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The established approaches to the semantics of algebraic (equational) specifications are based on 

a category-theoretic perspective. When possible interpretations are viewed as a category, the 

extreme points-the initial and final algebras-present themselves as natural candidates for the 

canonical interpretation. However, neither choice provides a satisfactory solution for incomplete 

specifications of abstract data types -the initial algebra is not abstract enough and the final algebra 

often does not exist. 

We argue that in much of the work on algebraic specifications, the categorical viewpoint is simply 

a convenient technical device to capture semantically the modalities of necessity and possibility. It is 

actually more natural to consider the semantic problem from the perspective of modal logic, 

gathering possible interpretations into a Kripke model. When necessity and possibility are added as 

modal operators in the,logical language, a new candidate for the canonical interpretation-which we 

call the optimal algebra’ -arises naturally. The optimal algebra turns out to be a natural generaliz- 

ation of the final algebra, and provides a satisfactory semantics in situations where the spirit of final 

algebra semantics is desired but a final algebra does not exist. 

Optimal semantics has a topological flavor. Our Kripke models are topological spaces in 

a natural way. In most (but not all) of the interesting cases, the Baire category theorem holds for the 

topology of a Kripke model, in which case the optimal semantics validates exactly those equational 

properties which hold in dense opera subsets of the Kripke model. In analogy with many similar 
situations, we may regard these as properties that hold almost ecerywhere in the model. 
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1. Introduction 

Many properties of abstract data types can be specified algebraically, i.e., with sets 

of universally quantified equations. For instance, a simple specification for sets may 

use the operations 

add : item x set+set 

empty : -set 

member: item x set-+bool 

subset:set x set-tbool 

with the equations 

member(x, add(y, s))=equal(x, y)V member(x, s) 

subset(empty, s)= true 

subset(add(x, sl), s2)= member(x, s2) & subset(s,, s2) 

Obviously, an abstract type specified is thus expected to possess many more 

equational properties than the ones stated above. The semantics of the specification 

characterizes these implied properties by associating a canonical model with the 

specification- the semantics determines how “complete” the specification has to be in 

order to capture the intended model and its properties. The most conservative 

characterization of implied properties is the equational theory of the specification, 

which is the set of equations that hold in all models of the specification. By Birkhoff’s 

well-known completeness theorem for equational logic, this is also the set of all 

equations deducible (equationally) from the specification. This characterization is 

closely related to the (slightly more liberal) initial algebra semantics because the ground 

equations in the equational theory are precisely those which hold in the initial model 

in the natural category of all models for a specification. The equational theory often 

does not capture all the expected properties of an abstract type since many such 

properties are inductive. For instance, the equation 

subset(s, s)= true 

is not a consequence of the above specification without further stipulation that all 

values of the sort set are generated by the constructors empty and add. This 

restriction narrows the class of permissible models and gives rise to a notion of 

inductive theories [ 11. One can go a step further, and consider all equations that can be 

used as program transformations without any observable consequences. In fact, this is 

natural since abstract data types are normally viewed as black boxes whose users are 

to be concerned only with their observable behavior. In a many-sorted specification 

such as the one above for sets, the sorts can be naturally divided into the observable 

and nonobservable ones. Suppose the sort of booleans (bool) is observable (because 



truth values can be used in conditionals, say), while that of sets is not. Suppose further 

that the usual equations for boolean operations such as V and & have been provided. 

Now the equations 

add(x, add(y, s))=add(y, add@, s)) 

add@, add(s, s))=add(.x, s) 

are both usable as program transformations since there is no way to observe the 

difference between the two sides of either equation by “plugging” them into any 

context of observable sort. However, they are not inductive properties in any reason- 

able sense. We shall refer to such equational properties as abstract properties and the 

collection of such properties as the abstract theory of a specification. These names are 

inspired by the similarity in spirit between abstract theories and the fully abstract 

semantics of programming languages [S]. 

The main purpose of this paper is to formalize and study abstract theories and 

the corresponding characteristic models which we call the optimal algebras. The 

best existing formalization of abstract theories is found in final algebra semantics 

[lo, 41. However, this formalization has a serious flaw -it is applicable only to 

specifications that are complete in some sense. For instance, the specification given 

above is incomplete because it does not specify the result of expressions of the form 

member(x, empty). Final algebra semantics is not applicable to such specifications. 

Real specifications in the process of development are rarely complete. To say that 

they possess no abstract properties during their entire development but suddenly 

acquire them all upon adding the last equation needed for completeness does 

not seem satisfactory. We show in this paper that, in a natural sense, the existence 

of abstract theories and the corresponding characteristic models (optimal algebras) 

is independent of completeness. It turns out that the ideas underlying these results 

arise naturally when the semantics of equational specifications is considered 

from a modal logic perspective, rather than the category-theoretic one which gave rise 

to initial and final algebra semantics. We now turn to a discussion of this new 

perspective. 

2. A new perspective on semantics 

The point of any semantic approach is to capture a notion of validity. In the context 

of equational specifications, the notion of validity depends on two parameters: 

(1) A modality attached implicitly to equational assertions. 

