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Abstract

The mesh of buses (MBUS) is a parallel computation model which consists of n×n processors,
n row buses and n column buses but no local connections between two neighboring processors.
As for deterministic (permutation) routing on MBUSs, the known 1:5n upper bound appears to
be hard to improve. Also, the information theoretic lower bound for any type of MBUS routing
is 1:0n. In this paper, we present two randomized algorithms for MBUS routing. One of them
runs in 1:4375n+ o(n) steps with high probability. The other runs 1:25n+ o(n) steps also with
high probability but needs more local computation. c© 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The two-dimensional mesh is widely considered to be a promising parallel architec-
ture in its scalability [12, 14]. In this architecture, processors are naturally placed at
intersections of horizontal and vertical grids, while there can be two di=erent types of
communication links: The ?rst type is shown in Fig. 1(1). Each processor is connected
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Fig. 1. (1) MC, (2) MBUS.

to its four neighbors and such a system is called a mesh-connected computer (MC).
Fig. 1(2) shows the second type: Each processor is connected to a couple of (row and
column) buses. The system is then called a mesh of buses (MBUS).
Permutation routing (simply routing in this paper) is apparently a basic form of

communication among the processors: The input is given by n2 packets that are initially
held by the n× n processors, one by each. Routing requires that all n2 such packets
be moved to their destinations that are mutually distinct. In the case of MCs, a 2n− 2
lower bound comes from a fundamental nature of the model, i.e., the physical distance
between the farthest two processors. Also, the same 2n−2 upper bound can be achieved
by an elementary algorithm based on the dimension-order strategy [12, 16]. Thus, there
remains little for further research in the case of MCs. (This is not true for limited queue-
size as mentioned later.) In the case of MBUSs, on the other hand, there is a wide
margin between the known upper and lower bounds. First of all, unlike the case of
MCs, the dimension-order strategy only gives us a poor algorithm which takes trivial 2n
steps. The best upper and lower bounds known are 1:5n and (1− �)n, respectively [8].
The 1:5n bound appears to be hard to improve; it is also known to be a (tight) lower
bound if we impose the so-called “source-oblivious” condition [5].
The main purpose of this paper is to decrease this 1:5n upper bound by allowing ran-

domization. Two randomized algorithms are given: One of them runs in 1:4375n+o(n)
steps with high probability. The other runs in 1:25n+o(n) steps also with high proba-
bility but needs more local computation. The idea is an e!cient use of the buses and
a reduction of packet collisions. Consider, for example, the (deterministic) dimension-
order routing where each packet ?rst moves horizontally (in the order of original
position) using the ?rst n steps and then moves vertically (in the order of destination
position) in the second n steps. One can see that column buses are completely idle in
the ?rst n steps and so are row buses afterwards in this algorithm.
A simple attempt to avoid this ine!ciency is to try to move vertically the ?rst n

packets immediately after they move horizontally. If those n packets go to all di=erent
n columns, i.e., they have all di=erent column destinations, then we can do this in a
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single step without collision. If collision happens in some column, then we can use
randomization techniques to resolve the collision. If few collisions occur, then we might
achieve an approximately 1:0n upper bound. Unfortunately, however, this observation
is too optimistic. Some experiments show that a lot of collisions occur for even random
permutation. It seems that this approach gives us no better bounds than 3n; it is much
worse than the deterministic version. Thus, an e!cient use of buses tends to imply more
collisions. Our ?rst algorithm avoids this di!culty in a tricky way. The second one is
based on a novel use of the technique that allows us to generate many pseudo-random
numbers deterministically from a few random numbers.
Research on mesh routing has a long history and has a huge amount of literature.

Nevertheless there still remain a lot of unknowns. For example, our knowledge on
the three-dimensional (3-D) mesh is much weaker than the 2-D mesh. Recently, it is
shown [6] that minimum-bending oblivious routing on the 3-D mesh needs L(N 2=3)
steps that is much more than O(N 1=2) for the 2-D mesh (N is the total number of
processors). It is not known either whether we can improve O(n2) upper bounds sub-
stantially for 2-D oblivious routing on MCs with constant queue-size [3, 11]. (However,
very recently there was a progress, see [4, 7].) There is also a gap between the known
upper and lower bounds, (1 + �)n + o(n) and 0:691n, respectively, for 2-D routing
on the mesh equipped with both buses and local connections [2, 13]. Again, however,
there is a recent result which shows that we can improve upper bounds greatly on this
model using randomization [10].

