangle \) is a chain of clans. By Lemma 5.2, \(e \) is equivalent to an edge \(e' = (x_k, x_{k+l}) \), where \(l > k \), and \(l, k \) are both even or odd. Now, given an arbitrary edge \(e'' = (x_k, x_{k+l}) \), such that \(z \geq z' \) and \(e'' \in P \), we show in the following that \(e'' \) is equivalent to \((x_1, x_{m-1})\). Hence, \(e' R (x_k, x_{k-1}) \). Since \(e R e' \), consequently all edges in \(P \) are equivalent to \((x_1, x_{m-1}) \).
In fact, if z, z' are even, since $\langle x_{z-1}, \ldots, x_1, x_m, x_{m-1}, \ldots, x_z \rangle$ is a chain of clans, then by Lemma 5.2, $(x_{z}, x_{z'}) \mathcal{R} (x_1, x_{z'})$, and $(x_1, x_{m-1}) \mathcal{R} (x_1, x_{m-1})$. Assume that z, z' are odd, with $z \neq m$. If $z = m$, then by Lemma 5.2, $(x_{z}, x_{z'}) \mathcal{R} (x_1, x_{z'})$, if $z' = m - 2$, or $(x_{z}, x_{z'}) \mathcal{R} (x_{m-2}, x_{m-4})$, if $z' = m - 2$. Hence, $(x_{z}, x_{z'})$ is equivalent to (x_k, x_k'), with $k \neq m$, and hence we pose $z = k$, $z' = k'$. Since $\langle x_z, \ldots, x_1, x_m, \ldots, x_{z+1} \rangle$ is a chain of clans, then, by Lemma 5.2, $(x_z, x_{z'}) \mathcal{R} (x_1, x_{m-1})$. This proves that e'' is equivalent to (x_1, x_{m-1}).

Clearly, $P \cup P^{-1} = E_2(D)$. Observe that P must be an antisymmetric set of edges, otherwise all 2-edges from $E_3(D)$ are equivalent, which is not possible. In fact, for $1 < i < m$, by the definition of a chain of clans, $\{x_{i-1}, x_{i+1} \}$ is a nontrivial clan of $g - x_i$; since g is primitive, (x_i, x_{i-1}) and (x_i, x_{i+1}) are not equivalent edges. Thus the proposition holds. □

Proposition 6.2. Let $g = (D, \mathcal{F})$ be a primitive r2s such that $|D| = m + 1$, m is even and $c = \langle x_1, \ldots, x_m \rangle$ is a maximal chain of clans of g which is bordered. Let g_{-z} be a nonprimitive substructure, for $z \notin c, z \in D$. Then g is a tournament, where $\mathcal{F} = \{P, P^{-1}\}$ and

$$P = \{(x_i, x_j): 1 < i < j \leq m\} \cup \{(x_i, z): i \equiv 0 \pmod{2}, 1 < i \leq m\} \cup \{(z, x_i): i \equiv 1 \pmod{2}, 1 < i \leq m\}.$$

Proof. Assume $rel(g) = R$. Since g_{-z} is nonprimitive, let Z be a nontrivial clan of g_{-z}. By Lemma 5.2, it is easily verified that any set $Z = \{x_i, \ldots, x_k\}$, where $1 \leq i < k < m$ or $1 < l < k \leq m$ is a nontrivial clan of g_{-z}.

We now show that each edge in P is equivalent to (y, x_{m-1}), for some $y \neq x_m$.

Assume $e = (x_i, x_j)$, where $e \in P$ and $i, j \neq m - 1$. If i or j is equal to $m - 1$, then by Lemma 5.2, e is equivalent to an edge $e' = (x_l, x_k)$ such that $l, k \neq m - 1$, thus we pose $i = l$ and $j = k$. Since $Z = \{x_l, \ldots, x_{m-1}\}$ is a clan of g_{-z}, then $(x_l, x_j) \mathcal{R} (x_l, x_{m-1})$. Now assume that $e = (x_i, z)$, or $e = (z, x_i)$. By Lemma 5.2, since $i \equiv 0 \pmod{2}$ (or $i \equiv 1 \pmod{2}$), e is equivalent to (x_z, z) (or to (z, x_{m-1})), where the latter is equivalent to (x_z, x_{m-1}), as c is bordered.

These different cases prove that each edges $e \in P$ is equivalent to an edge (y, x_{m-1}), $y \neq x_m$ and since c is bordered, e is equivalent to (x_1, x_{m-1}). This proves that all edges in P are equivalent.