(2) A class of interesting (or as we shall say in the sequel, proper) interpretations. 

The categorical viewpoint gives a convenient technical device to capture semanti- 

cally the modalities of necessity and possibility. That is, if C is a collection of models of 

an equational specification considered as a preorder category in the natural way, the 

ground equations true in an initial C-object are exactly those which are necessarily 
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true, i.e., true in all C-objects. Similarly, the ground equations true in a final C-model 

are exactly those which are possibly true. 

The use!fulnes.s of a semantic method is judged by asking how closely the choices of 

modality and class correspond to some predetermined intuition. The applicability of 

the method is gauged by determining for which choices is there a simgle algebra which 

captures the semantics. Under this rubric, initial algebra semantics (the semantics of 

necessary truth under all reasonable interpretations) is always applicable. On the 

other hand, we have seen that final algebra semantics (the semantics of possible truth 

in all reasonable interpretations) is not always applicable. The reason is that two 

assertions can both be possible, yet together they might be inconsistent. For the 

specification of abstract data types, final algebra semantics is much more useful in 

capturing abstract properties than initial algebra semantics, but also much less 

applicable. 

Returning to our discussion of the existing semantic approaches, we note that even 

though the modalities are conceptually primary, they have been mathematically 

secondary-it just so happens that initiality and finality capture the right modalities, 

but the modalities are implicit rather than explicit. It is hard to see how to generate 

more complicated modalities from these tools. 

Our central idea is to add modal operators necessity (0) and possibility (0) to the 

language of equational logic (rather than the metalanguage), and we call the result 

modal equational logic. We interpret this logic on categories of proper interpretations, 

considered as Kripke structures under the quotient relation. The preorder property of 

quotients implies that every formula is equivalent to one of the following three forms: 

q e, Oe,andoOe. 

This paper introduces the third of these modalities into work on data type 

specification. If q 0 e is true in a (Kripke) model, we say that e is densely true, because 

when the model is given the natural topology, e is true on a dense open set. The 

semantics of the modalities implies that an equation is densely true exactly when it is 

consistent with all algebras in the model. Furthermore, dense truths are always 

collectively consistent. As a result, given any choice of the class of proper algebras, 

there is an algebra that captures dense truth relative to that class. This is the algebra 

we call the optimal algebra of a specification. 

It is not obvious from the foregoing that optimal algebras have anything to do with 

the abstract theories we set out to formalize. In fact, there is a very close connection. 

For one thing, dense truth coincides with possible truth whenever the set of all 

possible truths is consistent. Thus, optimal algebra semantics coincides with final 

algebra semantics whenever the latter is well-defined, independent of the choice of the 

class of proper interpretations. Moreover, an equation is an abstract property of 

a specification exactly when it is consistent with all algebras in the class of proper 

interpretations, since consistency in this context means exactly the lack of observable 

contradiction. The notion of abstract property, therefore, coincides with the notion of 

dense truth. The only flaw in this picture is that a nonground equation that holds in 

the optimal algebra may not, in general, be densely true in the corresponding Kripke 



structure when the Kripke structure is incomplete in some sense. This and other 

undesirable properties of incomplete Kripke structures suggest that they should not 

be used in constructing optimal semantics. 

We now make these ideas precise. Preliminary definitions are given in the next 

section. Section 4 describes a simple modal equational logic in which there are exactly 

three fundamental modalities ~ necessary, possible and dense truth. The optimal 

semantics is determined by dense truth and a collection of structures; it is described in 

Section 5. This section is the heart of the technical part of the paper, and contains the 

easy proof that the optimal model always exists. Section 5 also discusses the topologi- 

cal connections of the ideas of density. Section 6 formalizes what we mean by 

“complete” Kripke models, and proves the connection between dense truth and the 

alternative formulation of abstract properties in such models. The semantic ideas of 

this paper are illustrated with several examples in Section 7. 

3. Preliminaries 

Our technical machinery is based on the work of the ADJ group. An excellent 

tutorial introduction to this material can be found in [2]. We assume familiarity with 

the basic notions therein. 

Given an S-sorted signature C, we use T, to denote both the initial (free) C-algebra, 

and the (many-sorted) set of all C-terms. Given a Z-algebra A, the unique homomor- 

phism from Tz to A evaluates terms according to their interpretation in A; it too will 

be denoted by A. All of the C-algebras in this paper are reachable, i.e., the function 

A will be surjective. By implication, we assume that the signature of the specification is 

complete-few interesting abstract properties can be derived without such an assump- 

tion. A theory E consists of a signature CE and a set (also called) E of (,X,)-equations. 

The equations might contain variables, but in this paper we will not consider 

conditional equations. 

If e is a C-equation and the signature ZA of an algebra A includes C, then we write 

A /= e to mean that every substitution instance of e is true in A. An equation 

e determines a congruence 1 el on A; le I is the least congruence containing all 

substitution instances of e. The quotient A/lel then satisfies e. Both notations extend 

to sets E of equations in the obvious way. We write IE for TLF/I E 1. One of the basic 

results of algebraic semantics is that IE is initial in the category of C,-algebras which 

satisfy E. For all ground terms t and u of the appropriate signature, IE(t) = IE(u) iff the 

equation “t=d’ is deducible from E using simple equational deduction. We write 

t = Ed as an abbreviation for ZE(t)=IE(u). 

