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a b s t r a c t

Let κ(G) be the connectivity of G. The Kronecker product G1 × G2 of graphs G1 and G2 has
vertex setV (G1×G2) = V (G1)×V (G2) and edge set E(G1×G2) = {(u1, v1)(u2, v2) : u1u2 ∈

E(G1), v1v2 ∈ E(G2)}. In this paper, we prove that κ(G × K2) = min{2κ(G),min{|X | +

2|Y |}}, where the second minimum is taken over all disjoint sets X, Y ⊆ V (G) satisfying
(1) G − (X ∪ Y ) has a bipartite component C , and (2) G[V (C) ∪ {x}] is also bipartite for any
x ∈ X .

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout this paper, a graph G always means a finite undirected graph without loops or multiple edges. It is well
known that a network is often modeled as a graph and the classical measure of the reliability is the connectivity and the
edge connectivity.

The connectivity of a simple graph G = (V (G), E(G)), denoted by κ(G), is the smallest number of vertices whose removal
from G results in a disconnected or trivial graph. A set S ⊆ V (G) is a separating set of G, if either G− S is disconnected or has
only one vertex. Let G1 and G2 be two graphs, the Kronecker product G1 × G2 is the graph defined on the Cartesian product
of vertex sets of the factors, with two vertices (u1, v1) and (u2, v2) adjacent if and only if u1u2 ∈ E(G1) and v1v2 ∈ E(G2).
This product is one of the four standard graph products [1] and is known under many different names, for instance as the
direct product, the cross product and conjunction.

Recently, Brešar and Špacapan [2] obtained an upper bound and a lower bound on the edge connectivity of Kronecker
productswith someexceptions; they also obtained several upper bounds on the vertex connectivity of theKronecker product
of graphs. Mamut and Vumar [3] determined the connectivity of Kronecker product of two complete graphs. Guji and
Vumar [4] obtained the connectivity of Kronecker product of a bipartite graph and a complete graph. These two results
are generalized in [5], where the author proved a formula for the connectivity of Kronecker product of an arbitrary graph
and a complete graph of order ≥ 3, which was conjectured in [4]. We mention that a different proof of the same result can
be found in [6]. For the left case G × K2, Yang [7] determined an explicit formula for its edge connectivity. Bottreau and
Métivier [8] derived a criterion for the existence of a cut vertex of G × K2; see also [9]. In this paper, based on a similar
argument of [6], we determine a formula for κ(G × K2). For more study on the connectivity of Kronecker product graphs,
we refer to [10,11].

Let X, Y ⊆ V (G) be two disjoint sets with V (G) − (X ∪ Y ) ≠ ∅. We shall call (X, Y ) a b-pair of G if it satisfies:

(1) G − (X ∪ Y ) has a bipartite component C , and
(2) G[V (C) ∪ {x}] is also bipartite for any x ∈ X .

Fig. 1 shows two examples, where (X, Y ) and (X ′, Y ′) are b-pairs of the two graphs G1 and G2, respectively.
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Fig. 1. Two graphs and their b-pairs.

Denote b(G) = min{|X | + 2|Y | : (X, Y ) is a b-pair of G}. We note that b(G1) = 1 and b(G2) = 2 in Fig. 1. Our main result
is the following.

Theorem 1.1. κ(G × K2) = min{2κ(G), b(G)}.

We end this section by giving some useful properties of b(G). Let v ∈ V (G), we use N(v), d(v) and δ(G) to denote the
neighbor set of v, the degree of v, and the minimum degree of G, respectively.

Lemma 1.1. Let m = |G| ≥ 2 and u be any vertex of G. Then
(1) b(G) = 0, if G is bipartite.
(2) b(G) ≤ δ(G).
(3) b(G) ≤ b(G − u) + 2.

Proof. Part (1) is clear since (∅, ∅) is a b-pair of any bipartite graph by the definition of b-pairs. For each v ∈ V (G), (N(v), ∅)
is a b-pair of G. (Take the isolated vertex v in G − N(v) as the bipartite component C .) Therefore b(G) ≤ d(v) and part (2) is
verified. Similarly, let (X ′, Y ′) be any b-pair of G−u. It is straightforward to show that (X ′, Y ′

∪{u}) is a b-pair of G. Therefore,
b(G) ≤ |X ′

| + 2|Y ′
| + 2 and part (3) is verified. �

2. Proof of the main result

We first recall some basic results on the connectivity of Kronecker product of graphs [12]; see also [1].

Lemma 2.1. The Kronecker product of two nontrivial graphs is connected if and only if both factors are connected and at least
one factor is nonbipartite. In particular, G × K2 is connected if and only if G is a connected nonbipartite graph.

Lemma 2.2. Let G be a connected bipartite graph with bipartition (P,Q ) and V (K2) = {a, b}. Then G × K2 has exactly two
connected components isomorphic to G, with bipartitions (P × {a},Q × {b}) and (P × {b},Q × {a}), respectively.

From Lemmas 1.1(1) and 2.1, we only need to prove Theorem 1.1 for connected and nonbipartite graphs. For each
u ∈ V (G), set Su = {u} × V (K2) = {(u, a), (u, b)}. Let S ⊆ V (G × K2) satisfy the following two assumptions.

Assumption 1. |S| < min{2κ(G), b(G)}, and

Assumption 2. S ′
u := Su − S ≠ ∅ for each u ∈ V (G).

Let G∗ be the graph whose vertices are the classes S ′
u for all u ∈ V (G) and in which two different vertices S ′

u and S ′
v are

adjacent if G × K2 − S contains an (S ′
u − S ′

v) edge, that is, an edge with one end in S ′
u and the other one in S ′

v .
Under the two assumptions on S ⊆ V (G× K2), the connectedness of G× K2 − S is verified by the following two lemmas.

