
Linear Algebra and its Applications 408 (2005) 268–274
www.elsevier.com/locate/laa

The inverse eigenvalue problem for symmetric
anti-bidiagonal matrices

Olga Holtz
Department of Mathematics, University of California, Berkeley, CA 94720, USA

Received 4 May 2005; accepted 13 June 2005
Available online 3 August 2005

Submitted by M. Neumann

Abstract

The inverse eigenvalue problem for real symmetric matrices of the form


0 0 0 · · · 0 0 ∗
0 0 0 · · · 0 ∗ ∗
0 0 0 · · · ∗ ∗ 0

·
...

...
... · ...

...
...

·
0 0 ∗ · · · 0 0 0
0 ∗ ∗ · · · 0 0 0
∗ ∗ 0 · · · 0 0 0




is solved. The solution is shown to be unique. The problem is also shown to be equivalent to
the inverse eigenvalue problem for a certain subclass of Jacobi matrices.
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1. Introduction

The goal of this paper is to characterize completely the spectra of real symmetric
anti-bidiagonal matrices, i.e., matrices of the form

A =




0 0 · · · 0 an

0 0 · · · an−2 an−1
...

... · ...
...

0 an−2 · · · 0 0
an an−1 · · · 0 0


 , a1, . . . , an ∈ R. (1)

This work is motivated by the author’s ongoing work on the nonnegative inverse
eigenvalue problem and is inspired by well-known results on Jacobi matrices due to
Hochstadt [5,6], Hald [4], Gray and Wilson [3], as well as by the classical connection
between the Jacobi matrices and orthogonal polynomials (see, e.g., [1, p. 267]).

The blanket assumption for the rest of the paper is that all aj are positive. This
restriction is clearly unimportant, since the sign of any aj , j > 1, can be changed
using a unitary similarity of the form

diag(ε1, . . . , εn), εj = ±1,

and the problem for a1 < 0 can be solved by switching from A to −A. The assump-
tion aj > 0, j = 1, . . . , n, is however just right to guarantee uniqueness of a matrix
that realizes a given n-tuple as its spectrum.

2. Definitions and notation

Notation used in the paper is rather standard. The spectrum of a matrix A is
denoted by σ(A). A submatrix of A with rows indexed by an increasing sequence α

and columns indexed by another sequence β is denoted by A(α, β). For simplicity, a
principal submatrix of A with rows and columns indexed by α is denoted by A(α).
(A typical choice for such an α will be i:j , the sequence of consecutive integers i

through j .) The size of a sequence α is denoted by #α. If #α = #β, then det A(α, β)

is denoted by A[α, β]; det A(α) is denoted by A[α]. The elementary symmetric
functions of an n-tuple � =: (λ1, . . . , λn) are denoted as σj (�). Thus

σ1(�) :=
n∑

j=1

λj , σ2(�) :=
∑
i<j

λiλj , etc.

The term anti-bidiagonal matrix was already introduced. Other requisite definitions
are listed next.

A Jacobi matrix is a tridiagonal matrix with positive codiagonal entries.
A sign-regular matrix of class d � n with signature sequence ε1, . . . , εd , where

εj = ±1 for all j , is a matrix satisfying

εjA[α] � 0 whenever #α = j, j = 1, . . . , d.
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If in addition all minors of order at most d are nonzero, the matrix is called strictly
sign-regular. Finally, if a certain power of a sign-regular matrix of class d is strictly
sign-regular, then the matrix is called sign-regular of class d+. A particular case of
strict sign regularity is total positivity when all minors of a matrix are positive.

A sequence µ1 < · · · < µk is said to interlace a sequence λ1 < · · · < λk+1 if

λ1 < µ1 < λ2 < µ2 < · · · < µk < λk+1.

3. Results

The following theorem is the main result of this paper.

Theorem 1. A real n-tuple � can be realized as the spectrum of a symmetric anti-
bidiagonal matrix (1) with all aj positive if and only if � = (λ1, . . . , λn) where

λ1 > −λ2 > λ3 > · · · > (−1)n−1λn > 0. (2)

The realizing matrix is necessarily unique.

Proof. Necessity. Let J denote the anti-diagonal unit matrix

J :=




0 0 · · · 0 1
0 0 · · · 1 0
...