When considering abstract semantics, a specification is naturally divided into 

a base specification and its extension, which we denote by the pair (BASE, EXT). 

Intuitively, the BASE specifies observability - the carriers of IRAsE are the observable 

values. The sorts of BASE are, therefore, called the observable sorts. The extension EXT 

usually adds new operations, possibly on the same sort set and possibly adding new 
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sorts. We assume that EXT is well-formed in the sense that CExr zCRAsE and the 

equational theory of EXT is a conservative extension of the equational theory of BASE, 

i.e., ZexT 1 CRAsE z IBAsE, where a reduct A IC of A is just the algebra A considered as 

a Z-algebra and forgetting everything else - assuming, of course, that CA 2 C. This 

condition does not require that EXT~BASE; it allows EXT to contain a different set of 

axioms for IBASE. 

We write TsAsE for the set of all C,,s,-terms, and similarly for T,,,. 

Definition. A X,x,-algebra A is an Exr-algebra if 

(1) /t+ EXT, 

(2) A/C -I BASE= BASE' 

An ax-r-algebra A is said to respect the BASE since it must satisfy condition (2). An 

algebra which respects the BASE neither implies new identifications nor new distin- 

ctions in the observable values created by the BASE. It is important to note that the 

condition restricts only the interpretation of CBAs,-terms, not that of other CEx,-terms 

of observable sort. 

Henceforth, we shall simply write algebra instead of Exr-algebra and equation 

instead of C,,,-equation whenever possible without creating confusion. 

The (reachable) algebras with C ExT-morphisms comprise a category which we 

denote by aExT. (Again, we generally omit the subscript.) Identifying isomorphic 

algebras, .9? is a partial order category ~ A <B in .z% iff there is a morphism from A to B. 
Often, we will forget the category-theoretic aspects of W and instead emphasize the 

order. 

The notion of a “complete” specification can be made precise in terms of the 

following property. 

Definition (Standardness). An EXT-algebra A is said to be standard if for all observable 

sorts s, and V’ueA,, ~uE(TB&, such that u=A(v). 

Standardness essentially extends the notion of respecting the base to all L‘,x,-terms of 

observable sort, i.e., it guarantees that the carriers of observable sorts will be exactly 

those in IBAsE. A specification (BASE, EXT) is said to be sz@ciently complete iff IExT is 

standard [3]. The main theorem of final algebra semantics is the following. 

Theorem 3.1 (Wand [lo]). For every su#iciently complete speci$cation (BASE, EXT), the 

category %?ExT has a final object. 

4. Three fundamental modalities 

We show in this section that if the ideas of necessity and possibility are applied as 

modal operators to define a modal equational logic, then they give rise to exactly one 

new fundamental modality. 
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Fix a specification (BASE, EXT), and let the class of proper interpretations of EXT be an 

avhitrary full subcategory X of 2EXT- X is a Kripke model of EXT. The modal 

formulas use the traditional necessity (o ) and possibility (0) operators. The notion of 

satisfaction uses the natural order on the algebras in 3”. 

Definition. The set of (modal equational),formulas is the smallest set S containing every 

equation, and such that if c$ES, then both q 4 and 04 belong to S. The ground 

formulas are formulas which do not contain variables. 

The sutisfhction relation I=/ (relative to a Kripke model X) is the unique relation 

on .X x S such that for all A EX 
l A/=,eifAi=e, 

l AI=, 04 if for some B>A in X, B+, 4, 

l A(=, 04 if for all B>A in Y, BI=p 4. 

Two formulas 4 and $ are considered equivalent (written 4=$) if for all X, and all 

Ac.X’, A kx C#J iff A I=x. I). Satisfaction in X as a whole is represented by the assertion 

I=x 4, where 4 is a modal formula. This would be most naturally defined as “I=.? 4 iff 

I kiy 4” if 3” had an initial object 1. However, the categories X which arise 

naturally in applications do not always have an initial object; so, we make the 

definition more explicit. 

Definition. Given a Kripke structure X, 

l kiy q ~-VAEX-. A/=, 4, 

l /=? ()~=-~AEX-. AI=, 4, 

0 bk e-l=, q e. 

The main result of this section is that, although S includes complicated formulas 

like 0 q () 0 q e, every formula is, in fact, equivalent to a formula of one of three 

special forms. 

Lemma 4.1. For eueryformula C#I there is an equivalent formula I) of one of the following 

forms: 

l An equational necessity: q e. 

a An equational possibility: 0 e. 

l A density,formula: q 0 e. 

Proof. Recall that the truth of equations is preserved as we go up the order <, and the 

ordering on .X is transitive. Therefore, for all 4, q #=o q 4 and 0 4= 0 0 4. 

