Connectivity of Kronecker products by K_{2}

Wei Wang, Zhidan Yan*
College of Information Engineering, Tarim University, Alar 843300, China

ARTICLE INFO

Article history:

Received 17 April 2011
Received in revised form 29 July 2011
Accepted 4 August 2011

Keywords:

Connectivity
Kronecker product
Separating set

Abstract

Let $\kappa(G)$ be the connectivity of G. The Kronecker product $G_{1} \times G_{2}$ of graphs G_{1} and G_{2} has vertex set $V\left(G_{1} \times G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and edge set $E\left(G_{1} \times G_{2}\right)=\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right): u_{1} u_{2} \in\right.$ $\left.E\left(G_{1}\right), v_{1} v_{2} \in E\left(G_{2}\right)\right\}$. In this paper, we prove that $\kappa\left(G \times K_{2}\right)=\min \{2 \kappa(G), \min \{|X|+$ $2|Y|\}\}$, where the second minimum is taken over all disjoint sets $X, Y \subseteq V(G)$ satisfying (1) $G-(X \cup Y)$ has a bipartite component C, and (2) $G[V(C) \cup\{x\}]$ is also bipartite for any $x \in X$. © 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout this paper, a graph G always means a finite undirected graph without loops or multiple edges. It is well known that a network is often modeled as a graph and the classical measure of the reliability is the connectivity and the edge connectivity.

The connectivity of a simple graph $G=(V(G), E(G))$, denoted by $\kappa(G)$, is the smallest number of vertices whose removal from G results in a disconnected or trivial graph. A set $S \subseteq V(G)$ is a separating set of G, if either $G-S$ is disconnected or has only one vertex. Let G_{1} and G_{2} be two graphs, the Kronecker product $G_{1} \times G_{2}$ is the graph defined on the Cartesian product of vertex sets of the factors, with two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ adjacent if and only if $u_{1} u_{2} \in E\left(G_{1}\right)$ and $v_{1} v_{2} \in E\left(G_{2}\right)$. This product is one of the four standard graph products [1] and is known under many different names, for instance as the direct product, the cross product and conjunction.

Recently, Brešar and Špacapan [2] obtained an upper bound and a lower bound on the edge connectivity of Kronecker products with some exceptions; they also obtained several upper bounds on the vertex connectivity of the Kronecker product of graphs. Mamut and Vumar [3] determined the connectivity of Kronecker product of two complete graphs. Guji and Vumar [4] obtained the connectivity of Kronecker product of a bipartite graph and a complete graph. These two results are generalized in [5], where the author proved a formula for the connectivity of Kronecker product of an arbitrary graph and a complete graph of order ≥ 3, which was conjectured in [4]. We mention that a different proof of the same result can be found in [6]. For the left case $G \times K_{2}$, Yang [7] determined an explicit formula for its edge connectivity. Bottreau and Métivier [8] derived a criterion for the existence of a cut vertex of $G \times K_{2}$; see also [9]. In this paper, based on a similar argument of [6], we determine a formula for $\kappa\left(G \times K_{2}\right)$. For more study on the connectivity of Kronecker product graphs, we refer to $[10,11]$.

Let $X, Y \subseteq V(G)$ be two disjoint sets with $V(G)-(X \cup Y) \neq \emptyset$. We shall call (X, Y) a b-pair of G if it satisfies:
(1) $G-(X \cup Y)$ has a bipartite component C, and
(2) $G[V(C) \cup\{x\}]$ is also bipartite for any $x \in X$.

Fig. 1 shows two examples, where (X, Y) and $\left(X^{\prime}, Y^{\prime}\right)$ are b-pairs of the two graphs G_{1} and G_{2}, respectively.

[^0]

Fig. 1. Two graphs and their b-pairs.
Denote $b(G)=\min \{|X|+2|Y|:(X, Y)$ is a b-pair of $G\}$. We note that $b\left(G_{1}\right)=1$ and $b\left(G_{2}\right)=2$ in Fig. 1. Our main result is the following.

Theorem 1.1. $\kappa\left(G \times K_{2}\right)=\min \{2 \kappa(G), b(G)\}$.
We end this section by giving some useful properties of $b(G)$. Let $v \in V(G)$, we use $N(v), d(v)$ and $\delta(G)$ to denote the neighbor set of v, the degree of v, and the minimum degree of G, respectively.

