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Abstract Forward Error Correction (FEC) codesmay be used to protect a video code stream against packet
erasures or errors when passing through an error-prone network. To have maximum possible fidelity at
the decoder side, an Unequal Loss Protection (ULP) approach should be used to packetize the scalable
video code stream, so that the different parts of the scalable video stream are protected according to
their importance. Unequal loss-protected packetization leads to segmentation of the scalable code stream,
such that the source can be reconstructed with the maximum possible fidelity at the decoder side. In
Ardestani et al. (2009) [1] we have found an analytical relation between the optimal sizes of any two
consecutive segments. This idea yields an efficient (as efficient as the local search algorithm in Stankovic
et al. (2002) [2]) low-complexity progressive solution for the segmentation problem. In this paper, we use
a progressive approach for ULP packetization of a scalable video stream generated from a T+ 2D encoder.
In addition, an optimal rate allocation is used for optimal rate budget division between successive Groups
Of Pictures (GOPs) of the video sequence. The experimental results demonstrate that the optimal rate
budget allocation outperforms the conventional strategy of equal rate budget distribution up to 0.65 dB.

© 2012 Sharif University of Technology. Production and hosting by Elsevier B.V.
Open access under CC BY license.
1. Introduction

Video propagation networks (e.g. Internet and peer-to-
peer networks [3,4]) are usually composed of heterogeneous
nodes with different and time-varying bandwidths and various
playback capabilities, such as display resolution and frame
rate. In addition, the bandwidth and packet loss rate of the
network links are time-varying. Therefore, it is beneficial to
use Scalable Video Coding (SVC) techniques [5,6] for post-
encoding adaptation of the transmitted bit stream to time-
varying channel conditions and user requirements. SVC is an
efficient method to produce a prioritized video stream inwhich
different parts have different levels of importance. One of the
most efficient approaches of the SVC is T + 2D scalable video
encoding inwhich the video content in eachGOP is transformed
into the spatio–temporal wavelet domain.
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Multiple Description Coding (MDC) is an erasure-resilient
redundant coding approach for robust real-time multimedia
streaming over error-prone networks, such as the widely
used wired or wireless Ethernet networks. MDC produces
two or more independently decodable and complementary
descriptions of the same source information [7], which are
usually sent to the receiver over diverse paths.

Transmitting an embedded source bit stream (e.g. video scal-
able bit stream) through a packet erasure network requires
an appropriate packetization (MDC) scheme, so that differ-
ent parts of the data stream with different levels of impor-
tance are unequally protected against packet loss. It means a
ULP approach should be used to packetize the scalable video
code stream. FEC-based multiple description coding (MD-FEC)
proposed by Puri and Ramchandran [8] is an efficient packeti-
zation scheme with the capability of ULP.

ULP is a joint source-channel coding problem, in which an
embedded source code stream with a known Rate-Distortion
(R-D) characteristic is adaptively segmented according to the
packet loss Probability Distribution Function (PDF) of the
channel. Then, each segment is protected with systematic
error correction codes (e.g. Reed-Solomon code). Afterwards,
a given number, N, of equally important packets of the fixed
length, L, is generated, each carrying an equal contribution
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of all protected segments. The segmentation process of the
embedded bit stream should be carried out in such a way that
maximum reconstruction fidelity is obtained at the decoder
side.

Many researchers have devised different solutions for
the ULP segmentation problem. In [8], Puri and Ramchan-
dran proposed a Lagrange multiplier-based algorithm. In [9],
Dumitrescu et al. proposed anO(N2L2) algorithm that is close to
optimal in general cases and optimal if the R-D fidelity function
is convex and the packet loss probability function is monotoni-
cally decreasing. Mohr et al. [10] proposed a suboptimal search
algorithm. In [2] Stankovic et al. proposed an O(NL) local search
algorithm that starts from a solution maximizing the expected
number of received source bits and iteratively improves this
solution.

In [1], we have analytically derived a relation between the
optimal sizes of any two consecutive segments. This idea simply
enables us to progressively approximate the optimal size of
each segment from the previous one. In this way, each valid
value for the size of the first (the most important) segment
initiates a progressive process. To keep the complexity of the
search procedure reasonable, we have found a short interval
around the optimal value for the size of the first segment
through an optimization analysis.

In this paper, we use our progressive method for the ULP
packetization of the scalable video stream generated from
a T + 2D encoder. To get the minimum possible value of
average distortion throughout the video sequence, we solve
an optimization problem for optimal rate allocation between
the successive GOPs. The simulation results demonstrate that
the optimal inter-GOP rate budget allocation outperforms the
conventional strategy of equal rate budget distribution up to
0.65 dB. For the purpose of decreasing the encoding delay, we
define the concept of a group of GOPs (GOGOPs) containing a
number of GOPs. The optimization problem and the encoding
procedure are carried out for the duration of each GOGOP.
The experimental results show that one may easily trade off
the encoding delay with the performance gain of the optimal
rate allocation, relative to the equal inter-GOP rate budget
assignment.

The rest of this paper is organized as follows. In Section 2,
a T + 2D scalable video encoder is described. MD-FEC problem
formulation is stated in Section 3, the progressiveULPmethod is
discussed in Section 4 and the optimal rate allocation between
successiveGOPs is stated in Section 5. The simulation results are
presented in Section 6 to compare the optimal rate allocation
with the equal rate budget assignment. Finally, Section 7
concludes the paper.

2. T + 2D scalable video coding

Scalable video coding, based on Motion Compensated
Temporal Filtering (MCTF) [11,12] and 2D-Discrete Wavelet
Transform (2D-DWT), is a flexible architecture for embedded
video streaming. The block diagram of the T + 2D encoder is
represented in Figure 1. Each GOP of the input video sequence
independently generates its own specific bit stream. After
buffering G frames of a GOP, MCTF is applied, such that G
temporal subband frames, including one low-pass (L) frame
and G − 1 high-pass (H) frames, are obtained. MCTF provides
a non-recursive embedded video coding structure including
SNR, temporal and spatial scalability [13]. The application of
MCTF for temporal decomposition can be seen as an iterative
filtering operation on the original input sequence along the
temporal direction [13] to efficiently remove the temporal
redundancy between GOP frames. All temporal subband frames
are individually affected by 2D-DWT and then encoded with a
kind of bit-plane coding, such that an embedded bit stream is
formed for each GOP.

