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Abstract

Perturbative QCD with nf flavours of massless quarks becomes simple in the hypothetical limit 
nf → 16 1

2 , where the leading β-function coefficient vanishes. The Banks–Zaks (BZ) expansion in

a0 ≡ 8
321 (16 1

2 − nf ) is straightforward to obtain from perturbative results in MS or any renormaliza-
tion scheme (RS) whose nf dependence is ‘regular’. However, ‘irregular’ RS’s are perfectly permissible 
and should ultimately lead to the same BZ results. We show here that the ‘optimal’ RS determined by the 
Principle of Minimal Sensitivity does yield the same BZ-expansion results when all orders of perturbation 
theory are taken into account. The BZ limit provides an arena for exploring optimized perturbation theory at 
arbitrarily high orders. These explorations are facilitated by a ‘master equation’ expressing the optimization 
conditions in the fixed-point limit. We find an intriguing strong/weak coupling duality a → a∗2/a about 
the fixed point a∗.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The initial impulse for these investigations was a concern with the compatibility of the Banks–
Zaks (BZ) expansion [1–4] with renormalization-scheme (RS) invariance [5]. In dimensional 
regularization the β function naturally has a term −εa which strongly affects any zero near 
the origin. Can one safely take ε → 0 first and then take nf → 16 1

2 , or do these limits some-
how clash? Our results here basically resolve those concerns; the BZ expansion appears to be 
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fully compatible with RS invariance in the sense that “optimized perturbation theory” (OPT) [6], 
which enforces local RS invariance in each order, ultimately yields the same BZ results.

The BZ expansion is normally discussed only within a restricted class of ‘regular’ schemes. 
However, infinitely many schemes – and in some sense most schemes – are not ‘regular.’ In 
particular, the “optimal” scheme is not. In ‘regular’ schemes one needs only k terms of the per-
turbation series to obtain k terms of the BZ expansion, but in other schemes the information 
needed is distributed among higher-order terms [7]. In general all orders are required. Turn-
ing that observation around, the BZ expansion can be viewed as a “playground” in which one 
can analytically investigate arbitrarily high orders of OPT in QCD. Admittedly, this adopts the 
“drunk-under-the-lamppost” principle of looking, not where we really want to, but where there is 
enough light to make a search. The deep and difficult issues that we would like to study – “renor-
malons” and factorially growing coefficients – are simply absent in the BZ limit. Nevertheless, 
we believe our search provides some interesting insights and employs some methods that may 
have wider applicability.

Infrared fixed points and divergent perturbation series were no part of the motivation for OPT 
[6], but OPT has important consequences for both these topics. Fixed points in OPT are discussed 
in Refs. [8–14]. Such infrared behaviour was found for Re+e− at third order for all nf [9,10], 
though error estimates at low nf are large.1

The role of OPT in taming high-order perturbation theory was investigated in Ref. [15]. A toy 
example, involving an alternating factorial series, showed that even when the perturbation se-
ries is badly divergent in any fixed RS, the sequence of optimized approximants can converge. 
This “induced convergence” mechanism (related to the idea of “order-dependent mappings” [16]) 
has been shown to operate [17] in the anharmonic oscillator and φ4 field theories in the varia-
tional perturbation theory of Refs. [18–20]. In QCD “induced convergence” of OPT has been 
investigated in the large-b approximation [21]. It has also been shown [22] that adjusting the 
renormalization scale with increasing order — which happens naturally in OPT [15] — can in-
deed have dramatic and beneficial effects on series behaviour. In the present paper we work in 
the small-b approximation (the BZ limit), where the issues are rather different. In particular, the 
role of optimizing other aspects of the RS, besides the renormalization scale, come to the fore.

The plan of the paper is as follows. Following some preliminaries in Sect. 2, the BZ expan-
sion, as obtained from ‘regular’ schemes, is summarized in Sect. 3, and we note that it is suffices 
to consider two infrared quantities, R∗ and γ ∗. Sect. 4 briefly reviews OPT. Sect. 5 presents 
OPT results in the BZ limit, up to 19th order. Sect. 6 describes analytic methods for studying 
OPT at arbitrarily high orders. It also introduces a crude approximation, “NLS,” and a better 
approximation, “PWMR.” These approximations, applied to the BZ limit, are explored in detail 
in Sects. 7 and 8. From these results we see that OPT, taken to all orders, does reproduce the 
expected BZ-limit results, and we gain some insight into how OPT’s subtle features conspire to 
produce accurate results and a rather well-behaved series for R∗. In Sect. 9 we show that all-
orders OPT reproduces higher terms in the BZ expansion correctly, and in Sect. 10 we point out 
an intriguing a → a∗2/a duality. Our conclusions are summarized in Sect. 11. (Two appendices 
discuss (a) some subtleties associated with the critical exponent γ ∗ [23–25] and (b) the pinch 
mechanism [14], which is a way that a finite infrared limit can occur in OPT without a fixed 
point. This mechanism is probably not directly relevant in the BZ limit, though it nearly is.)

1 Also, other physical quantities behave rather differently [11]. The idea [4,7] that the BZ expansion can be extrapo-
lated, crudely, to low nf no longer seems tenable [14]. The “freezing” behaviour at small nf , confirmed at fourth order 
[12–14], seems instead to stem from somewhat different physics.
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2. Preliminaries

Consider a suitably normalized, perturbatively calculable, physical quantity R with a pertur-
bation series

R = a(1 + r1a + r2a
2 + r3a

3 + . . .), (2.1)

where a ≡ αs/π is the couplant of some particular renormalization scheme (RS). (More gener-
ally R can start aP(1 + . . .) but in this paper we will consider only P = 1.) The physical quantity 
R could be a function of several experimentally defined parameters. One may always single out 
one parameter, “Q,” with dimensions of energy and let all other parameters be dimensionless. 
(The precise definition of Q in any specific case may be left to the reader; it is needed only to ex-
plain which quantities are, or are not, Q dependent.) For dimensional reasons the ri can depend 
on Q and the renormalization scale μ only through the ratio μ/Q.

The physical quantity R is independent of RS [5], but both the couplant a and the coefficients 
ri depend on the arbitrary choice of RS. In particular, a depends on the arbitrary renormalization 
scale μ:

μ
da

dμ
= β(a) = −ba2B(a), (2.2)

where

B(a) = 1 + ca + c2a
2 + c3a

3 + . . . . (2.3)

The first two coefficients of the β function are RS invariant and are given by

b = (33 − 2nf )

6
, c = 153 − 19nf

2(33 − 2nf )
. (2.4)

The higher β-function coefficients c2, c3, . . . are RS dependent: they, together with μ/�̃, can be 
used to parametrize the RS choice [6]. Certain combinations of R and β-function coefficients 
are RS invariants [6]. (Their definition, and that of �̃, will be discussed in Sec. 4.) The first few 
are:

ρ̃1 = c, and ρ1(Q) = b ln(μ/�̃) − r1,

ρ̃2 = c2 + r2 − cr1 − r2
1 , (2.5)

ρ̃3 = c3 + 2r3 − 2c2r1 − 6r2r1 + cr2
1 + 4r3

1 .

The ρ̃i are Q independent, since the μ/Q dependence from the ri’s cancels out. The special 
invariant ρ1(Q) depends on Q and can be written as

ρ1(Q) = b ln(Q/�̃R), (2.6)

where �̃R is a scale specific to the particular physical quantity R.

