Available online at www.sciencedirect.com
science (d)directe
LINEAR ALGEBRA AND ITS APPLICATIONS

The inverse eigenvalue problem for symmetric anti-bidiagonal matrices

Olga Holtz

Department of Mathematics, University of California, Berkeley, CA 94720, USA
Received 4 May 2005; accepted 13 June 2005
Available online 3 August 2005
Submitted by M. Neumann

Abstract

The inverse eigenvalue problem for real symmetric matrices of the form
$\left[\begin{array}{ccccccc}0 & 0 & 0 & \cdots & 0 & 0 & * \\ 0 & 0 & 0 & \cdots & 0 & * & * \\ 0 & 0 & 0 & \cdots & & * & * \\ & & & & 0 \\ \vdots & \vdots & \vdots & & . & \vdots & \vdots \\ 0 & 0 & * & \cdots & 0 & 0 & 0 \\ 0 & * & * & \cdots & 0 & 0 & 0 \\ * & * & 0 & \cdots & 0 & 0 & 0\end{array}\right]$
is solved. The solution is shown to be unique. The problem is also shown to be equivalent to the inverse eigenvalue problem for a certain subclass of Jacobi matrices.
© 2005 Elsevier Inc. All rights reserved.
AMS classification: 15A18; 15A29; 15A48; 15A57
Keywords: Nonnegative inverse eigenvalue problem; Tridiagonal matrices; Jacobi matrices; Anti-bidiagonal matrices; Sign-regular matrices; Orthogonal polynomials; Root interlacing

[^0]0024-3795/\$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2005.06.006

1. Introduction

The goal of this paper is to characterize completely the spectra of real symmetric anti-bidiagonal matrices, i.e., matrices of the form

$$
A=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & a_{n} \tag{1}\\
0 & 0 & \cdots & a_{n-2} & a_{n-1} \\
\vdots & \vdots & . & \vdots & \vdots \\
0 & a_{n-2} & \cdots & 0 & 0 \\
a_{n} & a_{n-1} & \cdots & 0 & 0
\end{array}\right], \quad a_{1}, \ldots, a_{n} \in \mathbb{R} .
$$

This work is motivated by the author's ongoing work on the nonnegative inverse eigenvalue problem and is inspired by well-known results on Jacobi matrices due to Hochstadt [5,6], Hald [4], Gray and Wilson [3], as well as by the classical connection between the Jacobi matrices and orthogonal polynomials (see, e.g., [1, p. 267]).

The blanket assumption for the rest of the paper is that all a_{j} are positive. This restriction is clearly unimportant, since the sign of any $a_{j}, j>1$, can be changed using a unitary similarity of the form

$$
\operatorname{diag}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right), \quad \varepsilon_{j}= \pm 1
$$

and the problem for $a_{1}<0$ can be solved by switching from A to $-A$. The assumption $a_{j}>0, j=1, \ldots, n$, is however just right to guarantee uniqueness of a matrix that realizes a given n-tuple as its spectrum.

2. Definitions and notation

Notation used in the paper is rather standard. The spectrum of a matrix A is denoted by $\sigma(A)$. A submatrix of A with rows indexed by an increasing sequence α and columns indexed by another sequence β is denoted by $A(\alpha, \beta)$. For simplicity, a principal submatrix of A with rows and columns indexed by α is denoted by $A(\alpha)$. (A typical choice for such an α will be $i: j$, the sequence of consecutive integers i through j.) The size of a sequence α is denoted by $\# \alpha$. If $\# \alpha=\# \beta$, then $\operatorname{det} A(\alpha, \beta)$ is denoted by $A[\alpha, \beta] ; \operatorname{det} A(\alpha)$ is denoted by $A[\alpha]$. The elementary symmetric functions of an n-tuple $\Lambda=:\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ are denoted as $\sigma_{j}(\Lambda)$. Thus

$$
\sigma_{1}(\Lambda):=\sum_{j=1}^{n} \lambda_{j}, \quad \sigma_{2}(\Lambda):=\sum_{i<j} \lambda_{i} \lambda_{j}, \text { etc. }
$$

The term anti-bidiagonal matrix was already introduced. Other requisite definitions are listed next.

A Jacobi matrix is a tridiagonal matrix with positive codiagonal entries.
A sign-regular matrix of class $d \leqslant n$ with signature sequence $\varepsilon_{1}, \ldots, \varepsilon_{d}$, where $\varepsilon_{j}= \pm 1$ for all j, is a matrix satisfying

$$
\varepsilon_{j} A[\alpha] \geqslant 0 \quad \text { whenever } \# \alpha=j, \quad j=1, \ldots, d
$$

If in addition all minors of order at most d are nonzero, the matrix is called strictly sign-regular. Finally, if a certain power of a sign-regular matrix of class d is strictly sign-regular, then the matrix is called sign-regular of class d^{+}. A particular case of strict sign regularity is total positivity when all minors of a matrix are positive.