Since high-pass (residual) temporal subband frames can
have negative-valued pixels (from −255 to 255), it is necessary
to shift and scale their samples. We have shifted them up 255
gray levels and then scaled down with a factor of 2, so that a
meaningful 8-bit-depth image is made from H frames. At the
decoder side, the inverse of the above operations should be
carried out.

Although the scalable video encoder represented in Fig-
ure 1 is of a general form, it is important to perform MCTF,
2D-DWT and bit-plane coding in an efficient standard-
compatible fashion. In this paper, MCTF has been performed us-
ing the JSVM 9.17 reference software (MCTFPreProcessorStatic
tool) [14] in order to benefit from all exclusive features of the
H.264/AVC standard video coding, such as variable-sized block,
adaptive mode decision, and deblocking filter. For 2D-DWT and
bit-plane coding, the Jasper 1.701.0 reference software [15] has
been used, benefiting from the well-known scalability proper-
ties and embedded entropy coding of the JPEG2000 standard
coding.

2.1. Rate-distortion curve of GOP coded bit stream

After joint temporal and spatial wavelet decomposition,
there are C independent Code Blocks (CBs) belonging to
all temporal and spatial subbands of all YUV components
within the current GOP. Each CB has an embedded bit
stream. The total GOP distortion is the weighted sum of
the distortions of all CBs belonging to the chrominance
and luminance components. Accurate estimators have been
introduced in [16] to approximate the distortion caused by the
successive bit-plane coding of the transform coefficients. These
accurate estimators are based on precise approximation of the
coefficients’ probability distribution within the quantization
intervals [16]. Since JPEG2000 is employed here, we may use
auxiliary information about the rate of each CB belonging
to each layer, which is recorded in the JPEG2000 packet
header [17,18]. In addition, the information about the distortion
and R-D slope of each CB is available during the encoding
process and can be transmitted, along with the bit stream, with
a proprietary syntax. This auxiliary information can be used for
R-D curve extraction of each CB.

Assuming the spatial and temporal filters are orthogonal,
the GOP distortion in the words of the Sum of the Squared
Differences (SSD) between all pixels of the original and
reconstructed GOP frames can be expressed as [18,19]:

D =

C
i=1

ωi
tω

i
sω

i
scω

i
YUVdi, (1)

where di is the distortion of the ith CB, when truncated at
rate ri. Distortion weights, ωi

t and ωi
s, denote temporal and

spatial weights, defined as the magnitude of the spatial and
temporal wavelet synthesis filter coefficients [17–19]. This
means that the reconstruction distortions of different CBs
belonging to different spatio–temporal subbands contribute
the total distortion with different weights. Since JPEG2000 is
applied to each temporal subband frame, the spatial weights
are the same as those used in JPEG2000. Therefore, the
spatial weights are automatically applied by means of Jasper
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Figure 1: The block diagram of T + 2D scalable video encoder together with the inter-GOP rate allocation.
1.701.0 reference software. To obtain the temporal weights,
we have performed experiments usingMCTFPreProcessorStatic
and PSNRStatic tools of JSVM 9.17 reference software [14]. To
this aim, we separately applied some definite distortions to
each individual temporal subband frame and then measured
the total distortion (by means of reconstructing the video
using the MCTFPreProcessorStatic tool and comparing it with
the undistorted video using the PSNRStatic tool), in order to
calculate the distortion weight corresponding to that temporal
subband frame. Note that, each time, only one of the temporal
subband frames is distorted and the others are unaffected. This
procedure is separately carried out for all temporal subband
frames to calculate their corresponding temporal weights. We
have performed these experiments for all GOPs of several
test sequences and then averaged over the results. ωi

sc is the
weight induced from scaling the samples of high-pass temporal
subband frames before JPEG2000 is applied. ωi

sc equals 4 or
1, if the ith CB belongs to a high-pass or low-pass frame,
respectively. This is because we have shifted up samples of
the high-pass temporal subband frames 255 gray levels and
then scaled down with a factor of 2, as discussed earlier. ωi

YUV
equals 1 (θU ) (θV ), if the ith CB belongs to the Y (U) (V ) video
component. These component-related distortion weights allow
us to arbitrarily differentiate between the distortions of the
different components, depending on their importance.We have
chosen θU = θV = 1, so that the distortions of all components
have the same importance in the total distortion.

Since each CB is coded using bit-plane coding, any CB has
an embedded bit stream that can be truncated at several
points [18]. Let us consider the R-D curve of each CB. We
have implicitly assumed that each CB has a convex hull,
which is true about Jasper 1.701.0 reference software (rate
allocation procedure of Jasper software automatically extracts
all truncation points of each CB and then preserves only those
located on a convex hull). Figure 2 schematically depicts the R-D
curve of each CB contained in a GOP and the resultant R-D curve
of the GOP. Every truncation point of the i’th CB embedded
bit stream corresponds to a triplet, consisting of reconstruction
distortion, dji, truncated rate, r ji and R-D slope, λj. As shown in
Figure 2, the R-D curve of each GOP is formed from a number of
discrete truncation points, each corresponding to an R-D slope,
Figure 2: The R–D curve of (a) each CB and (b) the total GOP.

λj. In fact, there is a one-to-one correspondence between total
rates and the R-D slopes of each GOP R-D curve. The total rate
of each GOP at R-D slope, λ, is equal to the sum of the rates of
its CBs, each truncated at R-D slope, λ [18, Proposition 1]. This
means that, for each total GOP rate R (λ), it is enough to find
the minimum possible absolute value of the R-D slope, λ, such
that the sum of the rates of all the CBs (each truncated at R-D
slope λ) is not greater than R. Consequently, a sufficient number
of R-D slope values, λ, should be engaged to find all possible
truncation points of each GOP. For each λ value, it is enough
to search for the truncation point of every CB with the highest
rate, whose absolute value of R-D slope is not smaller than λ.
Afterwards, the sum of truncated rates (distortions) of all CBs is
equal to the rate (distortion) of a GOP possible truncation point
corresponding to R-D slope λ. All possible truncation points of
a GOP form its R-D curve.