3. BZ expansion in ‘regular’ schemes

At nf = 33
2 = 16 1

2 the leading β-function coefficient b vanishes. For nf just below 16 1
2 the 

β function has a zero at a very small a∗, proportional to (16 1
2 − nf ). Its limiting form,

a0 ≡ 8
b = 8 (

16 1
2 − nf

)
, (3.1)
107 321
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serves as the expansion parameter for the Banks–Zaks (BZ) expansion [1–4]. To proceed, one 
first re-writes all perturbative coefficients, eliminating nf in favour of a0. The first two β-function 
coefficients, which are RS invariant, become:

b = 107

8
a0, (3.2)

c = − 1

a0
+ 19

4
. (3.3)

Note that c is large and negative in the BZ context.
We will consider a class of physical quantities (dubbed ‘primary’ quantities) for which the ρ̃i

invariants have the form

ρ̃i = 1

a0

(
ρi,−1 + ρi,0a0 + ρi,1a

2
0 + . . .

)
. (3.4)

Within the class of so-called ‘regular’ schemes [3,4], the β-function coefficients (bci) are ana-
lytic in a0 so that

ci = 1

a0

(
ci,−1 + ci,0a0 + ci,1a

2
0 + . . .

)
. (3.5)

Note that this equation is a property of the scheme, irrespective of the physical quantity, whereas 
Eq. (3.4) is a property of the physical quantity, irrespective of the scheme. For ‘primary’ quanti-
ties in ‘regular’ schemes we have

ri = ri,0 + ri,1a0 + ri,2a
2
0 + . . . . (3.6)

[In fact, for certain quantities the numerator of Eq. (3.4) is a polynomial whose highest term 
is ρi,ia0

i+1, and in certain ‘rigid’ schemes, such as MS, the a0 series for ci and ri truncate after 
the ci,i−1 and ri,i terms. These properties are unimportant here, but are crucial in the opposite 
limit, the large-b approximation.]

Expanding in powers of a0 the zero of the β function is found to be

a∗ = a0
(
1 + (c2,−1 + c1,0)a0 + . . .

)
, (3.7)

and hence the infrared limit of R is

R∗ = a0
(
1 + (r1,0 + c2,−1 + c1,0)a0 + . . .

)
. (3.8)

Since the BZ expansion parameter a0 is RS invariant the coefficients in the R∗ series are RS 
invariant and can be written in terms of the ρi,j :

R∗ = a0
(
1 + (ρ2,−1 + ρ1,0)a0 + . . .

)
. (3.9)

Note, though, that a∗ is not a physical quantity and its a0 expansion has RS-dependent coeffi-
cients.

At a finite energy Q the result for R to nth order of the BZ expansion can be expressed as the 
solution an equation of the form [4]

ρ1(Q) = 1

R + 1

γ̂ ∗(n)
ln

(
1 − R

R∗(n)

)
+ c ln (|c|R) (3.10)

for n = 1, 2, 3. (For n ≥ 4 there are additional terms; see Ref. [4] for details.) Here R∗(n) and 
γ̂ ∗(n) are the nth-order approximations to R∗ and γ̂ ∗ ≡ γ ∗

b
. The critical exponent γ ∗ governs the 

manner in which R approaches R∗ in the Q → 0 limit:

(R∗ −R) ∝ Qγ ∗
. (3.11)
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Fig. 1. Schematic picture of R as a function of Q close to the BZ limit showing the three regions (i) the “spike” at 
very low energies, (ii) the huge flat region where the theory is “nearly scale invariant,” and (iii) the slow approach to 
asymptotic freedom at very high energies. (Region (iii) is shown on a log scale.)

Normally γ ∗ is identified with the slope of the β function at the fixed point [23], and that is true 
in the present context. (Some subtleties with γ ∗ [24,25] are discussed in Appendix A.) The BZ 
expansion of γ ∗ is

γ̂ ∗ ≡ γ ∗

b
= a0

(
1 + g1a0 + g2a

2
0 + O(a3

0)
)

, (3.12)

where the gi ’s are the universal invariants of Grunberg [3]:

g1 = c1,0 = ρ1,0,

g2 = c2
1,0 − c2

2,−1 − c3,−1 = ρ2
1,0 − ρ2

2,−1 − ρ3,−1. (3.13)

They are universal in that they do not depend on the specific physical quantity R being con-
sidered, and invariant because they can be expressed as combinations of the invariants ρi,j

(combinations in which all the ri,j terms cancel).
Close to the BZ limit R remains almost constant over a huge range of Q about �̃R. This 

constant value is not R∗ but 0.78R∗ [4]. More precisely, it is R∗/(1 +χ) where lnχ +χ +1 = 0, 
a result that follows from Eq. (3.10) to leading order in a0 with ρ1(Q) = 0, corresponding to 
Q = �̃R. Only when Q/�̃R becomes extremely small does R abruptly rise up to R∗, and 
only when Q/�̃R becomes extremely large does R very slowly decrease to zero, as required by 
asymptotic freedom. (See Fig. 1.)

Since Eq. (3.10) completely characterizes the Q dependence of R in low-orders of the BZ 
expansion, it suffices to consider R∗ and γ̂ ∗, both of which are quantities defined in the Q → 0
limit.

4. Optimized perturbation theory

Since it is a physical quantity, R satisfies a set of RG equations [6]

∂R
∂τ

=
(

∂

∂τ

∣∣∣∣
a

+ β(a)

b

∂

∂a

)
R = 0, “j = 1”,

∂R
∂cj

=
(

∂

∂cj

∣∣∣∣
a

+ βj (a)
∂

∂a

)
R= 0, j = 2,3, . . . .

(4.1)

The first of these, with τ ≡ b ln(μ/�̃), is the familiar RG equation expressing the invariance of 
R under changes of renormalization scale μ. The other equations express the invariance of R
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under other changes in the choice of RS. The βj (a) functions, defined as ∂a/∂cj , are given by 
[6,12]

βj (a) ≡ aj+1

(j − 1)
Bj (a), (4.2)

with

Bj (a) = (j − 1)

aj−1
B(a)Ij (a), (4.3)

where

Ij (a) ≡
a∫

0

dx
xj−2

B(x)2
. (4.4)

The Bj (a) functions have expansions that start 1 + O(a). (Note that for j → 1+ one naturally 
finds B1(a) = B(a).)

As mentioned earlier, certain combinations of ri and cj coefficients form the RS invariants ρ̃i . 
(See Eq. (2.5).) Dependence on Q enters only through ρ1(Q) = b ln(Q/�̃R). The scale �̃R is 
related by �̃R = �̃ exp(r1(μ=Q)/b) to a universal but RS-dependent �̃ parameter that arises as 
the constant of integration in the integrated β-function equation:

b ln(μ/�̃) ≡ τ = K(a), (4.5)

where

K(a) ≡ 1

a
+ c ln(|c |a) −

a∫
0

dx

x2

(
1

B(x)
− 1 + cx

)
. (4.6)

(This form of K(a), completely equivalent to our previous definition [6,12], is more convenient 
when c is negative [14].) The �̃ parameter thus defined is RS dependent, but it can be converted 
between different schemes exactly by the Celmaster–Gonsalves relation [26].