Clearly, $P \cup P^{-1} = E_2(D)$. We have that P is an antisymmetric set of edges. In fact, since for $1 < i < m, \{x_{i-1}, x_{i+1}\}$ is a nontrivial clan of g_{-x_i}, and g is primitive, (x_i, x_{i-1}) and (x_i, x_{i+1}) are not equivalent edges, which implies that $P \cup P^{-1}$ is not a set of equivalent edges, i.e. P must be antisymmetric. □

The r2s g of previous proposition is illustrated in Fig. 10.

Finally, let us describe the 2-structures with the $(n-2)$-property containing a bordered chain of clans c; we show that such 2-structures are specified by the following Definitions 6.3 and 6.4.
Definition 6.3. Let \(g=(D, \overline{\mathcal{F}}) \) be an \(r \)-structure on \(n \) elements, \(n \) even, such that
\[D = \{x_1, \ldots, x_n\}. \]
The \(r \)-structure \(g \) is **even-bordered** iff it satisfies the following property: given
\[P_1, P_2 \subseteq \mathcal{E}_2(D), \]
such that
\[P_1 = \{(x_i, x_j) : i \equiv 1 \pmod{2}, j \equiv 0 \pmod{2}, 1 \leq i < j \leq n \}, \]
\[P_2 = \{(x_i, x_j) : 1 \leq i < j \leq n \} - P_1, \]
then \(P_1, P_2 \) are two sets of equivalent edges, where the edges in \(P_1 \) are not equivalent
to the edges in \(P_2 \cup P_2^{-1} \).

Clearly, there are four different even-bordered 2-structures, which we denote by \(g_1n, g_2n, g_3n \) and \(g_4n \). These 2-structures are illustrated in Fig. 5 and 6. \(g_1n=(D, \{\{P_1, P_1^{-1}\}, \{P_2, P_2^{-1}\}\}) \) has 2 antisymmetric features, \(g_2n=(D, \{\{\text{sym}(P_1)\}, \{P_2, P_2^{-1}\}\}) \) and \(g_3n=(D, \{\{P_1, P_1^{-1}\}, \{\text{sym}(P_2)\}\}) \) have 1 symmetric and 1 antisymmetric feature, \(g_4n=(D, \{\{\text{sym}(P_1)\}, \{\text{sym}(P_2)\}\}) \) has 2 symmetric features.

Observe that, if \(|D|=4\), then the 2-structures \(g_2n \) and \(g_3n \) are isomorphic.

Fig. 5.
Definition 6.4. Let $g = (D, \mathcal{F})$ be a 2-structure on n elements, n odd, such that $D = \{x_1, \ldots, x_n\}$. The 2-structure g is odd-bordered if it satisfies the following property: given $P_1, P_2 \subseteq E_2(D)$, such that

$$P_1 = \{(x_i, x_j) : i \equiv 0 \pmod{2}, j \equiv 1 \pmod{2}, \text{ or vice versa, or } i \equiv 0 \pmod{2}, j \equiv 0 \pmod{2}, 1 \leq i < j \leq n\},$$

$$P_2 = \{(x_i, x_j) : 1 \leq i < j \leq n\} - P_1,$$

then P_1, P_2 are two sets of equivalent edges, where the edges in P_1 are not equivalent to the edges in P_2, and P_1 is antisymmetric.

Clearly, there are three different odd-bordered 2-structures, which we denote by g_{1n}, g_{2n} and g_{3n}. These 2-structures are illustrated in Fig. 7 and 8.

$g_{1n} = (D, \{\{P_1, P_1^{-1}\}, \{P_2, P_2^{-1}\}\})$ has 2 antisymmetric features, $g_{2n} = (D, \{\{P_1, P_1^{-1}\}, \{\text{sym}(P_2)\}\})$ has 1 symmetric and 1 antisymmetric feature, $g_{3n} = (D, \{P_1 \cup P_2^{-1}, \{P_1 \cup P_2^{-1}\}^{-1}\})$ has 1 antisymmetric feature.
Proposition 6.3. Let $g=(D, \mathcal{F})$ be a primitive $r2s$ such that $|D|=m$ and $c=\langle x_1, \ldots, x_m \rangle$ is a chain of clans of g which is bordered. If m is even, then g is even-bordered, while if m is odd, then g is odd-bordered.

Proof. Assume $rel(g)=R$. Consider $(x_i, x_j)\in E_2(D)$ and let us assume for simplicity that $i<j$. By applying Lemma 5.2, it is easy to prove that (x_i, x_j) is equivalent to (x_2, x_{m-1}) or to (x_1, x_m).