... · ...
...

0 1 · · · 0 0
1 0 · · · 0 0


 .

Note that J is sign-regular of class n with the signature sequence

1, −1, −1, 1, 1, . . . , (−1)�n−1/2�. (3)

Next, note that B := JA is a nonnegative bidiagonal matrix, hence all its minors are
nonnegative. Now, by the Cauchy–Binet formula

A[α] = (JB)[α] =
∑

#β=#α

J [α, β]B[β, α].

We conclude that the matrix A is sign-regular of class n with the same signature
sequence (3). Since A2 is a positive definite Jacobi matrix, a high enough power of
A2 is totally positive, hence A is sign-regular of type n+.

By a theorem of Gantmacher and Krein [2, p. 301], the eigenvalues of A therefore
can be arranged to form a sequence with alternating signs and strictly decreasing
absolute values whose first element is positive, i.e., the spectrum σ(A) satisfies (2).

Sufficiency. First reduce the inverse problem for anti-bidiagonal matrices to the
inverse problem for certain Jacobi matrices. Consider a matrix of the form (1). To
stress its dependence on n parameters a1 through an, let us denote it by An. The
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argument will involve the collection of all matrices An, n ∈ Z, determined by a single
sequence a1, a2, . . . Denote the characteristic polynomial of An by pn:

pn(λ) := det(λI − An).

Expanding it by its first row yields

pn(λ) = λpn−1(λ) − a2
npn−2(λ), n � 2, (4)

p0(λ) = 1, p1(λ) = λ − a1, (5)

since the matrix An−1 is similar to its reflection about the anti-diagonal.
This three-term recurrence relation (4) with initial conditions (5) is also satisfied

(see, e.g., [1, p. 267] or check directly) by the characteristic polynomials of the Jacobi
matrices

Bn :=




a1 a2 0 · · · 0 0
a2 0 a3 · · · 0 0
0 a3 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 an

0 0 0 · · · an 0




(6)

if each of them is expanded by its last row. Thus the inverse eigenvalue problem
for anti-bidiagonal matrices An is equivalent to the inverse eigenvalue problem for
Jacobi matrices Bn.

Now comes the crucial step in the proof. Consider expanding the characteristic
polynomials of matrices Bn in the opposite order, i.e., starting from the first row. Pre-
cisely, let us denote by qn−j+1 the characteristic polynomial of the principal subma-
trix Bn(j :n), with qn = pn. The corresponding recurrence relation is

qn(λ) = (λ − a1)qn−1(λ) − a2
2qn−2(λ), (7)

qn−j (λ) = λqn−j−1(λ) − a2
j+2qn−j−2(λ), j = 1, . . . , n − 2, (8)

q0(λ) = 1, q1(λ) = λ. (9)

Let � be an n-tuple satisfying (2). Define the polynomial qn as

qn(λ) :=
n∏

j=1

(λ − λj )

and show that one can define polynomials qn−j for all j = 1, . . . , n so as to meet
the requirements (7)–(9). To this end, first define

a1 := σ1(�), qn−1(λ) := (−1)nqn(−λ) − qn(λ)

2a1
. (10)

Note that a1 > 0 due to the properties of � and that the (monic) polynomial qn−1 is
even or odd depending on whether n − 1 is even or odd. Also note that the coefficient
of λn−3 in qn−1 is equal to
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σ3(�)

a1
= σ3(�)

σ1(�)
< 0.

On the other hand, the coefficient of λn−2 in qn(λ) is σ2(�) < 0. Therefore, it
remains to show that the quantity σ3(�)

σ1(�)
− σ2(�) is positive, so a2 can be defined as

its (positive) square root:

a2 :=
√

σ3(�)

σ1(�)
− σ2(�).