The β function is RS dependent. The conversion between two schemes (primed and unprimed) 
is given by

β ′(a′) ≡ μ
da′

dμ
= da′

da
μ

da

dμ
= da′

da
β(a). (4.7)

For any specific physical quantity R one can always define the “fastest apparent convergence” 
(FAC) or “effective charge” (EC) scheme [27] in which all the series coefficients ri vanish, so 
that R = aEC(1 + 0 + 0 + . . .). As a special case of the previous equation we have

βEC(R) = dR
da

β(a). (4.8)

The ρ̃n invariants can conveniently be defined to coincide with the coefficients of the EC β
function. Thus, defining βEC(R) = −bR2BEC(R), with

BEC(R) ≡
∞∑

n=0

ρ̃nRn, (4.9)

the invariants ρ̃n can be obtained by equating coefficients in

BEC(R) = a2

R2

dR
da

B(a), (4.10)

which we shall refer to as the “invariants master equation.”
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The (k + 1)th-order approximation, R(k+1), in some general RS, is defined by truncating the 
R and β series after the rk and ck terms, respectively:

R(k+1) ≡ a

k∑
m=0

rmam, B(k+1) ≡
k∑

j=0

cja
j , (4.11)

with r0 ≡ 1, c0 ≡ 1, and c1 ≡ c. Because of these truncations, the resulting approximant depends 
on RS. “Optimization” [6] corresponds to finding the stationary point where the approximant is 
locally insensitive to small RS changes, i.e., finding the “optimal” RS in which the RG equa-
tions (4.1) are satisfied by R(k+1) with no remainder. The resulting optimization equations [6]
have been solved for the optimized r̄m coefficients in terms of the optimized couplant ā and the 
optimized c̄j coefficients [12]. (The overbars denote quantities in the optimal scheme, but we 
will generally omit these henceforth, except to distinguish ā from a generic a.) To present that 
solution it is convenient to define

S ≡ dR
da

= 1 + s1a + s2a
2 + . . . , (4.12)

with coefficients sm ≡ (m + 1)rm. The optimized sm coefficients are given by [12]:

smām = 1

Bk(ā)
(Hk−m(ā) − Hk−m+1(ā)) , m = 0,1, . . . , k, (4.13)

where

Hi(a) ≡
k−i∑
j=0

cja
j

(
i − j − 1

i + j − 1

)
Bi+j (a), i = (1),2, . . . , k, (4.14)

with c0 ≡ 1, c1 ≡ c. H1 is to be understood as the limit i → 1 of the above formula. Note that 
Hk = Bk and we define H0 ≡ 1 and Hk+1 ≡ 0.

As noted at the end of the last section, we may focus on the infrared limit Q → 0. A finite 
infrared limit in optimized perturbation theory (OPT) can occur in at least two ways: (i) through 
a fixed point (a zero of the optimized β function) [8–10] or (ii) through an “unfixed point” and 
the pinch mechanism [14]. The latter case is discussed in Appendix B, but seems to be only 
tangentially relevant in the BZ limit.

In the fixed-point case the infrared limit of the optimized couplant is a∗, which is the first 
zero of the optimized β function: B(k+1)(a∗) = 0. The above solution for the optimized sm ≡
(m + 1)rm coefficients in terms of the optimized cj coefficients simplifies greatly to [12]

ŝm = 1

(k − 1)

⎡
⎣(k − 2m)ĉm −

m∑
j=0

ĉj

⎤
⎦ , (4.15)

where ŝm ≡ sma∗m, and ĉm ≡ cma∗m.

5. Low orders of OPT in the BZ limit

Explicit results for the infrared-fixed-point limit of OPT were obtained in Ref. [8] for k = 2
and 3. Extending the calculation to higher orders is made easier by the formula (4.15), which 
can be used to substitute for the optimal-scheme rm’s in the ρ̃ invariants. From the resulting ρ̃2
expression one can solve for the optimal-scheme c2 in terms of a∗, c, ρ̃2. Then, making use of that 
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result, one may solve for c3 in terms of a∗, c, ρ̃2, ρ̃3, and so on up to ck−1. The last coefficient, 
ck can then be found from the fixed-point condition B(a∗) = 0. Substituting in the expression for 
ρ̃k then produces an equation for a∗ that involves only the invariants c, ρ̃2, . . . , ρ̃k . One can then 
find a∗ numerically as the smallest positive root of that equation. Finally, the expressions for the 
cj ’s in terms of a∗ and the invariants can be substituted in the formula (4.15) to determine the 
rm’s. Hence, one can find R∗.

The preceding discussion pre-supposes that the perturbative calculations have been done to 
(k + 1)th order, so that the numerical values of the invariants up to ρ̃k are known. The great 
simplification in the BZ limit is that we can effectively set almost all the invariants to zero: this 
can be seen as follows. As a0 → 0 the most singular term in any of the ρ̃i is of order 1/a0, but 
each ρ̃i enters the analysis along with a factor of a∗i that is of order ai

0. Thus, to find the leading 
term in the BZ limit, we can effectively set to zero all the invariants except c. (Furthermore, only 
the −1/a0 piece of c will contribute.) To obtain the next-to-leading correction in a0 we would 
also need the 19

4 piece of c along with the ρ2,−1/a0 piece of ρ̃2 (whose value depends on the 
specific R quantity under consideration).

For k = 2, following the procedure in the first paragraph of this section, we find

r1 = −1

2

(
1 + ca∗

a∗

)
, r2 = −2

3
c2, (5.1)

from the optimization condition, Eq. (4.15). Then c2 can be found from B(a∗) = 0 as

c2 = −1 + ca∗

a∗2
. (5.2)

Substituting in the expression for ρ̃2 in Eq. (2.5) yields the equation for a∗:

−7 + 4ca∗ − 3c2a∗2

12a∗2
= ρ̃2. (5.3)

(When comparing with Refs. [8,10] note that the “ρ2” used there is ρ̃2 − 1
4c2.) In the BZ limit 

we can set ρ̃2 = 0 so that the a∗ equation becomes

(ca∗ + 1)(ca∗ − 7
3 ) = 0. (5.4)

Hence, we find a∗ = −1/c → a0. The coefficients c2, r1, r2 all vanish, so, in an a posteriori
sense, the k = 2 OPT scheme is ‘regular’ in the infrared (fixed-point) limit. The final result for 
R∗ is

R∗ = −1

c
→ a0. (5.5)

Thus, exactly as in any ‘regular’ scheme, we find that a∗ and R∗ tend to a0 in the BZ limit. The 
same is true for γ̂ ∗, obtained from the slope of the β function at the fixed point.

At higher orders, though, the OPT scheme is not ‘regular’ — the optimized ri coefficients, 
for instance, have 1/ai

0 pieces — and the story is more complicated. For k = 3 the optimization 
condition gives

r1 = − 1

4a∗ , r2 = − (1 + ca∗ + 2c2a
∗2)

6a∗2
, r3 = −3

8
c3. (5.6)

Proceeding immediately to the BZ limit, we set ρ̃2 = ρ̃3 = 0. Substituting into ρ̃2 = 0 gives

c2 = (11 − 4ca∗)
2

, (5.7)

32a∗
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Table 1
OPT results in the BZ limit for k = even.

k a∗
a0

R∗
a0

γ̂ ∗
a0

2 1 1 1
4 1.85035 1.00370 0.9841
6 2.30294 1.00214 0.9742
8 2.58980 1.00137 0.9671

10 2.78928 1.00096 0.9614
12 2.93666 1.00071 0.9565
14 3.05030 1.00055 0.9523
16 3.14081 1.00043 0.9485
18 3.21470 1.00035 0.9451

Table 2
OPT results in the BZ limit for k = odd.

k a∗
a0

R∗
a0

γ̂ ∗
a0

3 1.59615 1.03501 0.5602
5 2.17343 1.01119 0.5886
7 2.51313 1.00544 0.6071
9 2.73950 1.00319 0.6206

11 2.90228 1.00209 0.6311
13 3.02550 1.00147 0.6397
15 3.12231 1.00108 0.6468
17 3.20056 1.00083 0.6530
19 3.26522 1.00066 0.6583

and then the last coefficient, c3 can be found from B(a∗) = 0; after using the previous equation, 
this gives

c3 = − (43 + 28ca∗)
32a∗3

. (5.8)

The equation for a∗ in the BZ limit then follows by substituting in ρ̃3 = 0. We could have ex-
pected a cubic equation, but in fact we find

83 + 52ca∗ = 0. (5.9)

Thus, we do not get a∗ = − 1
c

→ a0, but a∗ → 83
52a0 = 1.596a0. The final result for R∗ is not a0

but is 6889
6656a0 = 1.035a0, which is remarkably close.