(i) Let i, j be both even. Then by Lemma 5.2, $(x_i, x_j) \sim (x_2, x_j)$. Since x_2 is r-global in g_{-x_i}, $(x_i, x_j) \sim (x_2, x_{m-1})$.

(ii) Let i, j be both odd. Then $(x_i, x_j) \sim (x_1, x_j)$. If m is even, then $(x_i, x_j) \sim (x_1, x_{m-1})$. Since x_{m-1} is r-global in g_{-x_i}, $(x_i, x_j) \sim (x_2, x_{m-1})$. Otherwise, if m is odd, then (x_i, x_j) is equivalent to (x_1, x_m).

(iii) Let i be even and j odd. By Lemma 5.2, $(x_i, x_j) \sim (x_2, x_j)$, and since x_2 is r-global in g_{-x_i}, $(x_i, x_j) \sim (x_2, x_{m-1})$.

Fig. 7.

g^{1n}

g^{2n}
(iv) Let \(i \) be odd and let \(j \) be even. If \(m \) is odd, then \((x_i, x_j) \mathbin{R} (x_i, x_{m-1})\), and since \(x_{m-1} \) is \(r \)-global in \(g_{-x_i} \), \((x_i, x_j) \mathbin{R} (x_2, x_{m-1})\). If \(m \) is even, then \((x_i, x_j) \mathbin{R} (x_1, x_m)\).

Let \(P_1 \) and \(P_2 \) be two sets of edges of \(g \) which are specified as in the first part of Definition 6.3, if \(m \) is even, or of Definition 6.4, if \(m \) is odd. By cases (i) to (iv), it follows that \(P_1 \) and \(P_2 \) are two sets of equivalent edges, in particular, if \(m \) is even, then all edges in \(P_1 \) are equivalent to \((x_1, x_m)\) and all edges in \(P_2 \) are equivalent to \((x_2, x_{m-1})\) (and vice versa if \(m \) is odd). We now show that \(P_1 \) and \(P_2 \) are completely defined as in Definitions 6.3 and 6.4. The following cases have to be considered.

(i) Let \(m \) be odd.

(i.1) Assume that \(P_1 \cup P_1^{-1} \) is a set of equivalent edges. This implies that \((x_2, x_{m-1}) \mathbin{R} (x_m, x_2)\). Since \(x_{m-1} \) is \(r \)-global in \(g_{-x_2} \), thus \((x_{m-1}, x_2) \mathbin{R} (x_1, x_{m-1})\). By Lemma 5.2, it follows that \((x_1, x_2) \mathbin{R} (x_2, x_1)\), and by transitivity of \(\mathbin{R} \), \((x_2, x_1) \mathbin{R} (x_{m-1}, x_2)\) is equivalent to \((x_2, x_1)\). Consequently, \(D - \{x_2\} \) is a clan of \(g \), since \(x_2 \) is \(r \)-global. This contradicts the primitivity of \(g \).

(i.2) Assume that \(P_1 \cup P_2 \) is a set of equivalent edges. This implies that \((x_1, x_m) \mathbin{R} (x_2, x_{m-1})\). Since \(x_{m-1} \) is \(r \)-global, then \((x_1, x_m), (x_1, x_{m-1}) \) are equivalent, which implies that \(D - \{x_1\} \) is a clan of \(g \), which contradicts the fact that \(g \) is primitive.

Hence, cases (i.1) and (i.2) imply that \(g \) is an odd-bordered \(r2s \), that is \(g \) can be one of the three 2-structures \(g_{1,m}^1, g_{2,m}^2 \) and \(g_{3,m}^3 \). It is easily verified that \(g \) is effectively one of such 2-structures.

(ii) Let \(m \) be even.

(ii.1) Assume that \(P_1 \cup P_2 \) is a set of equivalent edges. This case is the same as (i.2).

(ii.2) Assume that \(P_1 \cup P_2^{-1} \) is a set of equivalent edges. Then \((x_1, x_m) \mathbin{R} (x_{m-1}, x_2)\). This case leads to a contradiction. In fact, by Lemma 5.2, it is \((x_1, x_2) \mathbin{R} (x_{m-1}, x_2)\), and since \(x_2 \) is \(r \)-global in \(g_{-x_1} \), \(D - \{x_2\} \) is a clan of \(g \).
Thus, cases (ii.1) and (ii.2) imply that g is even-bordered. Hence g can be one of the four different 2-structures, g_{1n}, g_{2n}, g_{3n} and g_{4n}. It is easily verified that g is effectively one of such 2-structures.