2. Models and problems

An MBUS consists of n2 processors, Pi; j, 16i, j6n, and n row and n column
buses. Pi; j is connected to the ith row bus and the jth column bus. The problem of
permutation routing on the MBUS is de?ned as follows: The input is given by n2

packets that are initially held by the n2 processors, one by each. Each packet, (s; d; �),
consists of three portions; s is a source address that shows the initial position of the
packet, d is a destination address that speci?es the processor to which the packet
should be moved, and � is a data portion that is not important in this paper. No two
packets have the same destination address. Routing requires that all n2 such packets
be moved to their correct destinations.
Our discussion throughout this paper is based on the following four rules on the

model: (i) We follow the common practice on how to measure the running time of
MBUSs: One-step computation of each processor P consists of (a) reading the cur-
rent data on both row and column buses P is connected to, (b) executing arbitrarily
complicated instructions using the local memory and (c) if necessary, writing data to
the row and=or column buses. The written data will be read in the next step. (ii) The
queue-size is not bounded, namely, an arbitrary number of packets can stay on a single
processor temporarily. (iii) What can be written on the buses by the processor P must
be the packet originally given to P as its input packet or one of the packets that have



230 K. Iwama et al. / Theoretical Computer Science 261 (2001) 227–239

been read so far by P from its row or column bus. (Nothing other than packets can be
written.) This means that any kind of data compression is not allowed. (iv) We allow
the simultaneous write. However, if two or more packets are written on the same bus
simultaneously, then a special value Nows on the bus, which has no information other
than collision.
As mentioned in the previous section, the 2n-step dimension-order routing moves

horizontally the leftmost n packets initially placed on P1;1; P2;1; : : : ; Pn;1 in step 1,
P1;2; P2;2; : : : ; Pn;2 in step 2 and so on. Namely, packets are moved in their “source-order”
in this ?rst stage. In the second stage, n packets whose destinations are the uppermost n
processors, P1;1; P1;2; : : : ; P1; n, are moved vertically in step 1, then, P2;1; P2;2; : : : ; P2; n, and
so on. Thus they are moved in the “destination-order” regardless of their current posi-
tions. It should be noted that this destination-order transmission can only be used after
all the packets have moved horizontally. That is why column buses are completely
idle in the ?rst stage. If we do not wait, then we have to give up the destination-
order transmission and encounter the more serious problem, i.e., packet collisions, as
described in Section 1.
The 1:5n-step algorithm, called DR4 from now on, reduces the number of ?rst-stage

steps from n to 0:5n as follows: The whole n× n plane is divided into four 0:5n× 0:5n
subplanes. Packets in the upper-left 0:5n× 0:5n and the lower-right 0:5n× 0:5n sub-
planes are moved horizontally and those in the upper-right and the lower-left sub-
planes vertically, both in the source-order. Thus, all the buses are used in the ?rst
stage, which reduces the computation time by one half. The second stage is almost the
same as before.

3. 1:4375n + o(n) randomized algorithm

Note that there are n2 packets, 2n buses and each packet has to ride on buses twice
(in general). Thus 2× n2=2n= n steps are needed even if we have no idle buses. In
the 1:5n-step algorithm DR4, Stage 1 has no idle buses. However, it is impossible to
improve Stage 2 since we can create an instance as an “adversary” which leaves n
packets on a single bus after Stage 1. (Detours might help but it seems di!cult to
design an algorithm that exploits the possibility.)
Our ?rst randomized algorithm, RR, is based on DR4. The basic idea is as follows:

(i) We should avoid, for any instance, the bad case where n packets are gathered on
a single bus after Stage 1. (ii) In other words, we should distribute packets evenly so
that each single bus has approximately 0:5n packets at Stage 2. (iii) Then it is not
so hard to design a randomized algorithm for Stage 2 that needs more than optimal
0:5n steps but some 0:75n steps are enough. (iv) In order to accomplish the even
distribution in (ii), we now have to give up the very e!cient Stage 1 of DR4. Some
loss of performance is inevitable, but if we can keep it less than 0:75n steps, then the
1:5n bound in total can be improved.
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Fig. 2. Two packets written on the row bus in Stage 1–1.