Results for higher orders are shown in Tables 1 and 2. The even-k results are significantly 
better than those for odd k. Note that a∗/a0 increases, apparently towards 4. It is perfectly ac-
ceptable for a∗ to differ from a0, since a∗ is inherently scheme dependent. However, R∗ is a 
physical quantity so it is reassuring that R∗/a0 is always close to 1. In Sect. 7 we will find a 
simple explanation for a∗/a0 → 4 and R∗/a0 → 1 as k → ∞.

The situation with γ̂ ∗ is less clear. This is also a physical quantity (with the caveats of Ap-
pendix A) so we should have γ̂ ∗/a0 → 1 as k → ∞. The numerical results in the tables cannot 
be said to support that contention, but neither are they inconsistent with it; one can make good 
fits to the data with functions of k that very slowly approach 1 as k = ∞ for both even and odd k.

It is hard to go to much larger k with the method described in this section, so we turn to 
an analytic approach in the next sections. Our results – albeit in approximations to OPT rather 
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than true OPT – support the claim that a∗/a0 → 4 and that both R∗/a0 and γ̂ ∗/a0 tend to 1 as 
k → ∞: they also provide valuable insight into the workings of OPT at arbitrarily high orders.

6. Analytic tools for OPT at all orders

To make progress analytically with OPT in (k + 1)th order it helps greatly to deal with func-
tions and differential equations rather than with 2k individual ri and ci coefficients. The set of ρ̃i

invariants naturally follow from a single “master equation,” Eq. (4.10), and what we need is to 
also formulate the k optimization conditions as a “master equation.” For general Q this would be 
a daunting task. In the infrared fixed-point limit, however, it is relatively simple — and, happily, 
that suffices in the present context since, as noted in Sect. 3, in the BZ limit and for the first three 
terms of the BZ expansion, the entire Q dependence of R is characterized by the two infrared 
quantities R∗ and γ̂ ∗.

We now show that the optimization conditions in the fixed-point limit, Eq. (4.15), follow from 
equating coefficients in the following “fixed-point OPT master equation:”

dR
da

= B(a) − a

(k − 1)

(
2
dB(a)

da
+ B(a)

(a∗ − a)

)
. (6.1)

(Superscripts “(k+1)” on R and B(a) are omitted for brevity.) Note that a here is merely a dummy 
variable, while a∗ is the optimized couplant in the infrared limit.

The first step of the proof is to note that, by the definition of a∗, the polynomial B(a) has a 
factor of a∗ − a and can be written as

B(a) = (a∗ − a)

a∗
k−1∑
n=0

( a

a∗
)n

t̂n, (6.2)

where t̂n is a partial sum of β-function terms:

t̂n =
n∑

j=0

ĉj (6.3)

with ĉj ≡ cja
∗j . Note that t̂n − t̂n−1 = ĉn and that t̂k = 0 by virtue of the fixed-point condition. 

To show Eq. (6.2), expand the right-hand side, then use t̂k = 0 and define t̂−1 ≡ 0 to get

k∑
n=0

( a

a∗
)n

t̂n −
k−1∑

n=−1

( a

a∗
)n+1

t̂n. (6.4)

Now put n = n′ − 1 in the second sum and recombine the sums to get

k∑
n=0

(
t̂n − t̂n−1

)( a

a∗
)n =

k∑
n=0

ĉn

( a

a∗
)n =

k∑
n=0

cna
n, (6.5)

which is B(a), as claimed.
To prove Eq. (6.1), equate powers of (a/a∗)m, using Eq. (6.2) to write B(a)/(a∗ − a) as a 

polynomial. This leads to

ŝm = ĉm − 1 (
2mĉm + t̂m−1

)
. (6.6)
(k − 1)
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Using t̂m − t̂m−1 = ĉm again and simplifying leads to the fixed-point optimization conditions, 
Eq. (4.15), completing the proof.

Unfortunately, Eq. (6.1) proves difficult to deal with. To make progress we have resorted to 
two approximations, designated PWMR and NLS, that we now explain. Ref. [12] has shown that 
the series expansion of Hi(a) − 1 starts

Hi(a) − 1 = k − 2i + 2

k
ck−i+1a

k−i+1 (1 + O(a)) , (6.7)

which quickly leads to

sm = k − 2m

k
cm + O(ā), (6.8)

a result first obtained (in a quite different manner) by Pennington, Wrigley, and Minaco and 
Roditi (PWMR) [28]. Dropping the O(ā) term leads to the PWMR approximation which is 
easily formulated as a “master equation”:

dR
da

= B(a) − 2

k
a
dB(a)

da
(PWMR). (6.9)

Looking at the above equation, or the original equation (6.1), it is tempting to suppose that, as 
k → ∞, they reduce to

dR
da

= B(a) (NLS). (6.10)

We shall refer to this as the “naïve limiting scheme” (NLS). It corresponds to a well-defined RS 
in which sm = cm, so that the coefficients rm = sm/(m + 1) of the R series decrease by a factor 
1/(m + 1) relative to the coefficients of the B series.

Clearly, this idea is very naïve. In the PWMR case the actual relation is sm = k−2m
k

cm, which 
only reduces to sm ≈ cm for m 
 k; that is, for the early part of the series only. Nevertheless, 
there may be a kernel of truth here, for if the series are “well behaved” the early terms should 
dominate. In any case, adopting this naïve idea leads us in a fruitful direction. Our investigations 
below will lead us to conclude that, at least in the BZ context, the NLS does yield the all-orders 
limit of OPT, although it is a poor guide to how fast results converge to that limit.

Using the NLS equation above to eliminate B(a) in the invariants master equation (4.10) leads 
directly to

BEC(R) = a2

R2

(
dR
da

)2

. (6.11)

Taking the square root leads to

dR
da

= R
a

√
BEC(R), (6.12)

which is immediately integrable.
The BZ limit provides us with a nice “playground” for exploring further, since it effectively 

corresponds to the case BEC(R) = 1 + cR. We continue this analysis in the next section.



480 P.M. Stevenson / Nuclear Physics B 910 (2016) 469–495
7. All-orders NLS in the BZ limit

In the BZ limit the only one of the ρ̃n invariants that contributes is c, which is negative: 
c = −1/a0 + O(1) as a0 → 0. We may set BEC(R) = 1 + cR in this limit. (The terms neglected 
can only contribute to O(a0) corrections, as argued in Sect. 5.) It is convenient to define

u ≡ −ca

4
, v ≡ −cR. (7.1)

In these variables, the NLS condition is B = 1
4

dv
du

and Eq. (6.12) becomes

dv

du
= v

u

√
1 − v, (7.2)

which leads to∫
dv

v
√

1 − v
=

∫
du

u
. (7.3)

Performing the integral and then exponentiating both sides gives

1 − √
1 − v

1 + √
1 − v

= u, (7.4)

where the constant of integration has been fixed by requiring v → 4u as u → 0, corresponding 
to the R series beginning R = a(1 + . . .). Inverting this equation (assuming u ≤ 1) gives

v = 4u

(1 + u)2
. (7.5)

Hence, B = 1
4

dv
du

is given by

B = 1 − u

(1 + u)3
. (7.6)

(The two formulas above are key results. They show an interesting u → 1/u duality that we will 
discuss in Sect. 10.)

The fixed point, where B = 0, is at u∗ = 1. Recalling Eq. (7.1), we see that a∗ is −4/c →
4a0. Nevertheless, because u∗ = 1 in Eq. (7.5) leads to v∗ = 1, we find R∗ = −1/c → a0, in 
agreement with the regular-scheme result.

Evaluating the slope of the β function at the fixed point gives

−b

(
−4

c

)
u2 d

du

(
1 − u

(1 + u)3

)∣∣∣∣
u=1

= −b

2c
→ ba0

2
, (7.7)

which seemingly gives γ̂ ∗ ≡ γ ∗/b = 1
2a0. Here the subtlety discussed in Appendix A comes 

into play. The critical exponent γ ∗ is really the infrared limit of an effective power-law exponent 
given at finite Q by [25]

γ (Q) = dβ

da
+ β(a)

d2R
da2

/dR
da

. (7.8)

Normally the second term drops out in the infrared limit because β(a) vanishes at the fixed point. 
However, in the NLS the denominator dR

da
also vanishes because it is B(a) = β(a)/(−ba2). 