By previous propositions that describe the different 2-structures satisfying the $(n - 2)$-property, we state the following theorem.

Theorem 6.2 (The main theorem). *For each $n > 4$, if n is even, there are four 2-structures satisfying the $(n - 2)$-property, up to isomorphism, while if n is odd there are five different 2-structures with this property.

In addition, if $n = 4$, there are three 2-structures that satisfy the $(n - 2)$-property up to isomorphism.*

Proof. Let g be an r_{2s} satisfying the $(n - 2)$-property. By Theorem 6.1 and Propositions 6.1, 6.2 and 6.3, g can be one of four (three) different 2-structures if $|D| > 4$ is even ($|D| = 4$, respectively), and one of five if $|D|$ is odd. Clearly, by Definition 2.8, any r_{2s} g' isomorphic to g has the $(n - 2)$-property.

Vice versa let $g_1 = (D_1, R_1)$ be an r_{2s} satisfying the $(n - 2)$-property on $|D|$ elements. By Theorem 6.1, g_1 contains a chain of clans $c_1 = \langle y_1, \ldots, y_m \rangle$ and g_1 is described by one of the Propositions 6.1, 6.2 or 6.3. Let $c_1 = \langle x_1, \ldots, x_m \rangle$ be a chain of clans of g, where g has the same characterization in terms of chain of clans of g'. Let $\varphi: D_1 \rightarrow D$, such that $\varphi(y_i) = x_i$ and if $D = \{ y_1, \ldots, y_m, k_1 \}$, $\varphi(k_1) = z$. Then φ is a bijective function that preserves equivalence relation between edges. Thus g_1 is isomorphic to g.

Figs. 5–10 illustrate the different 2-structures satisfying the $(n - 2)$-property (up to isomorphism) on n elements, where $n > 3$. In order to simplify the pictures, we
Fig. 10.

represent the edges of an antisymmetric feature $F = \{ P, P^{-1} \}$ by drawing only edges in P.

Observe that in these figures the sequence $\langle x_1, \ldots, x_n \rangle$ is a chain of clans of the 2-structures illustrated.

All 2-structures described by Propositions 6.1, 6.2 and 6.3 have a nice characterization: they have at most 2 features.

Corollary 6.1. Each primitive 2rs satisfying the $(n-2)$-property has at most 2 features.

7. The $(n-2)$-property is hereditary

In this section we prove that the $(n-2)$-property is an hereditary property of primitive 2-structures in the sense that given a primitive 2rs g satisfying the $(n-2)$-property, each primitive substructure of g on $n > 3$ elements satisfies this property. This result is strictly related to the fact that each primitive 2rs g on n elements in this class is “built up” from a smaller 2rs h of the same “type”, by adding to it two elements such that their connections to the elements in the domain of h are described by a “repeated” pattern. In other words, we can describe recursively the construction of such 2-structures, by easy relations [1].

We now show that any primitive substructure h of a primitive 2rs g can be extended to a primitive substructure of g obtained by adding two elements of h. The hereditary nature of the $(n-2)$-property will follow easily from this result.

Lemma 7.1. Let $g = (D, R)$ be a primitive 2rs. Then for any substructure h of g, such that $|\text{dom}(h)| \leq |\text{dom}(g)| - 2$, there is a primitive substructure h' of g such that $|\text{dom}(h')| = |\text{dom}(h)| + 2$ and $\text{dom}(h) \subset \text{dom}(h')$.