Lemma 1.1. Let $m=|G| \geq 2$ and u be any vertex of G. Then
(1) $b(G)=0$, if G is bipartite.
(2) $b(G) \leq \delta(G)$.
(3) $b(G) \leq b(G-u)+2$.

Proof. Part (1) is clear since (\emptyset, \emptyset) is a b-pair of any bipartite graph by the definition of b-pairs. For each $v \in V(G),(N(v), \emptyset)$ is a b-pair of G. (Take the isolated vertex v in $G-N(v)$ as the bipartite component C.) Therefore $b(G) \leq d(v)$ and part (2) is verified. Similarly, let $\left(X^{\prime}, Y^{\prime}\right)$ be any b-pair of $G-u$. It is straightforward to show that $\left(X^{\prime}, Y^{\prime} \cup\{u\}\right)$ is a b-pair of G. Therefore, $b(G) \leq\left|X^{\prime}\right|+2\left|Y^{\prime}\right|+2$ and part (3) is verified.

2. Proof of the main result

We first recall some basic results on the connectivity of Kronecker product of graphs [12]; see also [1].
Lemma 2.1. The Kronecker product of two nontrivial graphs is connected if and only if both factors are connected and at least one factor is nonbipartite. In particular, $G \times K_{2}$ is connected if and only if G is a connected nonbipartite graph.

Lemma 2.2. Let G be a connected bipartite graph with bipartition (P, Q) and $V\left(K_{2}\right)=\{a, b\}$. Then $G \times K_{2}$ has exactly two connected components isomorphic to G, with bipartitions $(P \times\{a\}, Q \times\{b\})$ and $(P \times\{b\}, Q \times\{a\})$, respectively.

From Lemmas 1.1(1) and 2.1, we only need to prove Theorem 1.1 for connected and nonbipartite graphs. For each $u \in V(G)$, set $S_{u}=\{u\} \times V\left(K_{2}\right)=\{(u, a),(u, b)\}$. Let $S \subseteq V\left(G \times K_{2}\right)$ satisfy the following two assumptions.

Assumption 1. $|S|<\min \{2 \kappa(G), b(G)\}$, and
Assumption 2. $S_{u}^{\prime}:=S_{u}-S \neq \emptyset$ for each $u \in V(G)$.
Let G^{*} be the graph whose vertices are the classes S_{u}^{\prime} for all $u \in V(G)$ and in which two different vertices S_{u}^{\prime} and S_{v}^{\prime} are adjacent if $G \times K_{2}-S$ contains an $\left(S_{u}^{\prime}-S_{v}^{\prime}\right)$ edge, that is, an edge with one end in S_{u}^{\prime} and the other one in S_{v}^{\prime}.

Under the two assumptions on $S \subseteq V\left(G \times K_{2}\right)$, the connectedness of $G \times K_{2}-S$ is verified by the following two lemmas.
Lemma 2.3. If G is a connected nonbipartite graph, then G^{*} is connected.
Proof. Suppose to the contrary that G^{*} is disconnected. Then the vertices of G^{*} can be partitioned into two nonempty parts, U^{*} and V^{*}, such that there are no $\left(U^{*}-V^{*}\right)$ edges. Let $U=\left\{u \in V(G): S_{u}^{\prime} \in U^{*}\right\}, V=\left\{v \in V(G): S_{v}^{\prime} \in V^{*}\right\}$ and Z be the collection of ends of all $(U-V)$ edges. Let $Z^{*}=\left\{S_{u}^{\prime}: u \in V(G),\left|S_{u}^{\prime}\right|=1\right\}$. For any $u \in Z$, there exists an edge $u v \in E(U, V)$. It follows that both S_{u}^{\prime} and S_{v}^{\prime} contain exactly one element, since otherwise $G \times K_{2}-S$ contains an $\left(S_{u}^{\prime}-S_{v}^{\prime}\right)$ edge, i.e., $S_{u}^{\prime} S_{v}^{\prime} \in E\left(G^{*}\right)$, which is contrary to the fact that there are no $\left(U^{*}-V^{*}\right)$ edges. Therefore, $S_{u}^{\prime} \in Z^{*}$ and we have $|Z| \leq\left|Z^{*}\right|$ by the arbitrariness of u in Z.