3. MD-FEC problem statement

In this section, we state the composite problem of segmen-
tation, protection and packetization of a scalable video code
stream using the ULP strategy. Each GOP of a video sequence
is independently packetized. The scalable code stream of each
GOP can be generated using a T+ 2D scalable video encoder, as
mentioned in Section 2. In what follows, we will use the word
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Figure 3: Segmentation of each GOP t embedded bit stream for ULP
packetization. (a) Segmentation; and (b) FEC protection and packetization.

‘‘packet’’ as synonymous with the word ‘‘description’’ in terms
of the terminology of MDC. Our notations are essentially the
same as [1,2,9].

We want to obtain Nt equally important packets (descrip-
tions) of L symbols (e.g. bytes) from the embedded code stream
of the tth GOP. First, we partition the embedded code stream
of the tth GOP into L segments with non-decreasing sizes of
m1 ≤ m2 ≤ · · · ≤ mL ≤ Nt symbols, as shown in Figure 3a.
Then, each segment, j, is protectedwith fj = Nt −mj parity sym-
bols, using the


Nt ,mj


systematic Reed-Solomon FEC code, as

depicted in Figure 3b. Therefore, each segment is extended to
contain Nt symbols, such that the reception of each mj symbol
(including data or FEC symbols) of the jth segment guarantees
perfect reconstruction of that segment (i.e., the jth segment can
be perfectly reconstructed if, and only if, less than fj symbols out
of its Nt symbols are lost at the decoder side). Afterwards, the
ith symbols of all protected segments are grouped to form the
ith description (packet), i = 1, .2, . . . ,Nt . According to the ca-
pabilities of FEC codes, if n descriptions are lost at the decoder
side, such that fj ≥ n > fj+1, then, the first j segments of the
source code stream can be reconstructed.

Let pn stand for the probability of losing exactly n packets
(out of Nt ) and c (k) =

k
n=0 pn, k = 0, . . . ,Nt . Then, c


fj


is the probability that the decoder correctly reconstructs the
source code stream up to the j’th segment. Let dt (r) denote the
R-D function of the scalable code stream of the tth GOP and let
X stand for a randomvariable, whose value is the number of lost
packets. Therefore, {pn}

Nt
n=0 and {ck}

Nt
k=0 are the Probability Mass

Function (PMF) and Cumulative Distribution Function (CDF) of
the random variable, X , respectively. For example, if we assume
a binomial distribution for the packet loss of the channel, then;

pn =


Nt
n


pn (1 − p)Nt−n ,

c (k) =

k
n=0


Nt
n


pn (1 − p)Nt−n , (2)

where p is the packet loss probability of the propagation
channel.

At the decoder side, the scalable code stream of the tth GOP
may be reconstructed up to the first, second, or Lth segment,
according to the number of received packets. Therefore, the
reconstructed bit rate may be one of the values of rj, for j =

0, 1, . . . , L, in which:

r0 = 0,

rj =

j
k=1

mk = jN −

j
k=1

fk, for = 1, . . . , L. (3)

Accordingly, the reconstruction distortion of the code stream
may be one of the values of dt


rj

, for j = 0, 1, . . . , L. The

probability of the code stream to be reconstructed at the bit rate
rj, j = 0, 1, . . . , L, is as follows:

P0 (f ) = P (X > f1) = 1 − c (f1) ,

Pj (f ) = P

fj+1 < X ≤ fj


= c


fj

− c


fj+1

,

for j = 1, . . . , L − 1,
PL (f ) = P (X ≤ fL) = c (fL) , (4)

where f = (f1, . . . , fL) is the parity vector. The optimal
MD-FEC problem consists of determining the optimal sizes of
the segments. In the other words, it is desired to find a parity
vector, f = (f1, . . . , fL), thatminimizes the expected distortion:

Davg
t (f ) =

L
j=0

Pj (f ) dt

rj

. (5)

Although f1, . . . , fL, r1, . . . , rL, c (·), and dt (·) are discrete-valued
quantities, we will virtually treat them as continuous-valued
quantities, so that a meaningful derivation can be normally
applied. In this manner, c ′ (·) and dt ′ (·) denote the derivatives
of c (·) and dt (·), respectively, with respect to their input
arguments. c ′ (f ) can be roughly estimated by pf .

4. Progressive approach for ULP packetization

In this section, we discuss the progressive solution [1] for
the segmentation problem stated in Section 3. To solve this
problem in an optimal manner, it is necessary to search among
all candidate parity vectors, f = (f1, . . . , fL), with successively
non-increasing elements (Nt ≥ f1 ≥ f2 ≥ · · · ≥ fL) and
then select the one that minimizes the expected distortion
in (5). This full search method is not feasible for real-time
applications, especially for large values of Nt and L. In this
section, an optimality condition is derived which provides a
rather simple relation between any two consecutive elements
of the optimal f vector. This optimality condition yields a low
complexity progressive approach.

LetDi (x), i = 1, . . . , L−1, denote the expected distortion of
the received video bit stream when two consecutive elements,
fi and fi+1, of the optimal solution, f , are changed by a minute
positive amount of x. That is:

Di (x) = Davg
t ({. . . , fi + x, fi+1 − x, . . .}) . (6)

Di(x) is defined, such that the overall parity budget remains
unchanged and only a limited number of parameters of f =

(f1, . . . , fL) and r = (r0, r1, . . . , rL) are affected. In fact, fi and
mi+1 are increased by x, and fi+1, mi and ri are decreased by
the same amount of x. The other parameters remain unchanged.
The optimality condition of f imposes:

Ii (f ) ,
∂Di (x)

∂x


x=0

= 0, (7)

for i = 1, . . . , L − 1. Considering the changing parameters in
(7) (i.e. fi, fi+1 and ri), we have: Eq. (8) in Box I.
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8)
Ii (f ) =
∂ [Pi−1 (f ) · dt (ri−1) + Pi (f ) · dt (ri) + Pi+1 (f ) · dt (ri+1)]

∂x


x=0

=
∂ [−c (fi) · dt (ri−1) + (c (fi) − c (fi+1)) · dt (ri) + c (fi+1) · dt (ri+1)]

∂x


x=0

. (

Box I:
Figure 4: The typical profile of Ii(f ) for some successive values of i, the
horizontal axis is the difference between fi+1 and fi . In this figure, N = 200,
L = 47 and p = 0.2. The similar profiles will be obtained for other values of
these parameters.