Proof. Assume $D_0 = \text{dom}(h)$. If $|D_0| = |D| - 2$, then the lemma is trivially verified, hence let $|D_0| < |D| - 2$. By contradiction we show that there exist two elements $d, d' \in D - D_0$
such that $\text{sub}_g(D_0 \cup \{d, d'\})$ is primitive. Assume to the contrary that for any $z, z' \in D - D_0, \text{sub}_g(D_0 \cup \{z, z'\})$ is nonprimitive. By Lemma 4.1, an element $d \in D - D_0$ is either local or global for D_0 in g, or $\text{sub}_g(D_0 \cup \{d\})$ is primitive. Then the set $D - D_0$ can be partitioned into three sets X_p, X_l, X_g such that X_p contains all elements which are neither local nor global, X_l contains the local elements for D_0 in g, while X_g contains the global elements for D_0 in g. It is easy to verify that for $X \in \{X_l, X_p, X_g\}$, if $X \neq \emptyset$, then $h_X, h_X = \text{sub}_g(D_0 \cup X)$ is nonprimitive. In fact, if $X = X_p$, since by Lemma 4.6, $\{z, k\}, \{z', k'\}$ are nontrivial clans of $\text{sub}_g(D_0 \cup \{z, z'\})$, for $z, z' \in X_l$ and $\text{uni}_g(D_0, z) = k, \text{uni}_g(D_0, z') = k', k \neq k'$, we have that $\{z \in X_l: \text{uni}_g(D_0, z) = k\} \cup \{k\}$ is a nontrivial clan of h_X. If $X = X_g$, then D_0 is clan of h_x. For any $x, y \in X_p$, the nonprimitive substructure $\text{sub}_g(D_0 \cup \{x, y\})$ has the only nontrivial clan $\{x, y\}$. This implies that X_0 is a nontrivial clan of h_x, for $X = X_p$. Let h_d be the substructure $\text{sub}_g(D_0 \cup \{d, d'\})$, for $d, d' \in \{x, y, z\}$, $d \neq d'$, and $x \in X_p, y \in X_l$ and $z \in X_g$, where $\text{uni}_g(D_0, y) = a$. Then h_d is nonprimitive; if X is a nontrivial clan of h_d, since h is primitive and $X \cap D_0$ is a clan of h, it must be $X \cap D_0 = D_0$ or $|X \cap D_0| \leq 1$ (by Proposition 2.1). Hence we have the following properties: if $d = x, d' = y, then \{y, a\}$ is the unique nontrivial clan of h_d, if $d = x, d' = z$, then $D_0 \cup \{x\}$ is the unique nontrivial clan of h_d, if $d = y, d' = z$, then $D_0 \cup \{y\}$ and $\{y, a\}$ are nontrivial clans of h_d. Assume that $X_p \neq \emptyset, X_l \neq \emptyset$ and $X_g \neq \emptyset$. Clearly, by the above properties, it follows that $\{y, a\}$ and $D_0 \cup \{x, y\}$ are nontrivial clans of any substructure of g' such that $g' = \text{sub}_g(D_0 \cup \{x, y, z\})$. This implies that $D - X_p$ and $\{y' \in X_l: \text{uni}_g(D_0, y') = a\} \cup \{a\}$ are nontrivial clans of g, which contradicts the primitivity of g. Similarly, if some set in $\{X_l, X_g, X_p\}$ is empty, it follows that g is not primitive. Since, the initial assumption leads to a contradiction, there exist two elements $z, z' \in D - D_0$, such that the substructure $\text{sub}_g(D_0 \cup \{z, z'\})$ of g is primitive. This proves the lemma. \[\square\]

Theorem 7.1 (The hereditary theorem). Let $g = (D, R)$ be a primitive $r2s$ with the $(n - 2)$-property, such that $|D| > 5$. Then each primitive substructure h of g such that $|\text{dom}(h)| > 3$, satisfies the $(n - 2)$-property.

Proof. Let $\text{dom}(h) = D_0$. We prove the theorem by induction on $|D - D_0|$. Assume $|D - D_0| = 2$. Let there exist an element $x \in D_0$ such that h_x is primitive. By Lemma 7.1, h_x is extended to a primitive substructure of g, h', such that $|\text{dom}(g) - \text{dom}(h')| = 1$, which contradicts the fact that g has the $(n - 2)$-property. Then for any $x \in D_0, h_x$ is nonprimitive, i.e. h satisfies the $(n - 2)$-property. Let us assume now that $|D - D_0| = n$. By Lemma 7.1, h is a substructure of a primitive substructure of g such that $|D - \text{dom}(g')| = n - 2$. By induction g' has the $(n - 2)$-property. As above, we can show that h satisfies the $(n - 2)$-property. \[\square\]

8. Arbitrary 2-structures satisfying the $(n - 2)$-property

In the previous sections we have analyzed the reversible primitive 2-structures with the $(n - 2)$-property. The main result of the paper is Theorem 6.2, which states that
there is a fixed number of reversible primitive 2-structures satisfying the \((n-2)\)-property. We can easily extend the theorem to the general case of arbitrary 2-structures. The following considerations are important to obtain this result. Since the \((n-2)\)-property of a 2s is related to the clans of all its substructures, by Proposition 2.3, an arbitrary 2s satisfies this property iff its reversible version does. Secondarily we note that all reversible 2-structures satisfying the \((n-2)\)-property have at most two features. Hence, in order to translate the theorem into arbitrary 2-structures, we have to determine the arbitrary 2-structures such that their reversible version is a 2s with the \((n-2)\)-property. This step will be closely related to the construction of the reversible version of a 2s. The following lemma follows directly from Definition 2.4.