Algorithm: RR
Stage 1: The whole plane is divided into four subplanes as DR4. This stage consists

of Stages 1–1 and 1–2.
Stage 1–1: For a while, we only look at the upper-left subplane. The 0:5n processors

in each row are divided into 0:125n blocks; each block includes four consecutive pro-
cessors. For example, (P1;1; P1;2; P1;3; P1;4) is the ?rst block of row 1, (P1;5; P1;6; P1;7; P1;8)
is the second block and so on. Now from j=1; 2; : : : ; through 0:125n, namely for each
block from left to right, the following Phases 1 and 2 are executed. The same operation
is executed on each row bus in parallel; the description below is for row i:
Phase 1: The leftmost two processors of block j, i.e., Pi;4j−3 and Pi;4j−2, write their

initial packets on the row bus with probability 1
2 .

Phase 2: One of the following four operations is selected due to the result of Phase 1.
Note that all the processors on the bus can ?gure out which case occurred.

1: If the packet whose source address is (i; 4j−3) was on the bus, i.e., if only Pi;4j−3

wrote the packet, then Pi;4j−1 writes its initial packet on the row bus. Go to the
next block (see Fig. 2(1)).

2: If only Pi;4j−2 wrote the packet, then Pi;4j−1 writes its initial packet on the row
bus. Go to the next block (see Fig. 2(2)).

3: If collision occurred, i.e., if both Pi;4j−3 and Pi;4j−2 wrote the packets, then Pi;4j−3

again writes its packet and then Pi;4j writes its packet on the row bus. Thus we
need three steps in this (and next) case. Go to the next block (see Fig. 2(3)).

4: If the bus was idle, i.e., if neither Pi;4j−3 nor Pi;4j−2 wrote the packets, then Pi;4j−2

writes its packet and then Pi;4j writes its packet on the row bus. Go to the next
block (see Fig. 2(4)).

Thus, exactly two out of four packets in each block are moved horizontally. The
remaining two packets, called m-packets, are moved vertically in Stage 1–2.
Stage 1–2: Now the 0:5n processors in each column are divided into 0:25n blocks,

i.e., each block has two processors. From i=1; 2; : : : ; through 0:25n, namely for each
block from top to bottom, Phases 1 and 2 are executed.
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Fig. 3. The remaining packets written on the column bus in Stage 1–2.

Phase 1: Each of the two processors, P2i−1; j and P2i; j, in block i writes its m-packet
(if any).
Phase 2: Again one of the four operations is selected:

1. If only P2i−1; j wrote the packet, then go to the next block (see Fig. 3(1)).
2. If only P2i; j wrote the packet, then go to the next block (see Fig. 3(2)).
3. If neither P2i−1; j nor P2i; j wrote the packet, then go to the next block (see

Fig. 3(3)).
4. If both P2i−1; j and P2i; j wrote the packets, then P2i−1; j writes its packet and then
P2i; j writes its packet on the column bus. Go to the next block (see Fig. 3(4)).

This concludes Stage 1 for the upper-left subplane. The algorithm is exactly the same
for the lower-right subplane. As for the upper-right and the lower-left subplanes, we
just switch “rows” and “columns”, i.e., Stage 1–1 uses columns and Stage 1–2 rows.
Stage 2: Every packet has already moved to its row or column destination. Thus the

situation is the same as at the beginning of Stage 2 of DR4. The di=erence is that the
number of packets held by processors on each single bus is evenly distributed, i.e., is
about 0:5n (the proof is given later). Let us look at some single bus, say, row 1. The
basic idea of Stage 2 is to use the destination-order counterpart of Stage 1–2. Namely,
at the ?rst step, if a processor has a packet whose destination is (1; 1) or (1; 2) then
it writes that packet on the row bus. If no collision occurs, i.e., if at most one of the
two packets exists on this row, then we move forward. Otherwise, two more steps are
used for sending each of those collided packets.
Unfortunately, this algorithm does not work. The reason is that the two packets

whose destinations are (1; 1) and (1; 2) may be held by some single processor. If this
happens, then that processor puts either one on the bus but other processors following
the above algorithm assume that there is only one packet on this row whose destination
is in the ?rst block.
To solve this problem, we introduce a “special packet” (SP) whose purpose is to