As mentioned above, fi (fi+1 and ri) is increased (are
decreased) by x. Hence, ∂ fi

∂x = 1 and ∂ fi+1
∂x =

∂ri
∂x = −1. Finally,

the optimality condition is derived from Eq. (8) as follows:

Ii (f ) = −c ′ (fi) .dt (ri−1) +

c ′ (fi) + c ′ (fi+1)


.dt (ri)

− [c (fi) − c (fi+1)] · dt ′ (ri) − c ′ (fi+1) · dt (ri+1)

= 0, (9)

for i = 1, . . . , L − 1. Eq. (9) is dependent on only a
limited number of parameters including fi, fi+1, ri−1, ri and ri+1.
However, the parameters rk are calculated based on fj values,
j = 1, . . . , k. It is noteworthy that the value of fi+1 can be
calculated by satisfying Eq. (9),when all previous values of fj, j =

1, . . . , i, are available. Hence, we can calculate fi values starting
from i = 1 toward i = L, step-by-step and ‘‘progressively’’. In
fact, Eq. (9) provides a relation between any two consecutive
elements of the ‘‘optimal’’ parity vector. It means, if we have f1,
then we can find f2. When f2 is found, f3 will be subsequently
determined and so on. Therefore, if we have the first element of
the optimal solution, we can progressively find the others.

Although the behavior of Ii (f ) functions is not analytically
studied in this research, experimental results presented in
Figure 4 show that Ii (f ) is a well-behaved function, with
respect to the fi+1 value when fi and ri values are known. It is
noteworthy that the values of fi and ri are previously known at
each step, andwe aim to find the value of fi+1, whichmakes Ii (·)
zero. Therefore, finding the root of Ii (·) corresponds to finding
the fi+1 value, given the known values of fi and ri. In Figure 4,
showing Ii (f ) for some different values of i, the horizontal axis
is the difference between fi+1 and fi and the vertical axis is the
value of Ii. It is seen that Ii (f ) starts from a positive value and
goes to negative values after crossing Ii = 0. We have observed
Figure 5: The pseudo code of the proposed method to find the optimum f . The
parameter h represents the length of search interval of f1 around the f ∗

1 , usually
h = 10 is appropriate.

that zero crossing of Ii (f ) functions usually occurs for a little
difference between fi+1 and fi, i.e. starting from fi = fi+1 and
going on, we will soon reach the value of fi+1, which is the root
of Ii (f ) and is located at a short distance from the starting point
(i.e. fi). Hence, to find the root of each Ii (f ) in Eq. (9), we use
a simple search method, in which fi+1 starts from fi and, after
a small number of increments, the root will be met. Another
property of Ii (f ) functions is that the difference between fi and
fi+1 decreases with i. This can help to limit the cost of root
finding.

The value of f1 cannot be found using Eq. (9). So, in general
cases, for different values of f1, the corresponding f should be
found by the step-by-step progressive process, and Davg should
be calculated using Eq. (5). Then, Davg and the corresponding
f , suggesting minimum Davg , are selected as the best solution.
However, an approximation method is used to reduce the
number of iterations for finding the optimal value of f1, which
is discussed in the next subsection. The proposed optimization
process can be summarized as in Figure 5.

4.1. Approximation of the optimal f1 value

So far, we have derived a progressive relation between the
sizes of any two consecutive segments. It means that, if we
have f1, then we can obtain f2, then f3 and etc.. In this way,
each possible value of f1 (from 0 to Nt − 1) can initiate a
progressive procedure, which results in a candidate solution
of f . Among all possible resultant solutions, we should select
the one that minimizes the expected distortion in Eq. (5). To
keep the computational complexity of the proposed progressive
method low, it is necessary to strictly keep the search interval of
f1 as short as possible. In this subsection, we find a short search
interval around the optimal value of f1.
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Making zero the derivation of the expected distortion in (5),
with respect to f1, we obtain:

c ′ (f1) · [dt (Nt − f1) − dt (0)] =

L
j=1

Pj (f ) d′

t


rj

. (10)

Using Eq. (10), we can find the optimal value for f1, provided
that all other fj values, j = 2, . . . , L, are known. To obtain a
good approximation of the optimal f1 value from Eq. (10), we
set f2 = f3 = · · · = fL = fr , where fr is the rate-optimal
solution [2], which is the solution maximizing the expected
number of received source bits and which is simply expressed
as [2]:

fr = arg max
i=0,...,Nt−1

(Nt − i) ·

i
n=0

pn. (11)

In thisway, P2 = P3 = · · · = PL−1 = 0.Usually,we can consider
d′
t (rL) ∼= 0 because rL is sufficiently large. Therefore, Eq. (10) is

reduced to:

c ′ (f1) · [dt (Nt − f1) − dt (0)]
∼= [c (f1) − c (fr)] · d′

t (Nt − f1) . (12)

Let the solution of Eq. (12) for f1 be f ∗

1 , which can be found
with a simple search. Afterwards, we can say the optimal
f1 value is located at a short interval around f ∗

1 . To validate
this claim, several simulations have been carried out for
various selections of parameter set including Nt , L, c (·) and
dt (·). Simulation results show that


f ∗

1 − h/2, f ∗

1 + h/2

is an

appropriate interval for nearly all natural cases in which h is in
the order of 10 (albeit, h is dependent onNt and L values to some
extent, but not severely).

If the search interval for f1 consists of h points and the root
finding search of each Ii (f ) runs for an average of b times
(successive increments of starting fi) until the solution of Eq.
(9) is found, then we can roughly say that the complexity
of the progressive method is O (hbL). This means that the
complexity of the proposed progressive method does not
essentially dependonNt and this is a great advantage, especially
for large values of Nt . As mentioned earlier, the local search
algorithm has a complexity of O (NtL) [2], which is linearly
dependent on Nt .

5. Optimal inter-GOP rate allocation

In Section 4, we described the progressive approach for the
segmentation and packetization of the embedded bit stream of
each GOP. For each GOP, the progressive approach gets some
input parameters and gives the parity vector (the number of
parity symbols for protection of each segment) as output. For
each GOP t = 1, 2, . . ., the progressive approach requires the
following parameters as input:

• The total rate budget (in symbols) allocated to GOP t: Rt ,
• The required rate (in symbols) for encoding the motion

information of GOP t: RMV
t ,

• The packet size (in symbols) : L,
• The number of packets allocated for joint source-channel

coding of the texture of GOP t: Nt =
Rt−RMV

t
L ,

• The source R-D characteristic of GOP t: dt (r),
• The channel profile of packet loss: {pn}

Nt
n=0 and {c (k)}Nt

k=0.