Therefore, in the NLS case the second term contributes −ba2 d2R
2 = −ba2 dB which contributes 
da da
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Table 3
NLS results in the BZ limit.

k 4u∗ = a∗
a0

v∗ = R∗
a0

γ̂ ∗
a0

3 1.41825 0.69455 3.67
11 2.26825 0.90345 7.14
19 2.65953 0.95010 8.79
51 3.25059 0.98737 11.70

101 3.53265 0.99555 13.66
601 3.88410 0.99976 18.71

equally with the first term, thus rescaling the previous result by a factor of 2. Hence, we find 
γ̂ ∗ = a0, in accord with the regular-scheme result.

The preceding discussion corresponds to the NLS result re-summed to infinite order. One 
must now ask: Do the finite-order NLS results converge to their infinite-order form – and, if so, 
how fast? At (k +1)th order the B and v series are truncated, and v∗ is found by evaluating at u∗, 
the zero of the truncated B . Luckily, as with a simple geometric series, the sum of finite number 
of terms can be expressed fairly simply. The truncated B series is

B(k+1) =
k∑

j=0

(j + 1)2(−u)j = 1 − u

(1 + u)3
+ (−1)kk2 uk+1

(1 + u)

(
1 + O(

1

k
)

)
. (7.9)

Only for odd k do we get a zero. (We will discuss even k near the end of this Section.) The zero 
of the truncated B is just before u reaches 1. If we put

u = u∗ ≡ 1 − η(k)

k
(7.10)

with η(k) 
 k, we find (noting that uk+1 → e−η(k)) that

η(k) = 3 lnk − ln(ln k) − ln(3/4) + O

(
ln lnk

lnk

)
. (7.11)

The truncated v series is

v(k+1) = 4u

⎛
⎝ k∑

j=0

(j + 1)(−u)j

⎞
⎠

= 4u

(
1

(1 + u)2
+ (−1)kk

uk+1

(1 + u)

(
1 + O

(
1

k

)))
. (7.12)

When we substitute u = u∗ we find a cancellation of the η(k)/k terms which leaves

v∗ ≈ 1 − 9

4

ln2 k

k2
. (7.13)

This is in good accord with the numerical results in Table 3.
A similar analysis for γ̂ ∗ (including the factor of 2 discussed above) leads to

γ̂ ∗ = a0

(
1 + 3(−1)k+1 ln k + . . .

)
, (7.14)

which indicates that the NLS results for γ̂ ∗ do not converge – the nominal limit of a0 is “correct-
ed” by a lnk term arising from the series-truncation effects. We indeed see this in the numerical 
results in Table 3.
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Returning to Eq. (7.9) we see that the truncated B(u) function closely approximates its limit-
ing form 1−u

(1+u)3 until u gets close to 1. For odd k the (−1)k “truncation effect” term causes B to 
suddenly dive down, producing a zero. For even k this term causes B to suddenly shoot upwards 
and there is no zero. This means that there is no finite infrared limit in these orders; the “spike” in 
R goes all the way up to infinity. However, since B has a minimum very close to zero the running 
of the couplant “almost stops” here and if we were to evaluate v at this value of u we would find 
a result close to the R∗/a0 obtained in the previous odd-k order. A related observation is that, 
with only a slight change of RS, we would find an infrared limit arising from a pinch mechanism 
(see Appendix B).

We conclude that the NLS provides a lot of insight into OPT as k → ∞, but is only a rather 
crude approximation to true OPT. We move on to the PWMR approximation in the next section.

8. All-orders PWMR in the BZ limit

As before we have BEC(R) = 1 + cR in the BZ limit and we use u ≡ −ca
4 and v ≡ −cR. In 

these variables the invariants master equation (4.10) becomes

B = v2

4u2

(1 − v)

dv
du

, (8.1)

and the PWMR master equation (6.9) becomes

1

4

dv

du
= B − 2

k
u

dB

du
. (8.2)

We will proceed to solve these two coupled differential equations, treating k as an ordinary 
parameter: only later will we consider the other k dependence coming from the truncations of 
the resulting series at (k + 1)th order. (We have explicitly checked that at low k this two-step 
approach does produce the same results as a PWMR version of the OPT procedure described in 
Sect. 5.)

We begin by making an ansatz:

B = 1

4

dv

du

1

ξ2
, (8.3)

where ξ depends on u. (We will actually want to view it as a function of a new variable X, 
introduced below, that itself is a function of u.) Substituting in Eq. (8.1) leads, in the same way 
as in the NLS case, to∫

dv

v
√

1 − v
=

∫
du

u
ξ, (8.4)

which leads to

v = 4X

(1 + X)2
, (8.5)

with the new variable X defined by

X ≡ exp
∫

du

u
ξ, (8.6)

or more specifically, enforcing X → u as u → 0,

X ≡ u exp

u∫
dū

ū
(ξ − 1) . (8.7)
0
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Note that
dX

du
= X

u
ξ, (8.8)

so that the inverse relationship is

u = X exp

X∫
0

dX̄

X̄

(
1

ξ(X̄)
− 1

)
. (8.9)

We will now want to consider ξ as a function of the new variable X.
We can now find dv

du
as dv

dX
dX
du

and substitute back in the ansatz (8.3) to get

B = (1 − X)

(1 + X)3

X

uξ
. (8.10)

From this we can calculate dB
du

, which, after some algebra, reduces to

dB

du
= B

u

(
(1 − 4X + X2)

(1 − X2)
ξ − 1 − X

dξ

dX

)
. (8.11)

Substituting this, and 1
4

dv
du

= ξ2B from the ansatz (8.3), into Eq. (8.2), leads, after cancelling a 
factor of B , to an equation for ξ(X):

1 − ξ2 = 2

k

(
(1 − 4X + X2)

(1 − X2)
ξ − 1 − X

dξ

dX

)
. (8.12)

Remarkably, this nonlinear, first-order differential equation is soluble. The trick is to write ξ in 
the form

ξ = 1 − 2

k

X

F
dF
dX

. (8.13)

This substitution, because of a cancellation of (F ′/F)2 terms, leads to a linear second-order 
equation for F . A further substitution,

F = (1 − X)2F, (8.14)

leads to a Gauss hypergeometric equation, revealing that

F = 2F1(−n,
3

2
,−n − 1

2
;X2), (8.15)

where n ≡ k/2 − 1. We will focus on the case of even k. (Curiously, the roles of odd and even k
are reversed relative to the NLS case.) For even k the F function is a polynomial of degree n in 
X2:

F = n!
(2n + 1)!!

n∑
i=0

(2i + 1)!!
i!

(2(n − i) + 1)!!
(n − i)! (X2)i . (8.16)

The first few F ’s are shown in Table 4. Note the ‘reflexive’ symmetry i → n − i, meaning that 
the coefficients are symmetric about the middle. In the n → ∞ limit F approaches (1 −X2)−3/2, 
except near X = 1, where its behaviour involves a modified Bessel function I1 (see Table 4).