Case 1: Either $U \subseteq Z$ or $V \subseteq Z$. We may assume $U \subseteq Z$. Let u be any vertex in U, then $d(u) \leq|Z|-1$, and hence $\delta(G) \leq|Z|-1$. Therefore, by Lemma $1.1(2)$, we have $|S|=\left|Z^{*}\right| \geq|Z|>\delta(G) \geq b(G)$, a contradiction.

Case 2: $U \nsubseteq Z$ and $V \nsubseteq Z$. Either of $U \cap Z$ and $V \cap Z$ is a separating set of G. Therefore, $\kappa(G) \leq \min \{|U \cap Z|,|V \cap Z|\} \leq|Z| / 2$. Similarly, we have $|S|=\left|Z^{*}\right| \geq|Z| \geq 2 \kappa(G)$, again a contradiction.

Lemma 2.4. Any vertex S_{w}^{\prime} of G^{*}, as a subset of $V\left(G \times K_{2}-S\right)$ is contained in the vertex set of some component of $G \times K_{2}-S$.
Proof. If $\left|S_{w}^{\prime}\right|=1$, then the assertion holds trivially. Now assume $\left|S_{w}^{\prime}\right|=2$. Let $U=\left\{u \in V(G):\left|S_{u}^{\prime}\right|=2\right\}, V=\{v \in V(G)$: $\left.\left|S_{v}^{\prime}\right|=1\right\}$ be the partitions of $V(G)$ and C the component of $G-V$ containing $w \in U$.

Since $|V|=|S|<b(G)$ by Assumption 1, it follows that (V, \emptyset) is not a b-pair of G. Note $S_{w}^{\prime} \subseteq V\left(C \times K_{2}\right)$. We may assume that the component C containing w is bipartite, since otherwise $C \times K_{2}$ is connected by Lemma 2.1 and hence the result follows. Therefore, by the definition of b-pairs, there exists a vertex $v \in V$ such that $G[V(C) \cup\{v\}]$ is nonbipartite.

Let (P, Q) be the bipartition of C and $V\left(K_{2}\right)=\{a, b\}$. Then, by Lemma $2.2, C \times K_{2}$ has exactly two components C_{1} and C_{2} isomorphic to C, with bipartitions $(P \times\{a\}, Q \times\{b\})$ and $(P \times\{b\}, Q \times\{a\})$, respectively. The nonbipartiteness of $G[V(C) \cup\{v\}]$ implies that v is a common neighbor of P and Q. By symmetry, we may assume $S_{v}^{\prime}=\{(v, a)\}$. It is easy to see that the subgraph induced by $V\left(C \times K_{2}\right) \cup S_{v}^{\prime}$ is connected since (v, a) is a common neighbor of C_{1} and C_{2}.

Proof of Theorem 1.1. We apply induction on $m=|V(G)|$. It trivially holds when $m=1$. We therefore assume $m \geq 2$ and the result holds for all graphs of order $m-1$.

Let S_{0} be a minimum separating set of G and $S=S_{0} \times V\left(K_{2}\right)=\left\{(u, a),(u, b): u \in S_{0}\right\}$. Then $G \times K_{2}-S \cong\left(G-S_{0}\right) \times K_{2}$ is disconnected by Lemma 2.1. Therefore, $\kappa\left(G \times K_{2}\right) \leq 2 \kappa(G)$.