Further, it is easy to see that if 4 E $, then 0 4 = 0 IJ and 04 = 04, and, moreover, 

q e = e and 0 q 0 e = 0 e. This proves the proposition for all 4 with at most three 

modalities. The general case now follows by a simple induction on #J. 0 

Lemma 4.1 implies that in modal equational logic, there are exactly three senses in 

which an equation e can “hold” in a Kripke model X as a whole. These, therefore, are 
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the three alternatives available for the first choice mentioned at the beginning of 

Section 2. Of the three, the first two alternatives lead to familiar results. 

Proposition 4.2. Let A be an algebra in X. A is initial in X @for all (ground) equations 

e, A /= e if I=? q e and A is jinal in .X @for all such e, A /= e $f kx 0 e. 

The third and novel alternative is explored below. 

5. Dense truth and optimal semantics 

We begin by stating the topology that justifies calling the third category of formulas 

in Lemma 4.1 the “density formulas”. This is just the natural topology on posets. On 

a partial order (X, dx ), the family of upper intervals U, = {B: A dx B) forms the 

base for a topology on X; a set is open iff it is upward-closed. For instance, the 

standard algebras form an open subset of ./A. This idea can be applied to &’ and also to 

any full suborder sy‘ z 9’. In this topology, a set 3 G GY is dense in x if for all AEX, 

there is some BEJY such that A <B. 

Definition. A (not necessarily ground) equation e is densely true in ST if there is 

a dense subset 3 c ox such that for every CE ‘Y, C )= e. 

Recall the informal notion of an abstract property we started with in the introduc- 

tion. There are various ways to interpret the statement ‘there is no way to observe the 

difference between the two sides of an equation by “plugging” them into any context 

of observable sort’ relative to a specification and a Kripke model for it. We use it to 

mean that the equation must be consistent with every proper interpretation of the 

specification. The assertion that e is densely true in .iy‘ captures exactly this intuition: 

even though e might not be true in every proper algebra, given any AEX, e is 

consistent with A in the sense that there is some 83 AE.IY‘ such that B I= e-since 

B respects the BASE, the addition of e does not cause a contradiction. We shall, 

henceforth, use the terms “densely true equation” and “abstract property” inter- 

changeably. The connection between densely true equations and the density formulas 

of Lemma 4.1 is simple. 

Proposition 5.1. An equation e is densely true in 2‘ $f l=iy q 0 e. 

We note also that for every equation e, the set { AEX: A /= e} is open since the truth 

of equations persists upwards. So, if e is densely true, then in fact e holds in a dense 

open set. 

Just as necessary and possible truths yield initial and final algebra semantics, dense 

truth yields a corresponding semantics which we call optimal algebra semantics. To be 

more precise, a ground equation is densely true 8 it holds in the optimal algebra 



defined below. For non-ground equations it is necessary to add a completeness 

condition on Kripke structures (see Section 6). 

Definition. An algebra A is optimal for X if for all ground equations e, A j= e o e is 

densely true in jY‘. 

In many interesting cases, the optimal algebra will exist but not belong to X. For 

this reason, we do not require AEX as part of the definition of optimality for X. 

From the definition, it follows easily that optimal algebra semantics is a generalization 

of final algebra semantics. First of all, a final algebra is always optimal. 

Theorem 5.2. Jf A” has a ,final object F then F is optimal .for X. 

Proof. Suppose A is optimal for Y’. The set (F } is dense in X. Therefore, by the 

definition of dense truth, every ground equation in F is densely true. However, by the 

definition of optimality, every densely true ground equation holds in the optimal 

algebra A. Therefore, F < A. Conversely, if A I= e for a ground equation e then e is 

densely true in .X” and, hence, F I= e. Therefore, A <F. 0 

The fact that an optimal algebra always exists follows from the simple topological 

fact that the intersection of a finite collection of dense open sets is dense and open in 

any space [6]. 

Proposition 5.3. Gicen II $nite set e,, . . . . ek qf densely true ground equations, and an 

equation e such that 

by equational deduction, e is densely true. 

Proof. Let Y= {AEX: A I= ei for 1 6 id k]. Then !Y is a finite intersection of open 

dense sets. Hence, <Y is dense and open. By the soundness of equational deduction, 

e holds everywhere in 9 and is, therefore, densely true. C2 

The main existence theorem for optimal algebras is a corollary of Proposition 5.3. 

Theorem 5.4. There is a unique optimal algebra,for el;ery X. 

Proof. Let E be the relation on ground terms defined by 

x = y iff x = JJ is densely true in X. 

To see that = is a congruence, note that the congruence closure of an equational 

relation like = is the same as its deductive closure. The latter is = itself by 

Proposition 5.3 and by compactness, i.e., by the finiteness of proofs. Let A = IEXT/ =. 
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To show that A is optimal for X, we only need to show that A respects the BASE. Let t’l 

and u2 be two T,,,, terms. If A I= u1 = u2, then the equation cr = r2 is densely true. 

Therefore, there is a BEX such that B I= u1 = 02. Since B respects the BASE, we see that 

I,,,, /= u1 = c2. Going the other way, if I RASE I= ~‘r = zi2 then, by the definition of an 

Exr-algebra, this equation is densely true (in fact, necessarily true) and, thus, 

A I= c’r =L’2. 