To find u in terms of X it is helpful to use another representation of ξ , namely

1 = 1 − 1 X dP
, (8.17)
ξ n + 2 P dX
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Table 4
The first few F polynomials and their form for large k = 2n + 2.

k n F

2 0 1
4 1 1 + X2

6 2 1 + 6
5 X2 + X4

8 3 1 + 9
7 X2 + 9

7 X4 + X6

10 4 1 + 4
3 X2 + 10

7 X4 + 4
3 X6 + X8

∞ ∞ (1 − X2)−3/2 (X = 1)√
n3

√
π

2
e−xI1(x)

x (X = 1 − x
n )

Table 5
The first few P polynomials and their form for large k = 2n + 2.

k n P

2 0 1
4 1 1 − X + X2

6 2 1 − 4
3 X + 26

15 X2 − 4
3 X3 + X4

8 3 1 − 3
2 X + 15

7 X2 − 15
7 X3 + 15

7 X4 − 3
2 X5 + X6

10 4 1 − 8
5 X + 12

5 X2 − 8
3 X3 + 62

21 X4 − 8
3 X5 + 12

5 X6 − 8
5 X7 + X8

∞ ∞ (1 − X)−1/2(1 + X)−5/2 (X = 1)√
n

√
π

4 e−xI0(x) (X = 1 − x
n )

so that Eq. (8.9) will immediately lead to

u = XP− 1
(n+2) . (8.18)

Substituting the above form for 1
ξ

into the ξ equation (8.12) leads again to a linear equation. One 
can verify that this equation is satisfied by setting

P = (1 + X)4P (8.19)

with

P = 1

(n + 1)

1

(1 + X)

(
[n + 1 − (n − 1)X]F − 2(1 − X)X2 dF

d(X2)

)
. (8.20)

The numerator turns out to have a (1 + X) factor, so that P is a polynomial of degree 2n in X. 
The first few P ’s are shown in Table 5. These polynomials also have a ‘reflexive’ property.

Yet another expression for ξ is

ξ = (1 + X)

(1 − X)

P

F
, (8.21)

which can be proved by substituting for P and simplifying to reach Eq. (8.13). Using this form 
of ξ in Eq. (8.10) gives

B = (1 − X)2F P−
(

n+1
n+2

)
. (8.22)
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Table 6
PWMR results in the BZ limit.

k 4u∗ = a∗
a0

v∗ = R∗
a0

γ̂ ∗
a0

2 1 1 1
4 1.56878 0.99743 1.0526

10 2.41100 0.99893 1.1064
18 2.88641 0.99952 1.1371
50 3.46514 0.99990 1.1869

100 3.69257 0.99997 1.2183

Fig. 2. Plot of v divided by vNLS ≡ 4u

(1+u)2 as a function of u for PWMR at k = 100. The curve is shown dashed beyond 
u = u∗ = 0.92314.

As noted in the tables, both F and P polynomials have simple limits as k → ∞, provided that 
X = 1. It is easy to see that X → u and that all formulas revert to their NLS forms in this limit. 
Thus, it is clear that v∗ must ultimately tend to 1, so that R∗ = a0 in accord with the BZ limit.

However, to go further analytically and determine how fast the finite-order PWMR results 
approach their infinite-order form is beset with difficulties; the subtleties when X ∼ 1 are crucial. 
The theory of hypergeometric functions when two parameters go to infinity [29] is formidably 
complicated. Moreover, in any finite order we need to re-express both B and v as series, not in 
X but in u; then find u∗ from the zero of the truncated B series; and then evaluate the truncated 
v series at u = u∗. Nevertheless, we can explore these issues numerically with Mathematica. We 
have been able to explore up to k ≈ 100 and the numerical results are presented in Table 6. It 
appears that v∗ approaches 1 significantly faster than in the NLS case:

v∗ ∼ 1 − A
ln k/k0

k2
, (8.23)

with A ≈ 0.08 and k0 ≈ 2.5, roughly.
The ratio of v to its NLS form vNLS ≡ 4u

(1+u)2 stays very close to 1 in the entire relevant range 
0 < u < u∗, although it strongly deviates thereafter. See Fig. 2.
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Fig. 3. Coefficients vj in the series expansion of v(u) = 4u 
∑k

j=0 vj (−u)j , for PWMR with k = 100. The inset shows 
the higher-order coefficients on a finer scale.

The v series is also much better behaved than in NLS, where the magnitude of the coeffi-
cients increased in arithmetic progression: vNLS = 4u 

∑
j (j + 1)(−u)j . In the PWMR case, the 

coefficients vj in

v = 4u

k∑
j=0

vj (−u)j (8.24)

are plotted in Fig. 3 for k = 100. The initial (j + 1) growth is suppressed by a more-than-
exponential decay (a crude fit is (j + 1) exp(−0.019j3/2)). The middle coefficient j = k

2 is 
exactly zero because of the k − 2j factor in the PWMR relation between sj and cj coefficients, 
Eq. (6.8). The coefficients remain very small thereafter. The somewhat bad behaviour of the last 
few coefficients is almost entirely suppressed by the uj factor, even at u = u∗, the largest relevant 
u, and it actually plays a beneficial role. This can be seen in Fig. 4 which plots the partial sums 
of nmax terms of the v series, Eq. (8.24), at u = u∗ in the case k = 100. The series has pretty well 
converged after 50 terms, but including 25 more terms significantly reduces the error. The very 
last term makes an unexpectedly large correction, but this further reduces the error and means 
that the last term provides quite a realistic error estimate.

The series for γ̂ ∗, which is just dβ/da|∗, is much worse behaved. Also the sequence of results 
for γ̂ ∗ in Table 6 appear to diverge, though at a much slower rate than in NLS. It is reasonable 
to hope that the extra subtleties in full OPT would lead to γ̂ ∗ converging to a0, albeit very, very 
slowly, in view of the low-order OPT results in Tables 1 and 2.

We have not been able to extend the analysis to the full fixed-point master equation, (6.1). 
One can get to an equation similar to Eq. (8.12), but with an extra term involving u/(u −u∗) that 
seems intractable. Moreover, the parameter u∗ can only be fixed after the B(u) function is found, 
and expressed as a truncated series, so the interaction between analytic subtleties and truncation 
effects is even more complicated and delicate.

9. BZ expansion in all-orders OPT

Setting aside the difficult issue of how fast results converge as k → ∞, the results of the last 
section confirm that the simple NLS formulas from Sect. 7,



P.M. Stevenson / Nuclear Physics B 910 (2016) 469–495 487
Fig. 4. The partial sums 4u 
∑nmax

j=0 vj (−u∗)j versus nmax for the v∗ series in the case k = 100. The plots use three 
different scales, so as to show that (a) the series has crudely converged after 50 terms but (b) a slight adjustment from 
50 to 75 terms reduces the error quite significantly, and (c) the last term makes an unexpectedly large change, given the 
trend of the preceding terms, but this further improves the result and means that the last term is, within a factor of 2, 
a good measure of the actual error.
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v = 4u

(1 + u)2
, (9.1)

B = 1 − u

(1 + u)3
, (9.2)

represent the all-orders limit of PWMR – and presumably of true OPT too – in the BZ limit. As 
previously noted, these formulas give the same BZ limit for R∗ and γ̂ ∗ as ‘regular’ schemes. We 
now show that higher terms in the BZ expansion are reproduced correctly by all-orders NLS.