A sequence $\mu_{1}<\cdots<\mu_{k}$ is said to interlace a sequence $\lambda_{1}<\cdots<\lambda_{k+1}$ if

$$
\lambda_{1}<\mu_{1}<\lambda_{2}<\mu_{2}<\cdots<\mu_{k}<\lambda_{k+1}
$$

3. Results

The following theorem is the main result of this paper.
Theorem 1. A real n-tuple Λ can be realized as the spectrum of a symmetric antibidiagonal matrix (1) with all a_{j} positive if and only if $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ where

$$
\begin{equation*}
\lambda_{1}>-\lambda_{2}>\lambda_{3}>\cdots>(-1)^{n-1} \lambda_{n}>0 \tag{2}
\end{equation*}
$$

The realizing matrix is necessarily unique.
Proof. Necessity. Let J denote the anti-diagonal unit matrix

$$
J:=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 1 & 0 \\
\vdots & \vdots & . & \vdots & \vdots \\
0 & 1 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0
\end{array}\right] .
$$

Note that J is sign-regular of class n with the signature sequence

$$
\begin{equation*}
1,-1,-1,1,1, \ldots,(-1)^{\lceil n-1 / 2\rceil} \tag{3}
\end{equation*}
$$

Next, note that $B:=J A$ is a nonnegative bidiagonal matrix, hence all its minors are nonnegative. Now, by the Cauchy-Binet formula

$$
A[\alpha]=(J B)[\alpha]=\sum_{\# \beta=\# \alpha} J[\alpha, \beta] B[\beta, \alpha] .
$$

We conclude that the matrix A is sign-regular of class n with the same signature sequence (3). Since A^{2} is a positive definite Jacobi matrix, a high enough power of A^{2} is totally positive, hence A is sign-regular of type n^{+}.

By a theorem of Gantmacher and Krein [2, p. 301], the eigenvalues of A therefore can be arranged to form a sequence with alternating signs and strictly decreasing absolute values whose first element is positive, i.e., the spectrum $\sigma(A)$ satisfies (2).

Sufficiency. First reduce the inverse problem for anti-bidiagonal matrices to the inverse problem for certain Jacobi matrices. Consider a matrix of the form (1). To stress its dependence on n parameters a_{1} through a_{n}, let us denote it by A_{n}. The
argument will involve the collection of all matrices $A_{n}, n \in \mathbb{Z}$, determined by a single sequence a_{1}, a_{2}, \ldots Denote the characteristic polynomial of A_{n} by p_{n} :

$$
p_{n}(\lambda):=\operatorname{det}\left(\lambda I-A_{n}\right) .
$$

Expanding it by its first row yields

$$
\begin{align*}
& p_{n}(\lambda)=\lambda p_{n-1}(\lambda)-a_{n}^{2} p_{n-2}(\lambda), \quad n \geqslant 2, \tag{4}\\
& p_{0}(\lambda)=1, \quad p_{1}(\lambda)=\lambda-a_{1}, \tag{5}
\end{align*}
$$

since the matrix A_{n-1} is similar to its reflection about the anti-diagonal.
This three-term recurrence relation (4) with initial conditions (5) is also satisfied (see, e.g., [1, p. 267] or check directly) by the characteristic polynomials of the Jacobi matrices

$$
B_{n}:=\left[\begin{array}{cccccc}
a_{1} & a_{2} & 0 & \cdots & 0 & 0 \tag{6}\\
a_{2} & 0 & a_{3} & \cdots & 0 & 0 \\
0 & a_{3} & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & a_{n} \\
0 & 0 & 0 & \cdots & a_{n} & 0
\end{array}\right]
$$

if each of them is expanded by its last row. Thus the inverse eigenvalue problem for anti-bidiagonal matrices A_{n} is equivalent to the inverse eigenvalue problem for Jacobi matrices B_{n}.

Now comes the crucial step in the proof. Consider expanding the characteristic polynomials of matrices B_{n} in the opposite order, i.e., starting from the first row. Precisely, let us denote by q_{n-j+1} the characteristic polynomial of the principal submatrix $B_{n}(j: n)$, with $q_{n}=p_{n}$. The corresponding recurrence relation is

$$
\begin{align*}
& q_{n}(\lambda)=\left(\lambda-a_{1}\right) q_{n-1}(\lambda)-a_{2}^{2} q_{n-2}(\lambda), \tag{7}\\
& q_{n-j}(\lambda)=\lambda q_{n-j-1}(\lambda)-a_{j+2}^{2} q_{n-j-2}(\lambda), \quad j=1, \ldots, n-2, \tag{8}\\
& q_{0}(\lambda)=1, \quad q_{1}(\lambda)=\lambda . \tag{9}
\end{align*}
$$