broadcast special information. (If one does not like to use a packet for such a special
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purpose, then we can give another algorithm whose performance is a little bit worse
than the current one. See the end of this section.) As an SP, we use the packet whose
destination is (n; n). At the beginning of Stage 2, we introduce two extra steps to let
all the processors know this SP. Now from i=1; 2; : : : ; through 0:5n, i.e., for each
block from left to right, the following two phases are executed.
Phase 1. Let Q1 and Q2 be packets whose destinations are in block i. For each

processor P on this row, if P holds either Q1 or Q2, then P writes that packet on the
bus. If P holds both Q1 and Q2, then P writes the SP.
Phase 2. One of the following four operations is selected:

1. If Q1 Nowed on the bus in Phase 1, then all the processors move on to the next
iteration, namely, for i + 1.

2. If Q2 Nowed, then all the processors move on to the next iteration also.
3. If nothing Nowed, then all the processors move on to the next iteration also.
4. If SP Nowed or collision occurred, then we need two more steps; the processor

holding Q1 writes it ?rst and then the processor holding Q2 follows.

We have not yet stated when Stage 2 should be started. Our design of RR determined
to start Stage 2 at some ?xed step that is no later than 0:6875n+o(n). At this moment
all processors have ?nished Stage 1 with high probability (see the proof of Theorem 1).
However, there is a slight chance that some processor is still executing Stage 1. In this
case, some unexpected data-collision will happen in Stage 2 and the algorithm fails.
To improve it so as not to fail is possible but needs some technical details. For this
purpose, we can use the SP again, which can also be avoided at the expense of extra
o(n) steps (omitted).

Theorem 1. With high probability; RR can rout any instance within 1:4375n + o(n)
steps.

Proof. We ?rst calculate the expected number of steps each stage takes. Then it is
proved that the probability that RR takes essentially more steps than the average is
very low.
Stage 1–1: See Phase 2. The probabilities for cases 1–4 are all the same, i.e., 1

4 .
Cases 1 and 2 take two steps and cases 3 and 4 take three steps. Therefore, it takes
2:5 steps for each block on average or 0:3125n steps for 0:125n blocks.
Stage 1–2: Consider an arbitrary column in the upper-left subplane. It is not hard

to see that each processor on this column holds an m-packet with probability 1
2 and

furthermore that this occurs independently between any pair of processors on this col-
umn. In Phase 2, cases 1–3 take one step and case 4 three steps. Hence, we need 1:5
steps on average per block or 0:375n steps for 0:25n blocks.
Stage 2: Let us calculate the probability of cases 1–4 in Phase 2 where we have to

be a bit more careful than before.
Case a: Q1 and Q2 come from di=erent blocks of Stage 1–1. Then one can easily

see that the probabilities for cases 1–4 are the same, i.e., 1
4 for each.
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Case b: Q1 and Q2 come from the same block. Then we should check many di=erent
possibilities, such as coming from the top two positions, from the middle two positions,
and so on. However, it turns out that in any possibility, the probability for case 4 is
at most 1

4 (
1
4 or 0, in fact).

Recall that cases 1–3 need one step and case 4 needs three steps. Hence, we need
at most 1:5 steps on average per block or at most 0:75n steps for 0:5n blocks.
Now we shall evaluate the probability for bad behaviors using the Cherno=

bound [1].

Lemma 1. Let X1; X2; : : : ; Xn be independent Bernoulli trials having binomial distribu-
tion B(n; p); 0¡p¡1. Let X =

∑n
i=1 Xi; �=E[X ]. Then; for any 0¡�¡1;

Pr[X¿(1 + �)�]¡ exp
(−�2�

3

)
:

Stage 1-1: For a time being, we only consider some single bus. For block i,
let Xi=2 when the case 1 or 2 occurs and Xi=3 otherwise. The X =

∑
Xi has a

binomial distribution B(0:125n; 12 ), and �=E[X ] = 0:3125n. Apply the Cherno= bound
with �= c1

√
n ln n=� for c1¿0. Then,

Pr[X¿0:3125n+ c1
√
n ln n]¡ exp

(
−16
15
c21 ln n

)
= n−d1

for some d1¿0. Namely, the number of steps for Stage 1–1 is at most 0:3125n +
c1
√
n ln n with probability 1− n−d1 .