Indeed, let us prove that

σ3(�) > σ1(�)σ2(�) (11)

by induction. The base case is n = 3, where λ1 > −λ2 > λ3 > 0. Then (11) reduces
to the inequality(

1

λ1
+ 1

λ2
+ 1

λ3

)
(λ1 + λ2 + λ3) > 1. (12)

Differentiating the left-hand side of (12), one can check that it is an increasing
function of λ1 for λ1 � −λ2. Since the left-hand side is exactly 1 when λ1 = −λ2,
this proves (12) and therefore proves (11). If n > 3, also notice that inequality (11)
turns into equality for λ1 = −λ2, so it remains to argue that the difference σ3(�) −
σ1(�)σ2(�) is an increasing function of λ1 for λ1 � −λ2. But this is indeed the case,
as can be seen by considering symmetric functions of the set �′ := (−λ2, . . . , −λn).
Since

σ1(�) = λ1 − σ1(�
′),

σ2(λ) = −λ1σ1(�
′) + σ2(�

′),
σ3(�) = λ1σ2(�

′) − σ3(�
′),

the inequality (11) amounts to

λ2
1σ1(�

′) − λ1σ
2
1 (�′) + σ1(�

′)σ2(�
′) − σ3(�

′) > 0,

and the derivative of the last left-hand side is positive, since λ1 � σ1(�′). This com-
pletes the proof of (11). Thus, a2 is well-defined.

With these definitions in place, define qn−2 from (7), i.e., let

qn−2(λ) := −qn(λ) − (λ − a1)qn−1(λ)

a2
2

.

Note that qn−2 is a monic polynomial and is odd or even (precisely, it has the same
parity as its leading term).

Now show that the roots of qn−1 interlace those of qn and the roots of qn−2 inter-
lace those of qn−1. Note that the polynomials qn(λ) and (−1)n−1qn(−λ) have the
same sign on the intervals

(−|λ1|, −|λ2|), (−|λ3|, −|λ4|), . . . , (|λ2|, |λ1|).
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Moreover, the sequence of these signs is alternating. The polynomial qn−1 defined
by (10) therefore has exactly n − 1 real zeros, each of them between two consecutive
zeros of qn. The implication for the root interlacing of qn−2 and qn−1 is immediate
and is a standard argument on orthogonal polynomials (cf. [1, Section 5.4]): Due to
the root interlacing of qn−1 and qn and due to (7), the values of qn−2 at the zeros
of qn−1 form an alternating sequence. Therefore, the roots of qn−2 interlace those of
qn−1.

The rest of the argument is quite straightforward. With qn−j and qn−j−1 defined,
one defines qn−j−2 from (8) making sure that a2

j+2 is indeed positive, for each
j = 1, . . . , n − 2. The resulting monic polynomials will have alternating parities and
interlacing roots. The quantity a2

j+2 is to be set equal to the difference between the
second elementary symmetric function σ2 of the roots of qn−j−1 and the second
elementary symmetric function of the roots of qn−j . With a slight abuse of notation,
this may be denoted by

a2
j+2 = σ2(qn−j−1) − σ2(qn−j ).

The roots of either polynomial are symmetric about 0, therefore, the corresponding
second elementary symmetric function is simply

(−1) · the sum of squares of all positive roots.

By the interlacing property, the sum of squares for qn−j exceeds that for qn−j−1,
hence σ2(qn−j−1) − σ2(qn−j ) > 0 and hence aj+2 is well-defined.

The argument also shows the uniqueness of the realizing matrix (6), therefore the
uniqueness of the realizing matrix (1), provided, of course, that aj are chosen to be
positive. �

The following corollary was established in the course of the above proof.

Corollary 2. A real n-tuple � can be realized as the spectrum of a Jacobi matrix (6)
if and only if � = (λ1, . . . , λn) where

λ1 > −λ2 > λ3 > · · · > (−1)n−1λn > 0.

The realizing matrix is necessarily unique.

Finally, another simple consequence of Theorem 1 is the following result.

Corollary 3. Let M be a real positive n-tuple. Then there exists a Jacobi matrix that
realizes M as its spectrum and has a symmetric anti-bidiagonal square root of the
form (1) with all aj positive.

Proof. Let the elements of M be ordered µ1 > µ2 > · · · > µn(> 0). Define

λj := (−1)j−1√µj , j = 1, . . . , n, � := (λj : j = 1, . . . , n).
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Then

λ1 > −λ2 > λ3 > · · · > (−1)n−1λn > 0.

By Theorem 1, there exists a symmetric anti-bidiagonal matrix A with spectrum
σ(A) = �. But then B := A2 is a Jacobi matrix with spectrum M. �
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