When all the above parameters of each GOP t are known,
then the progressive approach calculates the suboptimal
parity vector, f = (f1, . . . , fL). Subsequently, the average
reconstruction distortion for the scalable code stream of GOP
t , Davg

t , can be easily calculated from Eq. (5). One may change
the total rate budget (required for source, channel parity, and
motion information) of each GOP t , Rt , and then calculate the
corresponding value of Davg

t . Since the required rate, RMV
t , for

motion information coding and the packet size L are fixed,
changing the value of Rt translates to changing the number,
Nt , of packets allocated for joint source-channel coding of the
texture of GOP t . Therefore, one can consider two R-D curves
for each GOP t:

• The pure source R-D curve of GOP t: dt (r),
• The joint source-channel R-D curve of GOP: Davg

t (Nt).

The first R-D curve depends only upon the video source
content in the duration of that GOP. However, the second R-D
characteristic depends not only on source content, but also
on the channel packet loss profile and the performance of the
progressive approach in the segmentation and packetization of
the embedded code stream. In this section, we derive a closed-
form relation for the optimal value of Nt for each GOP t =

1, 2, . . ., such that the overall average distortion over thewhole
video sequence is minimized and a predetermined average bit
rate is obtained. In fact, we want to divide a predetermined
value of the bit rate budget between the different GOPs of a
video sequence. When the share of each GOP from the total bit
rate budget is determined through an inter-GOP rate allocation
procedure (i.e. Nt is known for GOP t = 1, 2, . . .), then
the progressive segmentation approach determines the portion
of the source and channel parity for each segment of each
GOP through an intra-GOP joint source-channel rate partition
procedure.

5.1. Problem statement

It is desired to find the optimal number of allocated packets
for each GOP t , such that the overall average distortion over the
whole sequence Davg is minimized, and a fixed average bit rate,
rb, (bits per second) is obtained. It is clear that the total symbol
budget, S, and overall average distortion, Davg , over the whole
sequence can be written as follows:

S =
rb
q

·
M · T
rf

,

Davg =
1
M

M
t=1

Davg
t (Nt) , (13)

where:
M: the total number of GOPs contained in the video

sequence,
T : the GOP size (i.e. the number of frames contained in each

GOP),
q: the number of bits per symbol,
rf : the frame rate (frames per second).
The inter-GOP rate allocation problem can be formulated as

follows:
N∗

t

M
t=1 = argmin

Nt
Davg ,

s.t.
M
t=1

Rt =

M
t=1


Nt · L + RMV

t


= S.

With a little simplification, we have:



788 M.R. Ardestani, A.A. Beheshti Shirazi / Scientia Iranica, Transactions D: Computer Science & Engineering and Electrical Engineering 19 (2012) 782–794

N∗

t

M
t=1 = argmin

Nt

M
t=1

Davg
t (Nt) ,

s.t.
M
t=1

Nt =


S −

M
t=1

RMV
t


L

, P. (14)

The inter-GOP rate allocation problem in Eq. (14) can be solved
using the Lagrange method. The Lagrangian cost function may
be written as:

J (N1, . . . ,NM , λ) =

M
t=1

Davg
t (Nt) + λ


M
t=1

Nt − P


, (15)

in which λ is the Lagrangian multiplier. To obtain the optimal
solution, we should apply ∂ J

∂Nt
= 0, for t = 1, . . . ,M . Therefore,

we have the following optimality condition:

∂Davg
t

∂Nt
= −λ, for = 1, . . . ,M. (16)

To obtain a closed-form solution for

N∗

t

M
t=1, we may fit an

appropriate model to Davg
t (Nt) for t = 1, . . . ,M . In the

next subsection, we will consider a hyperbolic model for this
purpose.

5.2. Problem solving

In [20], we have proposed a hyperbolic R-D model for
modeling R-D characteristics of each GOP scalable bit stream.
This model is empirical and not derived analytically. The
experiments in [20] show that the hyperbolic model has an
acceptable performance for nearly all practical working ranges
of the bit rate. In this subsection, we use the same hyperbolic
model for the joint source-channel R-D curve of each GOP t ,
Davg
t (Nt), i.e.:

Davg
t (Nt) = D0,t (NtL)−Kt . (17)

This simple and efficient model has only two parameters, i.e.
D0,t andKt . To obtain these parameters, we should firstmeasure
a sufficient number of points on the joint source-channel R-D
curve, Davg

t (Nt), for each GOP t = 1, . . . ,M . In fact, we should
run the progressive approach for a large number of Nt values
(with a fixed value of L) and then measure the corresponding
values of Davg

t .

Let us use


N i
t ,D

avg,i
t

W
i=1

to denoteW measured points on
the joint source-channel R-D curve of the GOP t . We define the
optimal values of the model parameters as those minimizing
the Mean Square Error (MSE) between the logarithm of the
measured and modeled average distortion values. According to
the results obtained in [20], the optimal values ofD0,t and Kt for
the hyperbolic model are derived as follows:

Kt =

W
i=1

ni
t ·

W
i=1

sit − W
W
i=1


sit · ni

t




W
i=1

ni
t

2

− W
W
i=1


ni
t
2 , (18)

βt =
1
W

W
i=1


sit − Kt · ni

t


, (19)

D0,t = e−βt , (20)
Table 1: The hyperbolic model parameters and modeling error for joint-
source channel R–D curve of various GOPs of Foreman sequence (QCIF,
15 fps) with 16 frames per GOP, p = 0.05, L = 47 Bytes.