Stage 1–2: Our analysis is almost the same. Let Xi=1 when one step is needed and
Xi=3 when three steps are needed, then the number of steps for this stage is at most
0:375n+c2

√
n ln n with probability 1−n−d2 . Thus Stage 1 takes at most 0:6875n+o(n)

steps with high probability.
Stage 2: Let Yi=3 when case 4 occurs (i.e., three steps are needed) and Yi=1

otherwise. This time, however, Y1; Y2; : : : ; Y0:5n may not be totally independent. For
example, if two packets heading for block 1 come from the top and third positions of
some block (on the upper-right or the lower-left subplane) in Stage 1–1, then there is
no possibility that two packets heading for block 2 come from the second and fourth
positions of the same block. Namely, if Y1 = 3 (with probability 1

4 ), then Y2 must be 1.
However, we can show that the sum of those non-independent random variables does
not deviate from its expected value with high probability using the following lemma
[15].

Lemma 2. Let X0; X1; X2; : : : be a martingale sequence such that for each k;

|Xk − Xk−1|6c;
where c is some constant independent of k. Then; for all t¿0 and any �¿0;

Pr[|Xt − X0|¿�c
√
t]62 exp(−�2=2):
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Let Y =
∑0:5n

i=1 Yi and de?ne a martingale sequence X0; X1; : : : ; X0:5n by setting
X0 =E[Y ] and for 16i60:5n Xi=E[Y |Y1; Y2; : : : ; Yi]. Now we shall evaluate the value
|Xi −Xi−1| for 16i60:5n. Note that the di=erence between Xi and Xi−1 depends only
on the value of Yi, which is determined by the behavior of two packets heading for the
ith block. The behavior of each of those two packets a=ects the behavior of at most
three other packets in its block of Stage 1 and hence at most three other random
variables Yj’s. Therefore, conditioning the value of Yi a=ects at most seven Yj’s (in-
cluding Yi itself) and the di=erence between Xi and Xi−1 is bounded by some constant
c363 × 7=21 since Yi63. By applying Lemma 2 with t= n=2 and �=

√
2d3 ln n

for some d3¿0, one can conclude that the number of steps for Stage 2 is at most
0:75n+ c3

√
d3n ln n with probability 1− 2n−d3 .

We have 2n buses. So, the probability that the bad behavior occurs in at least one
bus can be as large as 2n times. However, since its probability can be written as n−d

for a large enough constant d, we do not have to worry about that. As a result, the
whole algorithm takes at most 1:4375n+ o(n) with high probability.

Remark 1. We can also design Stage 2 without using an SP: Phase 1: If P holds
both Q1 and Q2, then P writes Q1 and then writes Q2 at the next step. Phase 2: 1–3
are the same [4]. If collision occurred, then we examine which case happened in the
previous block. If the case 1 happens, then the collision might be caused by the packet
Q2 of the previous block. So, we insert an extra step to send this Q2 (but it may be
idle if the collision is caused by two packets of the current block). Although details
are omitted, the algorithm runs in at most 1:46875n+o(n) steps with high probability,
which is a little worse than Theorem 1 but is still better than 1:5n.

Remark 2. Local computation in each step is very simple in RR. That is obviously a
good point of this algorithm compared to the next algorithm.

4. 1:25n + o(n) randomized algorithm

Recall that there are n processors on each bus and roughly one half of these n
processors put their packets on its bus in the previous algorithm RR. However, it takes
much more time than 0:5n to ?nish the transmission. An obvious reason is a lot of
packet collisions: If each processor P would know whether or not each other processor
on the same bus is now trying to write its packet, then P could calculate a proper
time-slot at which P should write its own packet without collision or waste of the bus.
This is in fact possible if P would know all the random numbers the other processors

have generated. To this goal, one can use the technique of generating many pseudo-
random numbers deterministically from a few random numbers. Some preliminaries are
needed: Let X1; X2; : : : ; Xn be discrete random variables de?ned on the same probability
space. Such a set of random variables is said to be pairwise independent if for all i �= j,