The uniqueness of A is immediate, since the definition of optimality completely 

specifies the true ground facts of the reachable X,x,-algebra A. 0 

This result is quite “robust” in the sense that it depends only on the finiteness of 

equational proofs. Optimal models always exist, not only for purely equational 

specifications, but also for first-order specifications of any kind whatsoever for which 

a semantics based on ordered Kripke structures is appropriate. A simple example is 

specifications which use conditional equations. We have not explored other situations, 

but the results in the equational setting suggest that optimal models will be good 

vehicles for reasoning about many types of incomplete specifications. 

Examples of optimal semantics for different choices of .X are presented in Section 7. 

Before turning to examples, we discuss the question of adequacy of Kripke models. 

We have placed no restrictions on 2” whatsoever in the definition of optimal 

semantics or in Theorem 5.4. We show in the next section that a “completeness” 

condition is needed for X to establish a satisfactory connection between abstract 

properties and optimal models. 

6. Complete Kripke models 

There is a serious flaw in the connection between optimal semantics and abstract 

properties established in the last section. Most abstract properties of interest are not 

ground equations, and a nonground equation that holds in the optimal algebra is not 

guaranteed to be densely true in the corresponding Kripke structure. For instance, 

suppose e is a nonground equation such that an infinite number of its instances do not 

hold in lEXT, but e is consistent with EXT. A good example is the “missing” equation 

member(x, empty)=false 

for sets as specified in the introduction. Let e,, e2,. . be an enumeration of the ground 

instances of e, and let 

where le,,..., ek I is the least congruence generated by the equations er,. . , ek. Now, 

obviously, every ground instance of e is densely true in X, but e itself holds in none of 

the algebras in X. Proposition 5.3 guarantees that for any jnite set of densely true 

ground equations, there is a dense set where all of the equations hold. For a proper 

connection between optimal semantics and abstract properties, we need a dense set of 



algebras in which all the densely true ground equations hold. Specifically, one would 

expect the intersection of the truth sets for all densely true ground equations to be 

dense in .Y. 

Definition. A Kripke structure x is said to be complete exactly when the set 

D, ={AE~: for all ground e, if I=iy q 0 e, then A I= e} 

is dense in x. 

This leads immediately to the desired connection between optimal algebras and 

abstract properties: 

Lemma 6.1. Suppose A is the optimal algebra for a complete Kripke model x, and let 

e be an equation possibly containing variables. Then A I= e ifSe is densely true in xx. 

Proof. Every ground instance of e holds in every BED, if A I= e. Since ST is complete, 

D iy is dense in jY‘ and, so, e is densely true in .Xr. The converse is immediate from the 

definition of optimality. 0 

D, is a countable intersection of dense open sets, but there is no reason to believe 

that this intersection is nonempty. As someone familiar with the Baire category 

theorem (BCT) might suspect, the example at the beginning of this section suggests 

a sufficient topological condition for this. 

Definition. A poset (X, Gx ) is countably bounded if every w-sequence from X has an 

upper bound in X. 

Countable boundedness is a rather weak hypothesis for a poset. It is trivially 

implied by directed completeness or even o-chain completeness. 

Proposition 6.2. Every countably bounded X satisfies the BCT: the intersection of 

countably many dense open subsets oj’X is dense. 

Proof. The proof is a standard argument modeled on that of the BCT. Let Di be dense 

open subsets for iEw, and let AEX. Define a sequence ( Ai: igo) by recursion as 

follows:LetA,=A.GivenAi,letAi+lbesuchthatAi~A;+,andAi+,EDi.LetB3Ai 

for all i. Then B> A,. By construction, BEDi for all i. Hence, BEniDi. 0 

Theorem 6.3. Every’ countahly bounded Kripke model is complete. 

Proof. This follows from the Proposition 6.2, since D, is the intersection of the 

countable collection of sets where the densely true equations hold. 
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As a slight digression, countable boundedness also allows us to formalize the notion 

of an “approximation” for final algebras. A final algebra (when it exists) is the maximal 

point of X, i.e., the algebra B such that for all C > B from X, c r B. Since an abstract 

(equational) property of a complete specification is exactly the one which holds in its 

unique maximal interpretation, it is natural to generalize by saying that an abstract 

property of an arbitrary specification is the one which holds in all its maximal 

interpretations. A dense set of maximal algebras is, therefore, an approximation for 

a final algebra since such a set captures the abstract properties of a specification in 

every sense. The next result shows that if sy‘ is countably bounded, then the set of 

maximal algebras is dense. 

Lemma 6.4. Let X he countably bounded, and let AEX. Then there exists some (not 

necessarily unique) BEX’ such that B3 A and B is maximal. 

The proof is similar to that of Proposition 6.2. Note that every maximal algebra 

belongs to D, ; so, Lemma 6.4 is a strengthening of Theorem 6.3. The maximal 

algebras in some sense form the kernel of D, and the optimal algebra can be thought 

of as the intersection of the maximal algebras. 

It is useful to consider another characterization of the relationship between opti- 

mality and completeness based directly on abstract properties. Consider the inter- 

pretations of EXT which have the property that all of the (not necessarily ground) 

equations true in them are abstract properties of EXT. The following is an equivalent 

definition. 