Before discussing the general proof it is instructive to look at next-to-leading order in the BZ 
expansion. At this level we now need two of the invariants, c and ρ̃2 so we take

BEC = 1 + cR+ ρ̃2R2. (9.3)

(In fact, only the ρ2,−1 piece of ρ̃2 would contribute when we re-expand the results in powers 
of a0. However, it will not be necessary to carry out that step explicitly, since once we show 
equivalence to the EC scheme, a ‘regular’ scheme, we are bound to get the same BZ expansion to 
the corresponding order in a0.) Recall that the NLS condition and the invariants master equation 
together lead to Eq. (6.12),

dR
da

= R
a

√
BEC(R), (9.4)

which now gives∫
dR

R
√

1 + cR+ ρ̃2R2
=

∫
da

a
. (9.5)

Integration yields

ln

(
4R

2 + cR+ 2
√

1 + cR+ ρ̃2R2

)
= lna, (9.6)

where the constant of integration has been fixed so that R = a(1 + . . .) as a → 0. One can now 
exponentiate and solve for R, and then B(a) can be found from dR/da. As before we define 
u = −ca/4 and v = −cR. The zero of B is at

u∗ = 1√
1 − 4 ρ̃2

c2

, (9.7)

and in terms of these variables we find

v = 4u(
1 + 2u + u2

u∗2

) , (9.8)

B = 1 − u2

u∗2(
1 + 2u + u2

u∗2

)2
. (9.9)

It is now straightforward to check that v evaluated at u = u∗ gives

R∗ = −v∗

c
= − c

2ρ̃2

(
1 −

√
1 − 4ρ̃2

c2

)
, (9.10)
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which is the root of BEC(R) = 0. Thus, the R∗ of all-orders NLS agrees with the R∗ of the EC 
scheme. Also, γ̂ ∗, defined as the infrared limit of Eq. (7.8), which leads to

γ̂ ∗ = −2a2 dB

da

∣∣∣∣∗ , (9.11)

with the factor-of-2 subtlety as in Sect. 7, can be shown to reduce to

γ̂ ∗ = −R2 dBEC

dR

∣∣∣∣∗ , (9.12)

which is the γ̂ ∗ of the EC scheme.
The general proof is really just a special case of the general formal arguments that R∗ and γ̂ ∗

(properly defined) are invariant under RS transformations [25]. From Eq. (9.4) we can see imme-
diately that B(a), equal to dR/da in NLS, must vanish when BEC vanishes; thus the R evaluated 
at a = a∗ in NLS must agree with the R∗ defined as the zero of the EC β function. Furthermore, 
the equivalence of the two equations for γ̂ ∗ above can be proved just from the NLS condition 
B = dR/da and Eq. (9.4), without assuming any specific form for BEC.

10. a → a∗ 2/a duality

It is easily verified that under u → u∗2/u the v of Eq. (9.8) remains invariant, while the B of 
Eq. (9.9) transforms to −(u2/u∗2)B . These properties are even easier to spot in Eqs. (9.1), (9.2), 
in the BZ-limit case, where u∗ = 1.

Let us try to trace the origin of these properties. Consider a transformation

a −→ λ2

a
, (10.1)

with some positive constant λ. We postulate that R and all the ρ̃i invariants remain invariant and 
that the β-function equation, μ da

dμ
= β(a) maintains its form. The latter condition means that

da

dτ
= −a2B(a), (10.2)

where τ = b ln(μ/�̃), must transform to

d

dτ

(
λ2

a

)
= −

(
λ2

a

)2

BT(a), (10.3)

where BT(a) ≡ B(λ2

a
). This requires

BT(a) = −a2

λ2
B(a). (10.4)

If B(a) vanishes at a = a∗ then BT(a) must too. Thus λ2/a∗ must be a zero of B(a). If we 
assume that there is only one zero, then we must take λ = a∗.

The transformation of dR
da

would be

dR
da

−→ dR
d

(
λ2

) = −a2

λ2

dR
da

. (10.5)
a
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Note that this is the same transformation rule as for B above. Thus, the NLS scheme-fixing 
condition, dR

da
= B(a), transforms into itself. It is straightforward to check that the same is true 

of the invariants master equation Eq. (4.10). It thus seems that an a → a∗2/a duality is not special 
to the BZ limit, but is a general property of all-orders NLS and hence of all-orders OPT.

11. Conclusions

The BZ expansion and RS invariance appear compatible. While BZ results are most simply 
obtained in a restrictive class of ‘regular’ schemes, the same results emerge from ‘irregular’ 
schemes, though they then require consideration of all orders of perturbation theory. Results in 
OPT for the fixed-point value R∗ are never far from the BZ result and converge quite nicely to 
it. The error at (k + 1)th order shrinks as ln2 k/k2 in NLS, as lnk/k2 in PWMR, and probably 
slightly faster in true OPT. Our explorations provide some insight into how the subtle features of 
OPT conspire to improve finite-order results.

It might be claimed that the EC scheme, or any ‘regular’ scheme is clearly better than OPT 
in the BZ limit, since their results converge immediately to the right result. This is true, but one 
should keep in mind that the BZ limit, where nf is infinitesimally less than 16 1

2 , is not a remotely 
physical theory, even in principle. It is an open question whether or not OPT gives better results 
than the EC scheme for nf = 16, the closest physical case.

The situation with the critical exponent γ ∗ is much less satisfactory. While the all-orders 
NLS formulas produce the correct result, the finite-order NLS and PWMR results do not actually 
converge. In true OPT the results might converge but, if so, the convergence is extremely slow. 
The problem may stem from trying to obtain γ ∗ as a by-product of the optimization of R∗. If 
one is principally interested in γ ∗ itself, then one should construct its own perturbation series and 
optimize that. However, our reason here for studying γ ∗ was not for its own sake, but as a shortcut 
to obtaining R(Q) at non-zero Q, relying on Eq. (3.10), which holds for the first three orders of 
the BZ expansion. That was very convenient because we only needed the optimization conditions 
at the fixed point, and these are analytically much simpler than for general Q. However, the 
natural procedure is to optimize R(Q) itself. There is no reason to suppose that the convergence 
of OPT for R(Q) at non-zero Q is significantly worse than for R∗; indeed, as Q gets larger 
we expect convergence to become much better. Thus, our difficulties with γ ∗ are probably a 
technical, mathematical issue, rather than a problem of physical concern.

The investigations in this paper have gone off in a number of different directions and reveal 
new territories worthy of further exploration. A key result is the “fixed-point OPT master equa-
tion” (6.1) which opens a route to an analytical treatment of arbitrarily high orders of OPT, given 
knowledge of the ρ̃i invariants — although here we have only been able to make progress in 
two simplifying approximations, NLS and PWMR. It appears that the simple NLS approxima-
tion does yield the all-orders limit of OPT, although it is a poor guide to the rate of approach to 
that limit. The NLS formulas, (7.5), (7.6) at leading order in the BZ expansion, and (9.8), (9.9) 
at next-to-leading order, are remarkably simple. They illustrate a general a → a∗2/a duality 
property of all-orders OPT that is intriguing and deserves further study.

We close by mentioning some important developments [30,31] which combine RS optimiza-
tion with the optimization of a variational mass parameter, as in the φ4 anharmonic oscillator 
problem [18–20]. Perhaps the methods discussed here can be extended to investigate these ap-
proaches at high orders.
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Appendix A. The critical exponent γ ∗

The critical exponent γ ∗ governing the approach of R to its infrared limit R∗:

(R∗ −R) ∝ Qγ ∗
(A.1)

is normally thought to be the slope of the β function at the fixed point [23]. That is not quite true 
[24]. The puzzle is resolved in Ref. [25], whose main points we briefly summarize.

Since R is a physical quantity and Q is a physical parameter, the successive logarithmic 
derivatives of R:

R[n+1] ≡ Q
dR[n]
dQ

(A.2)

for n = 1, 2, 3, . . ., with R[1] ≡ R, must be RS-invariant quantities (at any Q). In particular, the 
combination

γ (Q) ≡ R[3]
R[2]

= 1 + Q
d2R
dQ2

/dR
dQ

(A.3)

is RS invariant. It is the exponent of the local-power-law form of R(Q) around a specific Q. 
Standard RG arguments, relating Q and μ dependence, lead to

γ (Q) = dβ

da
+ β(a)

d2R
da2

/dR
da

, (A.4)

and one can verify explicitly that this quantity is invariant under RS transformations [25].
The critical exponent γ ∗ is the infrared-fixed-point limit of γ (Q). Since β(a) vanishes in this 

limit one might think that the second term in Eq. (A.4) always drops out. While this is often the 
case, it is not always true, and the NLS, where dR/da also vanishes at the fixed point, is a case 
where the second term contributes (see Sect. 7). Quite generally, it is important to recognize that 
dβ/da|∗ is not RS invariant; the second term in Eq. (A.4), even though it may vanish in a large 
class of schemes, is crucial to the RS invariance of γ ∗.