Lemma 8.1 ([6]). Let \(g=(D, \mathcal{P})\) be a 2s and let \(h=(D, \mathcal{P}')\) be the reversible version of \(g\). Let \(\text{pair}_g\) be the following mapping from \(\mathcal{P}'\) to \(\mathcal{P} \times \mathcal{P}:\) for each \(P' \in \mathcal{P}'\), \(\text{pair}_g(P')=(P_1, P_2)\), where \(P_1, P_2 \in \mathcal{P}\), \(P' \subseteq P_1\), and \(P'^{-1} \subseteq P_2\). Then the following conditions hold:

1. \(|\mathcal{P}'| \equiv |\mathcal{P}|\) and \(g\) is reversible iff \(|\mathcal{P}'|=|\mathcal{P}|\).
2. \(P' \in \mathcal{P}'\) iff \(\text{pair}_g(P')=(P_1, P_2)\), for some \(P_1, P_2 \in \mathcal{P}\).
3. \((P', P'^{-1})\) is a symmetric feature iff \(\text{pair}_g(P')=(P_1, P_1)\) for some \(P_1 \in \mathcal{P}\).

Given an r2s \(h\), we call \textit{reversible version set} of \(h\), the set of nonreversible 2-structures such that their reversible version is \(h\).

Definition 8.1. Let \(h=(D, \mathcal{P}')\) be a reversible 2s. Then the \textit{reversible version set} of \(h\), denoted by \(\text{rvers}(h)\) is the set:

\[
\text{rvers}(h) = \{g: g\text{ is a 2s, } rver(g)=h \text{ and } g \text{ is not reversible}\}
\]

We now describe the reversible version set of a reversible 2s with at most 2 features.

Theorem 8.1. Let \(h=(D, \mathcal{P})\) be a reversible 2s with \(|\mathcal{F}| \leq 2\).

1. If \(h\) has 2 antisymmetric features, then \(|\text{rvers}(h)|=4\), where for each \(g \in \text{rvers}(h)\), \(|\text{part}(g)|=3\).
2. If \(h\) has 1 symmetric and 1 antisymmetric feature, then \(\text{rvers}(h)=\{g, g'\}\), where \(|\text{part}(g)| = |\text{part}(g')| = 2\).

In all other cases, \(\text{rvers}(h)=\emptyset\).

Proof. Let \(g=(D, \mathcal{P})\) be a 2s such that \(rver(g)=h\), where \(h=(D, \mathcal{P}')\). We have the following cases to consider.

(i) \(h\) has 2 symmetric features. Then \(\mathcal{P}' = \{R_1, R_2\}\), where both \(R_1\) and \(R_2\) are symmetric. By Lemma 8.1, \(\text{pair}_g(R_1)=(P_1, P_1)\) and \(\text{pair}_g(R_2)=(P_2, P_2)\), where \(P_1, P_2\) are symmetric and \(\mathcal{P}=\{P_1, P_2\}\). But then \(g=h\), and \(g\) is reversible. Thus \(\text{rvers}(h)=\emptyset\).

(ii) \(h\) has 2 antisymmetric features. Then \(\mathcal{P}' = \{R_{11}, R_{12}, R_{21}, R_{22}\}\), where \(\{R_{11}, R_{12}\}\) and \(\{R_{21}, R_{22}\}\) are antisymmetric features. By Lemma 8.1, \(|\mathcal{P}'|>|\mathcal{P}|\).
that is \(|\mathcal{P}| \leq 3\). Since all classes of \(h\) are antisymmetric, then \(|\mathcal{P}| = 3\), where all classes of \(\mathcal{P}\) are antisymmetric. Clearly \(\mathcal{P} = \{P_1, P_2, P_1\}\), where \(P_1 \in \{R_{11}, R_{12}\}\), \(P_2 \in \{R_{21}, R_{22}\}\) and \(P_{12} = \mathcal{P} - \{P_1 \cup P_2\}\). Hence \(|\text{rver}_S(h)| = 4\).