Definition. An algebra A is computible (with jr) is Ui, is dense in ST. 

Compatible algebras are in some sense “partial” optimal algebras. This intuition is 

confirmed by the following theorem. 

Theorem 6.5. Suppose A is compatible with X. A is optimal for X ifJ‘ A is jinul in the 

category of ulgebrus which are compatible with X. 

Proof. Assume that A is final among the algebras which are compatible with X. 

Suppose also that a ground equation e is densely true in X. Let B = ZEXT/l e I. We show 

that B is compatible. Let CEX. By density, there is some D 3 C such that D I= e. By 

initiality of B among the models of EXT u {e}, B < D. This shows that B is compatible. 

By the finality of A, Bd A. Therefore, A I= e. 

Going the other way, suppose that A is optimal for ST. We want to show that A is 

a quotient of every algebra which is compatible with X. Let B be compatible with Xx. 

The morphism from B to A will be B(t)++A(t). This is well-defined since BJ= tI = t2 

implies that (tl = t2) is densely true (for ground tl, tz), as we have seen. Since our 

overall hypothesis is that A is compatible, this shows that A is the final compatible 

algebra. S 
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The reason why compatibility is interesting is the following result. 

Theorem 6.6. A Kripke structure X is complete $f the optimal algebra for X is 

compatible with X. 

Proof. Let A be optimal for a complete X. To see that A is compatible with X, let 

B be any algebra in ST. Since X is complete, D, is dense in 3”. By density, there is 

a CED, such that B d C. Then, by the definition of D, , A< C. 

Now suppose that A is compatible with X. Let B be any algebra in X. By 

compatibility, there is a C~sy‘ such that Ad C and B< C. By the optimality of A, 

CED, ; so, D, is dense in ST. 0 

We conclude this section with an example which demonstrates that there are 

“natural” Kripke models that turn out to be incomplete. Our example is the Kripke 

model consisting of the “finitary” algebras. 

Definition. An algebra A isjnitary iff there is ajfinite set E of C,-equations such that 

AzIIE. Let PEXT be the collection of finitary EXT-algebras. 

Finitariness seems a natural condition since implementations must after all be 

computable, and in this context equational computation is the natural choice. Of 

course, finite axiomatization guarantees only semicomputability for the word prob- 

lem, but allows all necessary observable results to be computed, which is what one 

really needs in an implementation. 

Our negative result rests on the fact that there are algebras which can be specified as 

final algebras of finite specifications, but for which the word problem is not semicom- 

putable; such an algebra is not finitary. More precisely, we state this as follows. 

Lemma 6.7. There is a specijcation (BASE, EXT) such that the category of ExT-algebras 

has a $nal object which is not semicomputable and, hence, not $nitary. 

The standard example is a specification of polynomials in n variables (with n 3 14). 

The result makes essential use of the celebrated theorem of Matijasevich, which 

proves that all recursively enumerable sets of natural numbers are diophantine, and, 

therefore, there are polynomials p(.yO, .x1,. . , x,) and 4(x0, x 1,. . . , x,,), with coefficients 

from N, such that the set of natural numbers 

is not recursively enumerable. Since the details are quite complex and have no bearing 

on our argument, they are omitted here. The interested reader can find this and other 

related results in [7, 91. 

The proof of the following lemma uses the connection between compatibility and 

completeness established in Theorem 6.6. 
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Lemma 6.8. There is a speci’cation (BASE, EXT) such that 9& is not complete. 

Proof. Let (BASE, EXT) be as in Lemma 6.7, and let F be the final Exr-algebra. We first 

show that F is not compatible with RExT. If it were, there would be some C~9~xr 

such that I ExT< C and F GC, since IEXT is finitary. But since F is final, F r C. Thus, 

F is finitary, and this contradicts Lemma 6.7. 

We now claim that F is optimal for .FEXT. Since F is final, it suffices to show that 

F I= e implies that e is densely true. Suppose F I= e. Consider an arbitrary B~.Frxr, 

and let E be the finite axiomatization of B. Let C=B/Jel. C respects the BASE since 

C< F. Moreover, C is finitary since Eu(e) is a finite axiomatization of it. Therefore, 

Cc.FEXT and C I= e. This shows that the optimal algebra for .JjrXT is not compatible 

with RExT. Therefore, by Theorem 6.6, .FEtXT is not complete. 0 

In fact, it is not hard to see that D, is empty if X =,FEXT for the specification 

(BASE, EXT) mandated by Lemma 6.7. 

7. Examples 

In this section we consider two Kripke models which have been used in observable 

semantics [lo, 51: the classes of all and all standard algebras. The class of all (reach- 

able) algebras is perhaps the most obvious Kripke structure for observable semantics, 

as reflected in the fact that the traditional final algebra approach is based on this class. 

However, in more recent work, the smaller class of standard algebras has been found 

to be a useful basis for reasoning methods for incomplete specifications [S]. In 

particular, as we illustrate with examples below, a class of “inductive theorems” arises 

naturally relative to the standard algebras but not in the larger structure of all 

reachable algebras. In some ways, therefore, the standard algebras yield a “better” 

Kripke model in that the corresponding optimal semantics appears to validate more 

of the natural properties of a specification (when it is reasonable to assume that all 

implementations must be standard). It is conceivable that other classes will be found 

to be useful in future work. This was the reason why we chose to work with the natural 

parameterization of optimal semantics with respect to Kripke structures. 