Another issue arises with finite-order approximations, because then the equivalence between 
Eqs. (A.3) and (A.4) is not necessarily preserved. In OPT the two are generally not the same at 
finite Q, but, remarkably, they do coincide at Q = 0 [14]. We have not investigated whether this 
is also true for NLS and PWMR, which would entail explicitly considering R at finite Q and 
then investigating its Q → 0 behaviour.

Appendix B. Pinch mechanism infrared limit

As discussed in Ref. [14], a finite infrared limit in OPT can occur through a pinch mechanism 
whereby the evolving B(a) function of the optimized scheme develops a minimum that “pinches” 
the horizontal axis at a “pinch point” ap, which ultimately becomes a double zero of B(a). The 
infrared limit of the couplant, however, is at an “unfixed point” a� > ap that is not a zero of the 
β function.2 The approach to the infrared limit is not a power law, but rather [14]

R� −R= 1

b2
ir

1

|lnQ/�̃R|2 as Q → 0, (B.1)

2 Note the slightly different notation (� instead of ∗) for infrared-limiting quantities according to whether they corre-
spond to an unfixed or a fixed point.
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which corresponds to γ � = 0 since

Q
dR
dQ

∼ −2bir(R� −R)3/2 (B.2)

for R close to R�. In the k = 3 case, the coefficient bir was found to be

b
(k=3)
ir =

√
2ap(3 + cap)

(ap

a�

)2 b

π
, (B.3)

and in the e+e− case the pinch mechanism was operative for 6.7 < nf < 15.2.
In the BZ limit, nf → 16 1

2 , the pinch mechanism does not seem to occur in true OPT, at least 
as far as we have been able to explore it in Sect. 5. However, the mechanism is probably close to 
being relevant because in the BZ limit the critical exponent γ ∗ ∼ ba0 tends to zero. A small or 
zero γ ∗ gives rise to a sharp infrared “spike” in R plotted versus Q, as in Fig. 1.

The NLS and PWMR approximations to OPT seem to have fixed points only in every other 
order (for odd k in NLS, and even k in PWMR). In these orders, as discussed in Sect. 7, the B(u)

function closely approximates its limiting form (1 − u)/(1 + u)3 until u gets close to 1, when it 
suddenly dives down, producing a zero. In the alternating orders B(u) suddenly shoots upwards 
and there is no zero. However, B(u) then has a minimum very close to the horizontal axis, so 
only a slight modification of the scheme would produce a “pinch point.”

We first show that, in circumstances where the pinch mechanism does govern the infrared 
limit of OPT, the master equation that replaces Eq. (6.1) is

dR
da

=
(

1 − a/a�

1 − a/ap

)[
B(a) − a

(k − 1)

(
2
dB(a)

da
+ B(a)

(ap − a)

)]
. (B.4)

(Superscripts “(k+1)” on R and B(a) are omitted for brevity.) Except for the pre-factor, and the 
fact that ap (not a�) replaces a∗ in the last term, this equation is identical to (6.1).

The derivation is as follows. As Q → 0 the B(a) function nearly vanishes at the pinch point 
ap and close to ap can be approximated by the form [14]

B(a) ≈ η
(
(a − ap)

2 + δ2
)

, (B.5)

where δ vanishes ∝ 1/ | lnQ | as Q → 0 and η is some positive constant. The integrals Ij (a) of 
Eq. (4.4) are dominated by a huge peak in their integrands around ap:

Ij (a) ≈
∫

dx
xj−2(

η
(
(a − ap)2 + δ2

))2
≈ a

j−2
p

η2

π

2δ3
. (B.6)

One can thus obtain the δ → 0 behaviour of the Bj(a) and hence the Hj functions [14]. (Note 
that the B(a)/aj−1 factor in Eq. (4.3) will involve the limiting value of a, which is a� and not 
ap.) While the Bj ’s and Hj ’s diverge, the 1/δ3 factors cancel out, as does η, in Eq. (4.13), leaving 
finite limiting values for the optimized rm coefficients. Instead of Eq. (4.15) of the fixed-point 
case, we find

sma�m = 1

(k − 1)

⎡
⎣(

a�

ap

)m m∑
j=0

(k − m − j − 1)cj a
j
p −

(
a�

ap

)m−1 m−1∑
j=0

(k − m − j)cj a
j
p

⎤
⎦ ,

(B.7)
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where sm ≡ (m + 1)rm. Using a dummy variable a we can then form the function

S(a) = dR
da

=
k∑

m=0

smam. (B.8)

Reorganizing the resulting double summation over m and j so that the latter becomes the outer 
summation, the inner summations become finite geometric series or derivatives thereof. The outer 
j summation then produces terms that are B(a) or dB/da or B(ap) or dB/da|a=ap

. The last two 
vanish in the infrared limit since ap is then a double zero of the B(a) function. After some further 
algebraic tidying up the result reduces to Eq. (B.4) above.

Note that the naïve large-k limit of Eq. (B.4) is not the NLS condition (6.10) but

dR
da

=
(

1 − a/a�

1 − a/ap

)
B(a) (NLS′). (B.9)

If we proceed in parallel with the analysis in Sect. 7 we find, instead of Eq. (7.3),∫
dv

v
√

1 − v
=

∫
du

u

√
1 − u/u�

1 − u/up
. (B.10)

Note that the above equations correspond to the ansatz form used in the PWMR analysis of 
Sect. 8 with ξ replaced by

ξ →
√

1 − u/u�

1 − u/up
. (B.11)

Doing the integrations, exponentiating both sides, and solving for v leads to

v = 4U

(1 + U)2
, (B.12)

where

U =
(

4u�up

u� − up

)⎛
⎜⎝

√
1−u/u�

1−u/up
− 1√

1−u/u�

1−u/up
+ 1

⎞
⎟⎠

(√
u� − u + √

up − u√
u� + √

up

)2
√

up
u�

. (B.13)

Note that when u > up (which is relevant since u ranges from 0 to u�, which must exceed up) 
this formula for U develops an imaginary part. However, recall that both v and B ,

B = (1 − U)

(1 + U)3

U

u

√
1 − u/up

1 − u/u�
(B.14)

(Cf. Eq. (8.10)), have to be expanded as series in u and then truncated after k terms, making 
them inevitably real.

These formulas are hard to deal with, even at low orders, especially since up and u� have to 
be determined by the requirements that the truncated B and its derivative vanish at the pinch 
point up. For k = 2, 4 there does not seem to be any viable solution, but for sufficiently large k it 
appears there is. Anticipating that both up and u� will tend to 1 as k → ∞, we define

δ ≡ 1 − 1
�

(B.15)

up u
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Table 7
NLS′ results, to lowest-order in δ, in the BZ limit.

k up u� δ v� = R�

a0

100 0.95018 0.97735 0.02925 0.71485
600 0.98819 0.99292 0.00482 0.95982

10,000 0.99895 0.99924 0.00029 0.99856

and proceed to expand to lowest non-trivial order in δ. This gives

U ≈ u

(
1 − δ

2
ln(1 − u)

)
, (B.16)

v ≈ 4u

(1 + u)2
− 2δu

(1 − u)

(1 + u)3
ln(1 − u), (B.17)

and

B ≈ 1 − u

(1 + u)3
− δ

2

(
u

(1 + u)3
+ (1 − 4u + u2)

(1 + u)4
ln(1 − u)

)
. (B.18)

Remarkably, one can find analytic expressions for the truncated-series versions of v and B and 
thereby explore numerical results up to very high k values. These results (see Table 7) show that 
indeed there is a valid solution (with u� > up) with δ tending to zero as δ ∼ (2/ ln 2)(1/k) and 
R�/a0 tending to 1.
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