Pr[Xi = x |Xj = y] = Pr[Xi = x]:
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This pairwise independence is naturally extended to the k-wise independence: A set of
similarly de?ned random variables X1; : : : ; Xn are said to be k-wise independent if for
all di=erent i1; i2; : : : ; ik ,

Pr[Xi1 = xi1 |Xi2 = xi2 ; Xi3 = xi3 ; : : : ; Xik = xik ] = Pr[Xi1 = xi1 ]:

Lemma 3 (see Jo=e [9]). Let m be a prime number and Zm denote the <eld of inte-
gers modulo m. Then the set of n¡m random variables X1; : : : ; Xn calculated by the
following equation from the k numbers; a1; : : : ; ak ; which are randomly chosen from
Zm are k-wise independent:

Xi = a1ik−1 + a2ik−2 + · · ·+ ak−1i + ak modm: (1)

Consider for example the n processors P1; : : : ; Pn on the ?rst row. The leftmost proces-
sor P1 generates k (truly) random numbers a1; : : : ; ak and transmits them to P2 through
Pn. Then each Pi can generate its own random number Xi by Eq. (1). The set of Xi’s
are guaranteed to be k-wise independent. The degree of randomness for each Xi is
smaller than before, but we can show that it is enough for our purpose when k =6.
We have another technical problem; how to transmit a1; : : : ; ak . Recall that our rule

is that only packets can be transmitted on the bus. Fortunately, the amount of informa-
tion carried by a1; : : : ; ak is not too large since k is a constant. Moreover, we can set m
to be nearly equal to n2, so the number of the total bits of a1; : : : ; ak is O(log n). Con-
sequently, the following simple algorithm works: (i) P1 creates a1; : : : ; ak . (ii) Suppose
that the bit sequence of a1; : : : ; ak (may be encoded) is b1; b2; b3; : : : . Then P1 puts its
original packet repeatedly on the bus at time-slot i if bi=1 and puts nothing if bi=0.
This takes only O(log n) steps.
Now we are ready to give our new algorithm RRk which consists of two stages as

before. In the ?rst stage, about one half of the whole packets move horizontally to
their column destinations, and the rest to their row destinations. The second stage is
exactly the same as the previous algorithm RR.

Algorithm: RRk
Stage 1: Choose any prime number m¿n2. Let Zm= {1; 2; : : : ; m− 1}, Z0m= {1; : : : ;

m=2} and Z1m= {m=2+1; : : : ; m−1}. Note that |Zm|=m−1 and |Z0m|= |Z1m|=(m−1)=2
(m− 1 is even since m is a prime number).
Phase 1: P1;1 generates k prime numbers a1; : : : ; ak ∈Zm (k will be set to six when

the probability of success is calculated).
Phase 2: P1;1 transmits a1; : : : ; ak to all the processors on the ?rst column in the way

described above.
Phase 3: Pi;1 (16i6n) transmits a1; : : : ; ak to all the processors on the ith row in

the same way.
Phase 4: Now each processor Pi; j has a1; : : : ; ak , from which it computes f(i; j)=

a1{n(i − 1) + j}k−1 + a2{n(i − 1) + j}k−2 + · · · + ak modm. Then set Xi; j =1 if
f(i; j) ∈ Z1m and Xi; j =0 if f(i; j)∈Z0m.
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Phase 5: If Xi; j =1, then Pi; j puts its packet on the row bus ?rst in the following
way: Pi; j computes how many processors among Pi;1; : : : ; Pi; j−1 also write to the row bus
?rst by simulating Phase 4 of each processor (we need local computation proportional
to n here). If that number is t, then Pi; j writes to the row bus at step t+1. If Xi; j =0,
then Pi; j puts its packet on the column bus ?rst. It uses the similar calculation to decide
when it should do so.
Stage 2: Note that all the processors can calculate when the ?rst stage ends

(by calculating the last processor which accesses to the row or column bus at Stage 1).
After the ?rst stage is ?nished, all the processors enter Stage 2 that is exactly the same
as Stage 2 of RR. One might think why we cannot use the same technique as Stage 1.
Recall that there are approximately 0:5n packets on each bus at the beginning of this
stage. If each processor knows the current positions or the destinations of all those
packets on the bus, then we can use the same technique as before. Unfortunately,
neither is known.

Theorem 2. For k =6; RRk halts within 1:25n+ o(n) steps with high probability.