7.1. Optinml normal senzantics 

Our first example of a Kripke structure for optimal semantics is the class ./A of all 

EXT-algebras - the class usually used in final algebra semantics. 2’ is complete. We call 

the corresponding optimal model the optimal normal algebra. 

* It can be shown that Lemma 6.8 also holds for the Kripke model of “recursive” algebras (in a recursive 

algebra the “word problem” is recursive). The proof is much more complicated. and beyond our scope. 
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Lemma 7.1. For ewry specific pair (BASE, Exr), the structure 3TEXT is complete. \ 

Proof. Apply Theorem 6.3. It is no easier to check countable boundedness than the 

stronger property of directed completeness; so let 2 be any nonempty directed subset 

of 2’. Let = be the following congruence on TEXr: 

tru iff for some BEP, B(t)=B(u). 

The fact that % is directed implies that this relation = is indeed a congruence. Since 

ti is nonempty, the equations EXT are satisfied. 

Let L= T EXT/ =. We need to show that L respects the BASE. This is a compactness 

argument, almost identical to the one found in the proof of Theorem 5.4. 0 

Example 7.2. Consider an extended version of the incomplete specification for sets in 

Section 1. Suppose we have the operations 

add : item x set+set 

union : set x set+set 

empty : +set 

universe: +set 

member: item x set+bool 

subset : set x set 4 boo1 

with the equations 

member@, add(y, s))=equaI(x, y)V member(x, S) 

subset(empty, s)=true 

subset(add(x, sl), s,)=member(x, s2) & subset(s,, s2) 

This specification is seriously incomplete because the observable behavior of three 

operations (empty, universe and union) is not specified. Nonetheless, every ground 

instance of the equations 

add(x, add(y, s))=add(y, add(x, s)) 

add(x, add(x, s))= add(x, s) 

is consistent with every reachable algebra for the specification (and, therefore, densely 

true in .&). This is a consequence of the single equation for the member operation and 

the usual properties (commutativity and idempotence) of the boolean V operation. 

These two abstract properties, therefore, hold in the optimal normal algebra. In the 

optimal algebra, ground terms of the form member(x, empty), member(x, universe) 

and member(x, union(s,, sz)) (among others) are interpreted as new values of sort 

bool. The optimal normal algebra is, therefore, not standard (it respects but does not 
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preserve the base sort bool). This is neither surprising nor problematic. The optimal 

algebra is not an ideal implementation - it is the repository of abstract properties that 

will hold no matter how the specification is implemented. As in the introduction, it is 

best to think of such properties as program transformations guaranteed to produce no 

observable effects. The optimal semantics can also be represented by the dense subset 

of W consisting of the final algebras corresponding to every possible complete set of 

decisions regarding the observable behavior of the three unspecified operations. If 

the equation “member(3, empty)= true” is added to EXT, the algebras in which the 

contrary equation holds will drop out of 9 and the dense set of candidate final 

algebras will be thinned accordingly. The incremental accretion of abstract properties 

can be illustrated by adding equations to the specification above. For instance, if the 

equation 

member@, universe) = true 

is added, then the property 

add(x, universe)= universe 

holds in the corresponding optimal normal algebra. Similarly, if the equation 

member(x, union(s,, s2))= member(x, sl) V member(x, s2) 

is added then the property 

union(add(x, sl), s2)=add(x, union(s,, sz)) 

holds in the optimal normal algebra. Note that the specification is still incomplete 

because it lacks a specification for the behavior of empty. 

7.2. Optimal standard semantics 

Next we consider the Kripke model 9’ ExT of all standard EXT-algebras. Its 

main interest is in validating additional “inductive” properties (often in single-sorted 

specifications) which are based on the assumption that all observable values in 

a model must be reachable with BASE operators alone. YEXr inherits bounded 

completeness (and directed completeness) from 2, since it is an open subset of 2. The 

completeness of YrxT (Lemma 7.3) is, therefore, a consequence of Theorem 6.3 and the 

proof of Lemma 7.1. The optimal algebra for ,4pExT is called the optimal standard 

algebra. 

Lemma 7.3. For every speci$cation pair (BASE, EXT), the structure .YEXT is complete. 

We illustrate the applications of the optimal standard model with two examples. 

The specifications in the first part of Examples 7.4 and 7.5 are taken from [l]. 
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Example 7.4. Suppose CBAsE = {true, false} and BASE=@. Let EXT add a new operator 

not and the equation 

not(true) = false 

The value of not(false) is left unspecified. It is easy to see that the equation 

not(not(not(x)))= not(x) 

holds in the optimal standard algebra. The “induction” here is simple-there are only 

two standard algebras corresponding to the two choices for not(false). The equation 

does not hold in the optimal normal algebra which contains an infinite number of new 

“truth values” corresponding to multiple applications of not to false. Note that the 

optimal standard algebra is not itself standarddnot(false) is interpreted as a new 

boolean value since neither standard choice is densely true. To repeat a point made in 

the context of Example 7.2, an optimal algebra is not an implementation. The point of 

choosing the YExT structure is that it is possible to validate additional properties 

when an implementation is required to be standard, and the optimal standard algebra 

captures these properties. 