GOP no. Destination D0 Destination K Model error, dB

1 1,293,050,244 0.509 0.25
2 857,470,736 0.472 0.31
3 1,383,019,709 0.518 0.25
4 2,406,661,738 0.579 0.23
5 2,172,929,156 0.544 0.25
6 1,090,048,970 0.497 0.32
7 5,135,430,246 0.642 0.24
8 3,985,402,152 0.617 0.18
9 1,923,111,533 0.550 0.23

10 2,896,067,775 0.581 0.26
11 2,372,731,053 0.565 0.24
12 7,026,446,431 0.646 0.25
13 3,294,201,795 0.605 0.23
14 961,052,392 0.508 0.34
15 6,810,166,876 0.654 0.23
16 21,360,706,706 0.749 0.30
17 7,247,911,640 0.656 0.19
18 21,876,707,076 0.750 0.21
19 22,574,308,663 0.787 0.11
20 2,400,189,501 0.564 0.27
21 1,131,316,259 0.453 0.28
22 1,440,267,105 0.483 0.31
23 1,313,696,939 0.486 0.33
24 1,616,642,033 0.519 0.40

Table 2: The hyperbolic model parameters and modeling error for joint-
source channel R–D curve of various GOPs of Akiyo sequence (QCIF, 15 fps)
with 16 frames per GOP, p = 0.05, L = 47 Bytes.

GOP no. Destination D0 Destination K Model error, dB

1 2,190,710,697 0.750 0.16
2 5,006,832,790 0.799 0.30
3 4,269,025,146 0.792 0.23
4 3,738,694,334 0.793 0.16
5 4,926,953,231 0.796 0.34
6 3,510,816,266 0.775 0.22
7 3,139,910,504 0.774 0.13
8 3,277,941,064 0.785 0.17
9 4,811,189,246 0.805 0.26

10 4,095,703,566 0.794 0.27
11 3,879,842,420 0.802 0.15
12 3,272,009,695 0.786 0.15
13 2,848,615,049 0.772 0.15
14 4,701,795,601 0.792 0.32
15 4,151,167,486 0.792 0.22
16 4,712,397,221 0.802 0.24
17 4,165,792,200 0.801 0.20
18 4,255,727,287 0.789 0.26

where ni
t = lnN i

t and sit = − lnDavg,i
t . Tables 1–4 show the

hyperbolic model parameters and modeling errors for various
GOPs of four different video sequences; Foreman, Akiyo, Stefan
and Mobile. In these tables, a binomial distribution with p =

0.05 is assumed for the packet loss event of the channel. The
size of each packet is considered L = 47 Bytes. These tables
demonstrate that the hyperbolic model has a low error model
and fits well to the joint source-channel R-D characteristics of
the above mentioned video sequences.

Using the hyperbolic model in Eq. (17), one can rewrite the
optimality conditions in Eq. (16) as follows:

D0,t · Kt

NKt+1
t · LKt

= λ. (21)

In the other words, the optimal values of the number of
allocated packets for each GOP t are derived as:
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Table 3: The hyperbolic model parameters and modeling error for joint-
source channel R–D curve of various GOPs of Stefan sequence (CIF, 30 fps)
with 16 frames per GOP, p = 0.05, L = 47 Bytes.

GOP no. Destination D0 Destination K Model error, dB

1 22,216,914,269 0.445 0.36
2 35,999,792,814 0.505 0.50
3 21,562,980,218 0.460 0.42
4 15,531,211,381 0.463 0.45
5 12,971,508,875 0.415 0.39
6 18,300,099,461 0.435 0.36
7 41,110,747,128 0.498 0.47
8 73,056,346,027 0.598 0.55
9 12,972,237,313 0.421 0.38

10 10,559,801,841 0.399 0.39
11 24,440,096,552 0.462 0.43
12 93,633,400,700 0.580 0.41
13 36,244,121,490 0.526 0.47
14 39,124,187,846 0.532 0.46
15 87,275,607,351 0.569 0.44
16 174,175,725,509 0.599 0.39
17 77,499,397,266 0.523 0.28
18 34,335,804,370 0.420 0.33

Table 4: The hyperbolic model parameters and modeling error for joint-
source channel R–D curve of various GOPs ofMobile sequence (CIF, 30 fps)
with 16 frames per GOP, p = 0.05, L = 47 Bytes.

GOP no. Destination D0 Destination K Model error, dB

1 8,175,364,705 0.358 0.25
2 8,317,037,117 0.362 0.26
3 9,066,159,604 0.372 0.25
4 9,341,413,718 0.373 0.28
5 8,088,031,611 0.348 0.23
6 7,990,566,829 0.343 0.24
7 8,089,925,563 0.343 0.25
8 8,411,037,879 0.350 0.25
9 8,760,825,805 0.354 0.27

10 8,632,472,714 0.355 0.29
11 31,657,748,492 0.499 0.50
12 22,142,073,551 0.485 0.48
13 15,040,455,725 0.436 0.44
14 15,843,245,584 0.421 0.40
15 29,881,899,631 0.492 0.47
16 24,557,759,608 0.495 0.50
17 26,411,053,777 0.494 0.50
18 29,469,016,846 0.518 0.54

N∗

t =


D0,t · Kt

λ.LKt

 1
Kt+1

. (22)

To obtain the Lagrangianmultiplier,λ, we should satisfy the rate
budget constraint in Eq. (14), i.e.:

M
t=1

N∗

t =

M
t=1


D0,t · Kt

LKt

 1
Kt+1

· λ
−

1
Kt+1 = P. (23)

Therefore, the optimal solution of the inter-GOP rate allocation
problem in Eq. (14) may be expressed in the words of closed-
form relations, as in Eqs. (22) and (23). However, there is a
problem in obtaining the optimal solution from Eq. (22) to (23).
According to Eq. (22), N∗

t for each GOP t depends upon R-D
model parameters (D0,t and Kt ) and the Lagrangian multiplier,
λ. To obtain the Lagrangian multiplier, λ, from Eq. (23), the
following parameters are required:

• The joint source-channel R-Dmodel parameters, D0,t and Kt ,
for all the GOPs of the video sequence, t = 1, . . . ,M ,

• The required rate for encoding motion information, RMV
t , for

all the GOPs of the video sequence, t = 1, . . . ,M .
Hence, a ‘‘pre-coding stage’’ is needed to compute the λ value,
i.e. it is required to calculate the values of D0,t , Kt and RMV

t
for ‘‘all’’ the GOPs of the video sequence, t = 1, . . . ,M ,
before calculating the optimal values of the allocated number of
packets for each GOP. This fact causes a very long delay before
encoding a desired video sequence. In addition, we cannot use
this procedure for ‘‘real-time’’ application of the video coding
because there is no access to the parameters (D0,t , Kt and RMV

t )
of future GOPs while encoding any GOP. Therefore, the optimal
inter-GOP rate allocation can be used for only ‘‘offline’’ video
codingwith a very long pre-coding delay. To solve this problem,
we propose a suboptimal inter-GOP rate allocation in the next
subsection.