(iii) \(h\) has 1 symmetric and 1 antisymmetric feature. Then \(\mathcal{P} = \{R_{11}, R_{12}, R_2\}\), where \(\{R_{11}, R_{12}\}\) is the antisymmetric feature of \(h\) and \(R_2\) is the symmetric feature of \(h\). By Lemma 8.1, \(|\mathcal{P}| < 3\). If \(|\mathcal{P}| = 1\), then \(g\) is reversible. Hence, \(\mathcal{P} = \{P_1, P_2\}\), where \(P_1 \in \{R_{11}, R_{12}\}\) and \(P_2 = R_2 \cup \{R_{11}, R_{12}\} - P_1\). Consequently \(\text{rver}_S(h) = \{g, g'\}\).

(iv) \(h\) has 1 symmetry feature. Then \(\mathcal{P}\) is symmetric and \(|\mathcal{P}| = 1\). Hence, \(|\mathcal{P}| = 1\), \(g = h\) and \(g\) is reversible. Thus \(\text{rver}_S(h) = \emptyset\).

(v) \(h\) has 1 antisymmetric feature. Then \(\{R_{11}, R_{12}\}\) is the unique feature of \(h\).

Since all classes in \(g\) are antisymmetric, \(|\mathcal{P}| = 2\), and by Lemma 8.1, \(g\) is reversible. Thus \(\text{rver}_S(h) = \emptyset\).

We observe that, by Proposition 2.3, a 2s \(g\) and its reversible version \(\text{rver}(g)\) have the same set of clans, then an arbitrary 2s \(g\) satisfying the \((n-2)\)-property contains the same chain of clans of \(\text{rver}(g)\).

Lemma 8.2. Let \(g = (D, \mathcal{P})\) be an arbitrary 2s such that satisfies the \((n-2)\)-property and let \(c = \langle x_1, \ldots, x_m \rangle\) be a chain of clans of \(g\), where \(|D| = |c|\), and \(c\) is bordered. Let \(g' = (D, \mathcal{P}')\) be such that \(\mathcal{P}' = \{P_i : P_i = P_i^{-1}\text{, for } P_i \in \mathcal{P}\}\). Then \(g\) is isomorphic to \(g'\).

Proof. Clearly, \(c\) is also a chain of clans of \(g'\). In order to distinguish the domain of \(g'\) from that of \(g\), we write \(\tilde{x}_i\), when \(x_i\) is an element in \(\text{dom}(g') - D_g\). Let \(\varphi : D_g \rightarrow D_{g'}\), such that \(\varphi(x_i) = \tilde{x}_{m-i+1}\), for all \(1 \leq i \leq m\). Obviously, \(\varphi\) is a bijective function, and \(c' = \langle \varphi(x_1), \ldots, \varphi(x_m) \rangle\) is a chain of clans of \(g'\). By Proposition 6.3, for each edge \(e = (x_i, x_j) \in E_2(D_g)\), \(e\) is equivalent to \((x_2, x_{m-1})\) or to \((x_1, x_m)\) or to \((x_{m-1}, x_2)\), \((x_m, x_1)\). Suppose that \((x_i, x_j) \in P_i\), where \((x_i, x_j) R (x_2, x_{m-1})\). Then \((\varphi(x_i), \varphi(x_j)) = (\tilde{x}_{m-i+1}, \tilde{x}_{m-j+1})\), and by cases (from (i) to (iv)) of Proposition 6.3, it follows that \((\tilde{x}_{m-i+1}, \tilde{x}_{m-j+1})\) is equivalent to \((\tilde{x}_{m-1}, \tilde{x}_2)\). Hence, the edge \((\tilde{x}_{m-i+1}, \tilde{x}_{m-j+1}) \in P_i^{-1}\), where \(P_i^{-1} = P_i\). Analogously, if \((x_i, x_j)\) is equivalent to \((x_1, x_m)\), we prove that \((\varphi(x_i), \varphi(x_j))\) is equivalent to \((\tilde{x}_m, \tilde{x}_1)\). It follows that \((x_i, x_j) \in P_i\) iff \((\tilde{x}_{m-i+1}, \tilde{x}_{m-j+1}) \in P_i\). This implies that \(\psi\) is an isomorphism between \(g\) and \(g'\).

As said before, an arbitrary 2-structure satisfies the \((n-2)\)-property if its reversible version has this property. Since all reversible 2-structures with \((n-2)\)-property have at most 2 features, we determine by Theorem 8.1, through their reversible version set, the nonreversible 2-structures with the \((n-2)\)-property.