Let (X, Y) be a b-pair of G with $|X|+2|Y|=b(G)$. Let C be a bipartite component of $G-(X \cup Y)$ with bipartition (P, Q) such that $G[V(C) \cup\{x\}]$ is also bipartite for any $x \in X$. Let C_{1} and C_{2} be the two components of $C \times K_{2}$ with bipartitions $(P \times\{a\}, Q \times\{b\})$ and $(P \times\{b\}, Q \times\{a\})$, respectively. Define an injection $\varphi: X \rightarrow V\left(G \times K_{2}\right)$ as follows:

$$
\varphi(x)= \begin{cases}(x, b) & \text { if } x \text { has a neighbor in } P \\ (x, a) & \text { otherwise } .\end{cases}
$$

Let $S^{\prime}=\varphi(X)$ and $S^{\prime \prime}=\{(u, a),(u, b): u \in Y\}$. Then $S^{\prime} \cup S^{\prime \prime}$ is a separating set since C_{1} is a component of $G \times K_{2}-\left(S^{\prime} \cup S^{\prime \prime}\right)$, which implies $\kappa\left(G \times K_{2}\right) \leq\left|S^{\prime} \cup S^{\prime \prime}\right|=|X|+2|Y|=b(G)$.

To show the reversed inequality, we may assume G is a connected nonbipartite graph. Let $S \subseteq V\left(G \times K_{2}\right)$ satisfy Assumption 1, i.e., $|S|<\min \{2 \kappa(G), b(G)\}$.

Case 1: S satisfies Assumption 2. It follows by Lemmas 2.3 and 2.4 that $G \times K_{2}-S$ is connected.
Case 2: S does not satisfy Assumption 2, i.e., there exists a vertex $u \in V(G)$ such that $S_{u}=\{(u, a),(u, b)\} \subseteq S$. Therefore,

$$
\begin{aligned}
\left|S-S_{u}\right| & =|S|-2 \\
& <\min \{2 \kappa(G), b(G)\}-2 \\
& =\min \{2(\kappa(G)-1), b(G)-2\} \\
& \leq \min \{2 \kappa(G-u), b(G-u)\},
\end{aligned}
$$

where the last inequality above follows from Lemma 1.1(3).
By the induction assumption,

$$
\kappa\left((G-u) \times K_{2}\right)=\min \{2 \kappa(G-u), b(G-u)\} .
$$

Hence, $(G-u) \times K_{2}-\left(S-S_{u}\right)$ is connected. It follows by isomorphism that $G \times K_{2}-S$ is connected.
Either of the two cases implies that $\left(G \times K_{2}-S\right)$ is connected. Thus, $\kappa\left(G \times K_{2}\right) \geq \min \{2 \kappa(G), b(G)\}$.
The proof of the theorem is complete by induction.

Acknowledgments

The authors are much indebted to the anonymous referees for their valuable suggestions and corrections that improved the initial version of this paper.

References

[1] W. Imrich, S. Klavžar, Product Graphs: Structure and Recognition, Wiley, 2000.
[2] B. Brešar, S. Špacapan, On the connectivity of the direct product of graphs, Australas. J. Combin. 41 (2008) 45-56.
[3] A. Mamut, E. Vumar, Vertex vulnerability parameters of Kronecker product of complete graphs, Inform. Process. Lett. 106 (2008) 258-262.
[4] R. Guji, E. Vumar, A note on the connectivity of Kronecker products of graphs, Appl. Math. Lett. 22 (2009) 1360-1363.
[5] Y. Wang, The problem of partitioning of graphs into connected subgraphs and the connectivity of Kronecker product of graphs, M.D. Thesis, University of Xinjiang, 2010.
[6] W. Wang, N.N. Xue, Connectivity of direct products of graphs, Ars Combin. 100 (2011) 107-111.
[7] C. Yang, Connectivity and fault-diameter of product graphs, Ph.D. Thesis, University of Science and Technology of China, 2007.
[8] A. Bottreau, Y. Métivier, Some remarks on the Kronecker product of graphs, Inform. Process. Lett. 68 (1998) 55-61.
[9] P. Hafner, F. Harary, Cutpoints in the conjunction of two graphs, Arch. Math. 31 (1978) 177-181.
[10] L.T. Guo, C.F. Chen, X.F. Guo, Super connectivity of Kronecker products of graphs, Inform. Process. Lett. 110 (2010) 659-661.
[11] J.P. Ou, On optimizing edge connectivity of product graphs, Discrete Math. 311 (2011) 478-492.
[12] P.M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc. 13 (1962) 47-52.

[^0]: * Corresponding author. Tel.: +86 9974680821 ; fax: +86 9974682766.

 E-mail addresses: yanzhidan.math@gmail.com, danna_yan888@yahoo.com.cn (Z. Yan).