5.3. Compromising between encoding delay and quality improve-
ment

As mentioned in the previous subsection, a very long
pre-coding delay may be needed to obtain the value of the
Lagrangian multiplier, λ. In this subsection, we propose a
suboptimal solution for this problem by means of defining the
concept of a group of GOPs (GOGOPs). However, we leave the
problem of finding the optimal value of λ as an open problem
for the readers.

We define the GOGOP as a group of successive GOPs of
a video sequence. We assume no overlapping between the
successive GOGOPs. The number of GOPs contained in a GOGOP
is denoted by M ′, i.e. there are M ′ GOPs in each GOGOP. In the
other words, there are M ′

· T frames per GOGOP. The possible
values forM ′ are 1, . . . ,M .

To compromise the encoding delay with PSNR quality
improvement, we propose to perform the inter-GOP rate
allocation throughout the GOPs of each GOGOP, rather than the
GOPs throughout the whole video sequence. In fact, we can
buffer the frames of each GOGOP before encoding and then
calculate the corresponding values of D0,t , Kt and RMV

t for all
GOPs contained in the buffered GOGOP. Similar to Eq. (23), we
can calculate the suboptimal value of the Lagrangianmultiplier,
λ′, for the current GOGOP (rather than calculating the λ value
over the whole sequence) from the following relation:

M ′
t=1


D0,t · Kt

LKt

 1
Kt+1

· λ′−
1

Kt+1 = P ′, (24)

where:

P ′
=


S ′

−

M
t=1

RMV
t


L

, (25)

and:

S ′
=

rb
q

·
M ′.T
rf

. (26)

The proposed solution allows us to limit the encoding delay
for offline video coding, i.e. the encoding delay is equal to the
duration of a GOGOP rather than the whole video duration.
By changing the GOGOP size, M ′, one can control the trade-
off between encoding delay and quality improvement (i.e.,
the more GOGOP size, the more encoding delay and the
more quality improvement relative to the equal inter-GOP
rate allocation). By means of the concept of GOGOP, we can
apply the suboptimal inter-GOP rate allocation procedure (and,
subsequently, the progressive ULP packetization approach) for
real-time video coding. In the case of real-time video coding, an
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adjustable buffering delay is introduced through the encoding
procedure.

There is an alternative approach for compromising the
encoding delay with PSNR efficiency. One can use a causal
sliding window approach to estimate a suboptimal value for
λ. In fact, it is possible to compute the optimal number of
allocated packets to the tth GOP, N∗

t , from Eq. (22), whose λ
value is calculated from Eq. (23) over a Z-sized sliding window,
including the GOPs t −Z +1,t −Z +2,. . .,t (i.e., the summation
in Eq. (23) is over the GOPs t − Z + 1,t − Z + 2,. . .,t).
The difference between the sliding window approach and
the GOGOP scheme refers to the window consideration (non-
overlapping windows in the case of GOGOPs vs. overlapping
sliding windows). We have tested the overlapping sliding
windows in our experimentations (although not reported in
the experimental results) and compared them with GOGOPs.
Both windowing schemes have nearly identical efficiencies in
the sense of average PSNR. The overlapping sliding windowing
scheme, however, has less encoding delay compared to the
non-overlapping GOGOPs, because for each incoming GOP t ,
it is enough to measure the corresponding model parameters
(D0,t and Kt values) and then calculate the required λ value
from the model parameters of the current GOP and its Z − 1
previous GOPs. In the case of non-overlapping GOGOPs, it is
necessary to buffer the GOPs of each GOGOP and then measure
their model parameters, so that one can calculate the λ value
from the model parameters of the GOPs contained in the
GOGOP. Therefore, the pre-encoding delay of the GOGOP is
more than the sliding window scheme. The advantage of the
GOGOP scheme compared to the sliding window is its lower
computational complexity, as the GOGOP scheme calculates the
λ value only for each GOGOP, whereas the overlapping sliding
window calculates the λ value for each individual GOP. It is
noteworthy that calculating the λ value from (23) necessitates
solving a non-linear equation using a numerical method (e.g.
Newton–Raphson method).

6. Experimental results

In [1], the performance of the progressive ULP packetization
approach is evaluated and compared with that of the local
search algorithm [2]. In this section, we compare the PSNR
performance of the progressive approach with two inter-GOP
rate allocation strategies: ‘‘equal’’ rate allocation and ‘‘optimal’’
rate distribution. In the equal inter-GOP rate allocation strategy,
the same total rate budget is allocated to each GOP, i.e.:

R1 = R2 = · · · = RM =
rb
q

T
rf

. (27)

Therefore, in the case of equal inter-GOP rate allocation
strategy, the number of allocated packets for each GOP t is as
follows:

Nequal
t =


rbT
qrf

− RMV
t


L

. (28)

In the case of ‘‘optimal’’ inter-GOP rate allocation, the number
of packets allocated to each GOPt , i.e. N∗

t , is calculated from
Eqs. (22) to (23).

Experimental results were preformed on four different 4:2:0
YUV test sequences, which are summarized in Table 5. The
sequences are selected because of their different characteristics
in terms of motion and spatial detail, and also various
spatial/temporal resolutions. Each GOP includes 16 frames. The
Table 5: The source signals used in simulations.

Sequence name Frame size #of frames Frame rate (fps)

Foreman QCIF 384 15
Akiyo QCIF 288 15
Mobile CIF 288 30
Stefan CIF 288 30

Table 6: The average PSNR improvement (Imp) of the optimal rate
allocation relative to the equal inter-GOP rate distribution for the four test
sequences and two different channel conditions (p and rb).