Proof. Note that Phases 1 and 4 include only local computation. Also, as mentioned
before, Phases 2 and 3 take only O(log n) steps. Therefore, what we have to prove is
that the number of packets written to a row bus ?rst (and to a column bus ?rst also)
is su!ciently close to 0:5n and furthermore, at the beginning of Stage 2, the number
of packets to move on each single bus is also close to 0:5n.
Fix some row, say row j. Let Pi be the ith processor on this row and Xi be the

random variable such that Xi=1 or 0 is determined at Phase 4. Let X=
∑n

i= 1 Xi. Then
it turns out [15] that the expected value of X is 0:5n. What we wish to know is the
probability that X di=ers from 0:5n by a certain amount of value. Note that X is a
random variable that is a sum of (not necessarily independent) random variables Xi,
for which we cannot use Cherno= bound. Instead we use the (generalized) Chebyshev
bound: For an integer k¿2, let �kX =E[(X−0:5n)k ]. (This is called kth central moment,
which does not exist for some probability space. It obviously exists in the present case.)

Lemma 4 (see Motwani and Raghavan [15] for example). For any t¿0;

Pr[|X − 0:5n|¿ t k

√
�kX ]6

1
tk
:

In order to prove this theorem, it is enough to consider only the case where k =3 (the
reason will be described later). Let us evaluate the third central moment �3U =E[(U −
E[U ])3], where U=

∑
Ui is the sum of n 3-wise independent binary random variables.

Expand �3U =E[(
∑
Ui−

∑
E[Ui])3], and consider each term. Such a term involves up

to three variables from Ui’s. However, we can claim that terms involving more than
one variable cancel each other. To see this, let T be a term of the expansion that in-
volves more than one variable. Then, T contains a variable Ui that appears in T exactly
once. Thus, T can be written in the form E[T1Ui] or E[T2E[Ui]], where T1 or T2 does



238 K. Iwama et al. / Theoretical Computer Science 261 (2001) 227–239

not contain Ui. Note that the terms in these two forms (for ?xed Ui) are in one to one
correspondence, each E[T1Ui] corresponding to E[−T1E[Ui]]. Due to the 3-wise inde-
pendence we can write E[T1Ui] as E[T1]E[Ui] and E[−T1E[Ui]] as −E[T1]E[Ui] and
thus cancel them out. The only remaining terms are of the form E[U 3

i ], E[U
2
i ]E[Ui], or

E[Ui]3, involving only one variable, with some constant coe!cients. The contribution
of these terms is a constant per variable and thus O(n) in total.
Note that the 6-wise independent random variables Xi’s satisfy 3-wise independency.

Using Lemma 4 with �3X =O(n),

Pr[|X − 0:5n|¿ t 3
√
O(n)]6

1
t3
:

If we set t= nc−1=3 for a positive constant c, then

Pr[|X − 0:5n|¿ O(nc)]6
1

n3c−1 :

This means X60:5n + o(n) with probability at least 1 − n−(3c−1). Then it follows
that the number of steps needed in Stage 1 for the ?xed single bus is at most 0:5n+
o(n) + O(log n) with at least the same probability. This holds for all other buses.
For the analysis of Stage 2, we can apply the same argument as above since random

variables Yi’s are 3-wise independent. By the above calculation we can get �3Y =O(n),
i.e.,

Pr[|Y − 0:75n|¿ O(nc)]6
1

n3c−1 ;

which says Stage 2 takes at most 0:75n+o(n) steps with probability at least 1−n−(3c−1)

per bus.
Since there are 2n buses, the unsuccessful probability can be up to 2n times. How-

ever, we can still get a su!ciently small probability by setting 2
3¡c¡1. As a result,

RRk requires 1:25n+ o(n) steps with high probability.

5. Concluding remarks

It is known that routing can be done in 1:0n steps if all the processors know the
source and destination addresses of all the packets (so-called o=-line routing) [8]. This
1:0n is also an absolute lower bound. The question is how close we can be to this
bound in the normal routing. Further improvements may be possible for Stage 2 of
both RR and RRk and for the local computation in Stage 1 of RRk . Also an interesting
question is whether we can apply our randomization technique to improve the upper
bound for the mesh equipped with both buses and local links.
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