As a more complex example of the same kind, consider the case where 

CBAsE = {true, false, A, V ). Let BASE contain the ground equations for the classical 

two-valued truth table for conjunction and disjunction. Suppose that EXT adds a single 

truth value U of sort bool, but no new equations. There is no final object in YExT (or 

in 9) since the specification of U is incomplete. If it is reasonable to make the 

assumption that U is “actually” one of the two standard truth values, then YExl is the 

appropriate Kripke model. There are again only two standard algebras; so, it is easy 

to compute the optimal standard semantics, which turns out to be the usual strong 

three-valued logic (without negation). That is, the interpretation of bool is exactly the 

set {true, false, U}, and the usual operations are extended by the equations 

trueAU=U, false A U =false, UAU=U 

true V U = true, falseV U = U, uvu=u 

In addition, A and V are commutative. The equations above hold in the optimal 

standard algebra because they are independent of whichever truth value U may turn 

out to be. 9’rxT is not adequate to capture the traditional idea (following Kleene) that 

U represents di~rymr computation. For instance, if the BASE contains negation (1) 

with its usual truth table, the expected equation U =l U fails to hold in the optimal 

standard model. A proper representation of divergence seems to require a Kripke 

model of ordered algebras rather than standard ones. 

This example again illustrates the difference between optimal normal and optimal 

standard semantics. None of the equations of three-valued logic hold in the optimal 

normal algbebra. To show this, we employ a somewhat contrived ExT-algebra B. The 

universe of B has the three truth values {true, false, U}. The operations A and V are 

defined according to Tables 1 and 2. 
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Table 1 -i-able 2 

A true false U V true false U 

true true false false true true true false 
false false false true false true false false 
U true false true U true true false 

Every equation e which is incompatible with B-in the sense that there is no algebra 

C such that C > B and C + e-is false in the optimal normal algebra, and this includes 

all of the equations of three-valued logic. The associative and commutative laws also 

fail for both operations. 

Example 7.5. For an example that requires true (structural) induction, consider 

c BASE = (0, succ} for sort Nat, and BASE =8. Let EXT add the sort set (of Nat) with the 

operations 

min : Nat x Nat-Nat 

least:set-+Nat 

empty : +set 

add : Nat x sethset 

and the equations 

min(O, x)=0 

min(x, 0)=0 

min(succ(x), succ(y))=succ(min(x, y)) 

least(add (x, empty)) = x 

least(add(x, add(y, s)))=min(x, least(add(y, s))) 

The value of least(empty) is meaningless and, more importantly, unspecified. The 

specification is, therefore, incomplete. Nonetheless, the optimal standard semantics 

displays most of the properties the specification is intended to capture. For instance, 

the property 

least(add(0, s)) = 0 

holds in the optimal standard algebra since the choice of a natural number for the 

value of least(empty) has no effect. The equation can be proved mechanically by 

induction over s. This property actually holds in the optimal normal algebra as well. 

However, the equation 

min(x, y)=min(y, x) 

holds in the optimal standard but not in the optimal normal semantics. The reason is 

that the carrier of sort Nat is reachable with 0 and succ in any standard algebra; 



hence, the property can be shown to hold in all such algebras by induction. However, 

it is perfectly possible for the equations 

min(succ(least(empty)), least(empty))=succ(O) 

min(least(empty), x)=0 

to hold in some (unintended) reachable algebra where least(empty) is a nonstandard 

natural number. Consequently, equations such as 

add(x, add(x, s))=add(.u, S) 

add(.u, add(y, s))=add(y, add(x, s)) 

hold in the optimal standard but not in the optimal normal algebra. 

8. Conclusions 

The main conceptual point of this paper is that natural concepts of modality are 

useful in giving semantics of algebraic specifications. We used the modality of on 

u dense open set to define the optimal semantics. This modality is analogous to with 

probability 1 orfor al! sufficiently [arge; they all capture the intuition of almost always. 

There are many situations where this modality is more useful than always. There are 

many situations where this modality is more useful than a/ways, and the semantics of 

incomplete specifications seems to be yet another one. 

Optimal semantics arises naturally when modality is incorporated in the very 

language of specification. The basis is the classification of formulas in Lemma 4.1, 

which also suggests that there are no other semantic approaches based on explicit 

modalities besides the initial, the final, and the optimal. Our use of classes of models as 

Kripke structures is new though perhaps obvious because rxr-algebras are very much 

the possible worlds of a specification. 

The contrast between initial and final semantics can be seen as a contrast between 

the extensional and intensional approaches to semantics. Optimal semantics is a com- 

plete realization of the intentional approach in that it is a universally applicable 

proper generalization of finality. 

Although our results were based on the use of equational specifications, our 

conceptual points hold for more powerful semantic methods. The optimal model 

exists for specifications based on conditional equations, or even first-order logic. 
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