Sequence name Good channel conditions Bad channel conditions

Foreman p = 0.05, p = 0.10,
rb = 65 Kbps, rb = 45 Kbps,
Imp = 0.27 dB Imp = 0.65 dB

Akiyo p = 0.05, p = 0.10,
rb = 21 Kbps, rb = 7 Kbps,
Imp = 0.03 dB Imp = 0.11 dB

Mobile p = 0.05, p = 0.10,
rb = 1024 Kbps, rb = 512 Kbps,
Imp = 0.01 dB Imp = 0.17 dB

Stefan p = 0.05, p = 0.10,
rb = 1024 Kbps, rb = 512 Kbps,
Imp = 0.05 dB Imp = 0.08 dB

size ofwavelet-decomposed CBs in T+2D scalable video coding
is 16 × 16. We have assumed a binomial distribution, with a
packet loss rate of p for the packet loss of the channel. It means
that each of the packets may be independently lost with the
probability of p. We have not aimed the precise modeling of
the channel packet erasure, which may be bursty. However,
one may refer to [21] for more information about Markov
modeling of burst packet losses. Packet losses are simulated by
120 Monte-Carlo simulations and the results are averaged over
them. Because ATM packets have a payload length of 48 bytes
and one byte is required for the sequence number, we have
chosen L = 47 bytes to mimic a practical application. The
average PSNR of the Y component is used as a meaningful
measure of performance.

Figure 6 evaluates the performance of the progressive ULP
packetization approach with optimal and equal inter-GOP rate
allocation strategies. Figure 6 depicts the profile of the average
Y -component PSNR for each GOP of the four test sequences.
For each test sequence, two different channel conditions are
considered: one with p = 0.05 and a high average bit rate and
another with p = 0.10 and a lower average bit rate. It can be
seen from Figure 6 that the optimal inter-GOP rate allocation
strategy yields a relatively flatter PSNR profile throughout the
video sequence. In fact, there is not a deep valley in the PSNR
profile of the optimal rate distribution, because the optimal
strategy distributes the total rate budget between the GOPs,
such that GOPs with more (less) motion get more (less) rate
budget relative to the equal strategy. Figure 7 depicts the
number of packets allocated to each GOP using optimal and
equal rate distribution. Table 6 summarizes the average PSNR
improvement of the optimal rate allocation relative to the equal
inter-GOP rate distribution for the four test sequences. Table 6
reveals that average PSNR improvement (due to the optimal
rate allocation) is more significant for lower bit rate budgets
and higher packet loss rates. In fact, it is more beneficial to
use optimal rate allocation when the channel has less bit rate
budget and more packet loss rate. In addition, Table 6 shows
that the optimal rate allocation has more PSNR gain for video
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Figure 6: The average PSNR of the Y -component for each GOP of the four test sequences. The progressive ULP packetization approach is applied with optimal and
equal inter-GOP rate allocation strategies. For each test sequence, two different channel conditions (p and rb) are considered.
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Figure 7: The Number of allocated packets for each GOP of the four test sequences. The progressive ULP packetization approach is applied with optimal and equal
inter-GOP rate allocation strategies. For each test sequence, two different channel conditions (p and rb) are considered.
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Figure 8: The average PSNR improvement of the suboptimal inter-GOP rate allocation relative to the equal inter-GOP rate distribution versus the GOGOP size for
the four test sequences.
sequences with more variations in their motion characteristics.
For example, Table 6 shows that the Foreman sequence has
the most PSNR improvement because the Foreman sequence
has dissimilar motion trends from the start to the end (i.e.,
medium, high, and lowmotion at its beginning,middle, and end
parts, respectively). However, the other test sequences have a
relatively homogeneous motion trend all over their duration.

As mentioned in Section 5, obtaining the optimal numbers
of allocated packets for each GOP requires the knowledge of
D0,t , Kt and RMV

t for all GOPs contained in the video sequence.
Therefore, the optimal inter-GOP rate allocation is impossible
for real-time applications. In addition, the optimal inter-GOP
rate allocation needs a pre-coding stage for buffering all GOPs of
the video sequence and calculating their corresponding values
of D0,t , Kt and RMV

t . This pre-coding stage may introduce a
very long pre-coding delay. To compromise the pre-coding
delaywith the average PSNR quality, we proposed a suboptimal
procedure to perform the inter-GOP rate allocation for the GOPs
of eachGOGOP. Figure 8 depicts the average PSNR improvement
of the suboptimal inter-GOP rate allocation relative to the
equal inter-GOP rate distribution versus the GOGOP size (i.e.
the number of GOPs contained in each GOGOP) for the four
test sequences. Figure 8 shows a saturating behavior for this
curve. Therefore, onemay choose a relatively small GOGOP size
(much smaller than the total number of GOPs contained in the
video sequence, e.g. GOGOP size of 8 GOPs) and yet, the PSNR
quality of the suboptimal inter-GOP rate allocation is near to
the optimal inter-GOP rate distribution.

7. Concluding remarks

In this paper, the ULP packetization problem, including
the segmentation of a generally-defined embedded source
code stream, has been explained and a low complexity
progressive method to determine the suboptimal size of each
data segment is expressed. The progressive method is based on
an analytically-derived relation between the sizes of any two
successive segments.

It is reasonable to consider a joint source-channel R-D curve
describing average reconstruction distortion, in terms of the
number of allocated packets (i.e. the rate budget). In this paper,
we have proposed a hyperbolic model for this curve, which
helps us derive some simple closed-form relations for the
number of allocated packets (i.e. the optimal rate budget) for
each GOP of the video sequence. The experimental results show
that the optimal inter-GOP rate allocation strategy outperforms
the conventional strategy of equal inter-GOP rate distribution
up to 0.65 dB. Experimental results show that average PSNR
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improvement (due to the optimal rate allocation) is more
significant for lower bit rate budgets and higher packet loss
rates. In addition, the optimal rate allocation has more PSNR
gain for the video sequences with more variations in their
motion characteristics.

The optimal inter-GOP rate allocation has an essential
shortage, due to a long pre-coding delay. To calculate the
optimal number of allocated packets for each GOP, it is needed
to know the motion information rate and hyperbolic model
parameters of the joint source-channel R-D curve of the whole
GOPs of the video sequence. This limits the usage of the optimal
inter-GOP rate allocation to offline applications with a rather
short duration of the video. To compromise the pre-coding
delaywith the average PSNR quality, we proposed a suboptimal
procedure to perform the inter-GOP rate allocation for the GOPs
of each GOGOP. The simulation results show that one may
choose a rather small GOGOP size (e.g. GOGOP size of 8 GOPs)
and yet, the PSNR quality of the suboptimal inter-GOP rate
allocation is near to the optimal inter-GOP rate distribution.
This fact yields an important conclusion; ‘‘To obtain the optimal
number of allocated packets for each GOP, it is sufficient to take
a few number of near GOPs into account, however, the impact
of the far GOPs is nearly negligible’’.
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