Let Λ be an n-tuple satisfying (2). Define the polynomial q_{n} as

$$
q_{n}(\lambda):=\prod_{j=1}^{n}\left(\lambda-\lambda_{j}\right)
$$

and show that one can define polynomials q_{n-j} for all $j=1, \ldots, n$ so as to meet the requirements (7)-(9). To this end, first define

$$
\begin{equation*}
a_{1}:=\sigma_{1}(\Lambda), \quad q_{n-1}(\lambda):=\frac{(-1)^{n} q_{n}(-\lambda)-q_{n}(\lambda)}{2 a_{1}} \tag{10}
\end{equation*}
$$

Note that $a_{1}>0$ due to the properties of Λ and that the (monic) polynomial q_{n-1} is even or odd depending on whether $n-1$ is even or odd. Also note that the coefficient of λ^{n-3} in q_{n-1} is equal to

$$
\frac{\sigma_{3}(\Lambda)}{a_{1}}=\frac{\sigma_{3}(\Lambda)}{\sigma_{1}(\Lambda)}<0 .
$$

On the other hand, the coefficient of λ^{n-2} in $q_{n}(\lambda)$ is $\sigma_{2}(\Lambda)<0$. Therefore, it remains to show that the quantity $\frac{\sigma_{3}(\Lambda)}{\sigma_{1}(\Lambda)}-\sigma_{2}(\Lambda)$ is positive, so a_{2} can be defined as its (positive) square root:

$$
a_{2}:=\sqrt{\frac{\sigma_{3}(\Lambda)}{\sigma_{1}(\Lambda)}-\sigma_{2}(\Lambda)} .
$$

Indeed, let us prove that

$$
\begin{equation*}
\sigma_{3}(\Lambda)>\sigma_{1}(\Lambda) \sigma_{2}(\Lambda) \tag{11}
\end{equation*}
$$

by induction. The base case is $n=3$, where $\lambda_{1}>-\lambda_{2}>\lambda_{3}>0$. Then (11) reduces to the inequality

$$
\begin{equation*}
\left(\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}}\right)\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)>1 \tag{12}
\end{equation*}
$$

Differentiating the left-hand side of (12), one can check that it is an increasing function of λ_{1} for $\lambda_{1} \geqslant-\lambda_{2}$. Since the left-hand side is exactly 1 when $\lambda_{1}=-\lambda_{2}$, this proves (12) and therefore proves (11). If $n>3$, also notice that inequality (11) turns into equality for $\lambda_{1}=-\lambda_{2}$, so it remains to argue that the difference $\sigma_{3}(\Lambda)-$ $\sigma_{1}(\Lambda) \sigma_{2}(\Lambda)$ is an increasing function of λ_{1} for $\lambda_{1} \geqslant-\lambda_{2}$. But this is indeed the case, as can be seen by considering symmetric functions of the set $\Lambda^{\prime}:=\left(-\lambda_{2}, \ldots,-\lambda_{n}\right)$. Since

$$
\begin{aligned}
& \sigma_{1}(\Lambda)=\lambda_{1}-\sigma_{1}\left(\Lambda^{\prime}\right), \\
& \sigma_{2}(\lambda)=-\lambda_{1} \sigma_{1}\left(\Lambda^{\prime}\right)+\sigma_{2}\left(\Lambda^{\prime}\right), \\
& \sigma_{3}(\Lambda)=\lambda_{1} \sigma_{2}\left(\Lambda^{\prime}\right)-\sigma_{3}\left(\Lambda^{\prime}\right),
\end{aligned}
$$

the inequality (11) amounts to

$$
\lambda_{1}^{2} \sigma_{1}\left(\Lambda^{\prime}\right)-\lambda_{1} \sigma_{1}^{2}\left(\Lambda^{\prime}\right)+\sigma_{1}\left(\Lambda^{\prime}\right) \sigma_{2}\left(\Lambda^{\prime}\right)-\sigma_{3}\left(\Lambda^{\prime}\right)>0
$$

and the derivative of the last left-hand side is positive, since $\lambda_{1} \geqslant \sigma_{1}\left(\Lambda^{\prime}\right)$. This completes the proof of (11). Thus, a_{2} is well-defined.

With these definitions in place, define q_{n-2} from (7), i.e., let

$$
q_{n-2}(\lambda):=-\frac{q_{n}(\lambda)-\left(\lambda-a_{1}\right) q_{n-1}(\lambda)}{a_{2}^{2}} .
$$

Note that q_{n-2} is a monic polynomial and is odd or even (precisely, it has the same parity as its leading term).