Lemma 2.3. If G is a connected nonbipartite graph, then G∗ is connected.

Proof. Suppose to the contrary that G∗ is disconnected. Then the vertices of G∗ can be partitioned into two nonempty parts,
U∗ and V ∗, such that there are no (U∗

− V ∗) edges. Let U = {u ∈ V (G) : S ′
u ∈ U∗

}, V = {v ∈ V (G) : S ′
v ∈ V ∗

} and Z
be the collection of ends of all (U − V ) edges. Let Z∗

= {S ′
u : u ∈ V (G), |S ′

u| = 1}. For any u ∈ Z , there exists an edge
uv ∈ E(U, V ). It follows that both S ′

u and S ′
v contain exactly one element, since otherwise G × K2 − S contains an (S ′

u − S ′
v)

edge, i.e., S ′
uS

′
v ∈ E(G∗), which is contrary to the fact that there are no (U∗

− V ∗) edges. Therefore, S ′
u ∈ Z∗ and we have

|Z | ≤ |Z∗
| by the arbitrariness of u in Z .

Case 1: Either U ⊆ Z or V ⊆ Z . We may assume U ⊆ Z . Let u be any vertex in U , then d(u) ≤ |Z | − 1, and hence
δ(G) ≤ |Z | − 1. Therefore, by Lemma 1.1(2), we have |S| = |Z∗

| ≥ |Z | > δ(G) ≥ b(G), a contradiction.
Case 2:U ⊈ Z and V ⊈ Z . Either ofU∩Z and V∩Z is a separating set ofG. Therefore, κ(G) ≤ min{|U∩Z |, |V∩Z |} ≤ |Z |/2.

Similarly, we have |S| = |Z∗
| ≥ |Z | ≥ 2κ(G), again a contradiction. �
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Lemma 2.4. Any vertex S ′
w of G∗, as a subset of V (G × K2 − S) is contained in the vertex set of some component of G × K2 − S.

Proof. If |S ′
w| = 1, then the assertion holds trivially. Now assume |S ′

w| = 2. Let U = {u ∈ V (G) : |S ′
u| = 2}, V = {v ∈ V (G) :

|S ′
v| = 1} be the partitions of V (G) and C the component of G − V containing w ∈ U .
Since |V | = |S| < b(G) by Assumption 1, it follows that (V , ∅) is not a b-pair of G. Note S ′

w ⊆ V (C ×K2). Wemay assume
that the component C containing w is bipartite, since otherwise C × K2 is connected by Lemma 2.1 and hence the result
follows. Therefore, by the definition of b-pairs, there exists a vertex v ∈ V such that G[V (C) ∪ {v}] is nonbipartite.

Let (P,Q ) be the bipartition of C and V (K2) = {a, b}. Then, by Lemma 2.2, C × K2 has exactly two components C1
and C2 isomorphic to C , with bipartitions (P × {a},Q × {b}) and (P × {b},Q × {a}), respectively. The nonbipartiteness of
G[V (C) ∪ {v}] implies that v is a common neighbor of P and Q . By symmetry, we may assume S ′

v = {(v, a)}. It is easy to see
that the subgraph induced by V (C × K2) ∪ S ′

v is connected since (v, a) is a common neighbor of C1 and C2. �

Proof of Theorem 1.1. We apply induction onm = |V (G)|. It trivially holds whenm = 1. We therefore assumem ≥ 2 and
the result holds for all graphs of orderm − 1.

Let S0 be a minimum separating set of G and S = S0 × V (K2) = {(u, a), (u, b) : u ∈ S0}. Then G× K2 − S ∼= (G− S0) × K2
is disconnected by Lemma 2.1. Therefore, κ(G × K2) ≤ 2κ(G).

Let (X, Y ) be a b-pair of Gwith |X | + 2|Y | = b(G). Let C be a bipartite component of G − (X ∪ Y ) with bipartition (P,Q )
such that G[V (C) ∪ {x}] is also bipartite for any x ∈ X . Let C1 and C2 be the two components of C × K2 with bipartitions
(P × {a},Q × {b}) and (P × {b},Q × {a}), respectively. Define an injection ϕ : X → V (G × K2) as follows:

ϕ(x) =


(x, b) if x has a neighbor in P,
(x, a) otherwise.

Let S ′
= ϕ(X) and S ′′

= {(u, a), (u, b) : u ∈ Y }. Then S ′
∪ S ′′ is a separating set since C1 is a component of G×K2 − (S ′

∪ S ′′),
which implies κ(G × K2) ≤ |S ′

∪ S ′′
| = |X | + 2|Y | = b(G).

To show the reversed inequality, we may assume G is a connected nonbipartite graph. Let S ⊆ V (G × K2) satisfy
Assumption 1, i.e., |S| < min{2κ(G), b(G)}.

Case 1: S satisfies Assumption 2. It follows by Lemmas 2.3 and 2.4 that G × K2 − S is connected.
Case 2: S does not satisfy Assumption 2, i.e., there exists a vertex u ∈ V (G) such that Su = {(u, a), (u, b)} ⊆ S. Therefore,

|S − Su| = |S| − 2
< min{2κ(G), b(G)} − 2
= min{2(κ(G) − 1), b(G) − 2}
≤ min{2κ(G − u), b(G − u)},

where the last inequality above follows from Lemma 1.1(3).
By the induction assumption,

κ((G − u) × K2) = min{2κ(G − u), b(G − u)}.

Hence, (G − u) × K2 − (S − Su) is connected. It follows by isomorphism that G × K2 − S is connected.
Either of the two cases implies that (G × K2 − S) is connected. Thus, κ(G × K2) ≥ min{2κ(G), b(G)}.
The proof of the theorem is complete by induction. �
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