Theorem 8.2. For each \(n\) even, where \(n > 4\), there are 4 nonreversible 2-structures on \(n\) elements satisfying the \((n-2)\)-property, up to isomorphism. For each \(n\) odd, where \(n \geq 3\), there are 3 nonreversible 2-structures on \(n\) elements with this property (up to isomorphism). In addition, if \(n = 4\), then there are 2 nonreversible 2-structures with the \((n-2)\)-property.
Proof. By Corollary 6.1 the reversible 2-structures satisfying the \((n-2)\)-property have at most 2 features. By Theorem 8.1, and Proposition 6.3, we can directly determine the number of different nonreversible 2-structures, up to isomorphism, with the \((n-2)\)-property. In fact, for \(n\) even, there are two (precisely one for \(n=4\)) reversible 2-structures having 1 symmetric and 1 antisymmetric feature, and one 2s with 2 antisymmetric features with the \((n-2)\)-property. If \(n > 3\) is odd, then by Proposition 6.3, there are one reversible 2s with 1 symmetric and 1 antisymmetric feature and one 2s with 2 antisymmetric features on \(n\) elements that satisfy the \((n-2)\)-property. Let \(h\) be the reversible 2s on \(n\) elements with 1 symmetric and 1 antisymmetric feature satisfying the \((n-2)\)-property, that is \(h=(D, \{R_{11}, R_{12}, R_{2}\})\). Then, by case (iii) of Theorem 8.1, \(\text{rvers}(h)=\{g, g'\}\), where \(g=(D_{a}, \{R_{11}, R_{2} \cup R_{12}\})\) and \(g'=(D_{a}', \{R_{12}, R_{2} \cup R_{11}\})\), with \(R_{12}=R_{12}^{-1}\), \(R_{2} \cup R_{11}=R_{2} \cup R_{12}^{-1}\). Hence, by Lemma 8.2, \(g\) and \(g'\) are isomorphic.

Now let \(h\) be the reversible 2s on \(n\) elements with 2 antisymmetric features. Thus by case (ii) of Theorem 8.1, \(\text{rvers}(h)=\{g_{1}, g', g_{2}, g_{2}'\}\), where \(g_{i}=(D, \{P_{i}\}), g_{i}'=(D, \{P_{i}^{-1}: P_{i} \in \mathcal{P}_{i}\})\), for \(i \in \{1, 2\}\). Hence, by Lemma 8.2, \(g_{1}, g_{1}'\) are isomorphic. Since \(g_{1}=(D, \{P_{1}, P_{2}, \{P_{1} \cup P_{2}\}^{-1}\}), g_{2}=(D, \{P_{1}, P_{2}^{-1}, \{P_{1} \cup P_{2}^{-1}\}^{-1}\})\), where \(P_{1} \neq P_{2}^{-1}\), then if there exists an isomorphism \(\varphi\) between \(g_{1}\) and \(g_{2}\), then there are edges in \(g_{1}\), corresponding under \(\varphi\) to edges \(\varphi(g_{2})\), that have opposite directions of the edges in \(\varphi(g_{2})\), thus yielding a contradiction (see in Fig. 5 and 7 the 2-structures \(g_{1}, g_{1}'\)). Similarly, it follows that \(g_{1}', g_{2}'\) are not isomorphic. Thus by Theorem 8.1, the theorem holds.

We observe, that by Theorem 6.2 and the previous Theorem 8.2, for each \(n > 4\) there is the same number of arbitrary 2-structures satisfying the \((n-2)\)-property: there are eight of such 2-structures on \(n\) elements.

9. Discussion

In this paper we determine the class of primitive 2-structures satisfying the \((n-2)\)-property. This result is based on the notion of a chain of clans by which we show that these 2-structures have a "regular" behavior with respect to how primitivity is violated by removing single elements from their domain.

We have proved that reversible 2-structures with the \((n-2)\)-property have at most 2 features. This fact is of great interest since it implies that these 2-structures represent graphs. Hence the characterization of 2-structures with the \((n-2)\)-property given in the paper has important connections with graph theory: from it we can investigate the class of primitive graphs with the \((n-2)\)-property.

Acknowledgments

I would like to thank my advisor A. Ehrenfeucht for giving me the opportunity to spend one year at the University of Colorado and for the interesting discussions and
his useful suggestions about the result of the paper. I would like also to thank T. Harju
and R. McConnel for their useful comments on the early version of the paper.

This work has been supported by ASMICS 2, grant No. 6317, and MURST 40%,
"Algoritmi e strutture di calcolo".

References

[1] P. Bonizzoni, Primitivity in 2-structures and graphs, Ph.D. Thesis, Università degli Studi di Milano,