Now show that the roots of q_{n-1} interlace those of q_{n} and the roots of q_{n-2} interlace those of q_{n-1}. Note that the polynomials $q_{n}(\lambda)$ and $(-1)^{n-1} q_{n}(-\lambda)$ have the same sign on the intervals

$$
\left(-\left|\lambda_{1}\right|,-\left|\lambda_{2}\right|\right),\left(-\left|\lambda_{3}\right|,-\left|\lambda_{4}\right|\right), \ldots,\left(\left|\lambda_{2}\right|,\left|\lambda_{1}\right|\right) .
$$

Moreover, the sequence of these signs is alternating. The polynomial q_{n-1} defined by (10) therefore has exactly $n-1$ real zeros, each of them between two consecutive zeros of q_{n}. The implication for the root interlacing of q_{n-2} and q_{n-1} is immediate and is a standard argument on orthogonal polynomials (cf. [1, Section 5.4]): Due to the root interlacing of q_{n-1} and q_{n} and due to (7), the values of q_{n-2} at the zeros of q_{n-1} form an alternating sequence. Therefore, the roots of q_{n-2} interlace those of q_{n-1}.

The rest of the argument is quite straightforward. With q_{n-j} and q_{n-j-1} defined, one defines q_{n-j-2} from (8) making sure that a_{j+2}^{2} is indeed positive, for each $j=1, \ldots, n-2$. The resulting monic polynomials will have alternating parities and interlacing roots. The quantity a_{j+2}^{2} is to be set equal to the difference between the second elementary symmetric function σ_{2} of the roots of q_{n-j-1} and the second elementary symmetric function of the roots of q_{n-j}. With a slight abuse of notation, this may be denoted by

$$
a_{j+2}^{2}=\sigma_{2}\left(q_{n-j-1}\right)-\sigma_{2}\left(q_{n-j}\right)
$$

The roots of either polynomial are symmetric about 0 , therefore, the corresponding second elementary symmetric function is simply
$(-1) \cdot$ the sum of squares of all positive roots.
By the interlacing property, the sum of squares for q_{n-j} exceeds that for q_{n-j-1}, hence $\sigma_{2}\left(q_{n-j-1}\right)-\sigma_{2}\left(q_{n-j}\right)>0$ and hence a_{j+2} is well-defined.

The argument also shows the uniqueness of the realizing matrix (6), therefore the uniqueness of the realizing matrix (1), provided, of course, that a_{j} are chosen to be positive.

The following corollary was established in the course of the above proof.
Corollary 2. A real n-tuple Λ can be realized as the spectrum of a Jacobi matrix (6) if and only if $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ where

$$
\lambda_{1}>-\lambda_{2}>\lambda_{3}>\cdots>(-1)^{n-1} \lambda_{n}>0 .
$$

The realizing matrix is necessarily unique.

Finally, another simple consequence of Theorem 1 is the following result.
Corollary 3. Let \mathscr{M} be a real positive n-tuple. Then there exists a Jacobi matrix that realizes \mathscr{M} as its spectrum and has a symmetric anti-bidiagonal square root of the form (1) with all a_{j} positive.

Proof. Let the elements of \mathscr{M} be ordered $\mu_{1}>\mu_{2}>\cdots>\mu_{n}(>0)$. Define

$$
\lambda_{j}:=(-1)^{j-1} \sqrt{\mu_{j}}, \quad j=1, \ldots, n, \quad \Lambda:=\left(\lambda_{j}: j=1, \ldots, n\right) .
$$

Then

$$
\lambda_{1}>-\lambda_{2}>\lambda_{3}>\cdots>(-1)^{n-1} \lambda_{n}>0 .
$$

By Theorem 1, there exists a symmetric anti-bidiagonal matrix A with spectrum $\sigma(A)=\Lambda$. But then $B:=A^{2}$ is a Jacobi matrix with spectrum \mathscr{M}.

Acknowledgments

I am grateful to Plamen Koev for pointing me to results on sign-regular matrices, to Gautam Bharali for finding a miscalculation in an earlier proof of Theorem 1, and to the referee for careful reading.

References

[1] G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999.
2] F.R. Gantmacher, M.G. Krein, Oszillazionsmatrizen, Oszillazionskerne und Kleine Schwingungen Mechanischer Systeme, Akademie-Verlag, Berlin, 1960.
3] L.J. Gray, D.G. Wilson, Construction of a Jacobi matrix from spectral data, Linear Algebra Appl. 14 (1976) 131-134.
[4] O. Hald, Inverse eigenvalue problems for Jacobi matrices, Linear Algebra Appl. 14 (1976) 63-85.
[5] H. Hochstadt, On some inverse problems in matrix theory, Arch. Math. 18 (1967) 201-207.
[6] H. Hochstadt, On the construction of a Jacobi matrix from spectral data, Linear Algebra Appl. 8 (1974) 435-446.

[^0]: E-mail address: holtz@math.berkeley.edu

