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Abstract

The qs-di1erences of the non-central generalized q-factorials of t of order n, scale parameter
s and non-centrality parameter r, at t = 0, are thoroughly examined. These numbers for s → 0
and s → ∞ converge to the non-central q-Stirling numbers of the 5rst and the second kind,
respectively. Explicit expressions, recurrence relations, generating functions and other properties
of these q-numbers are derived. Further, a sequence of Bernoulli trials is considered in which the
conditional probability of success at the nth trial, given that k successes occur before that trial,
varies geometrically with n and k. Then, the probability functions of the number of successes
in n trials and the number of trials until the occurrence of the kth success are deduced in terms
of the qs-di1erences of the non-central generalized q-factorials of t of order n, scale parameter
s and non-centrality parameter r.
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1. Introduction

Carlitz [1,2] introduced the q-Stirling numbers of the second kind in connection with
an enumeration problem in abelian groups and explored some of their properties. In the
second paper he found it convenient, for some purposes, to generalize these numbers; he
introduced what in this paper we call the non-central q-Stirling numbers of the second
kind. Gould [14] studied the q-Stirling numbers of the 5rst and second kind, which
were de5ned as sums of all k-factor products that are formed from the 5rst n q-natural
numbers, without and with repeated factors, respectively. Milne [17,18] expressed the
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number of certain maps of {1; 2; : : : ; n} into the set of all lines in a vector space over
a 5nite 5eld of q elements, q being a power of a prime, in terms of the q-Stirling
numbers of the second kind. He also showed that these numbers could be viewed as
the generating function of an inversion statistic on partitions. Garsia and Remmel [11]
expressed the q-Stirling numbers of the second kind as q-rook numbers for a triangular
Ferrers board, providing another interesting combinatorial interpretation. The signless
(absolute) q-Lah numbers (or q-Laguerre numbers in the terminology of Hahn [15]
and Garsia and Remmel [10]) are the q-rook numbers for a rectangular Ferrers board.
Charalambides [3] studied the kth q-di1erence of the generalized q-factorial of order
n and increment a, which for a = 1 reduces to the q-Lah number. Wachs and White
[19] introduced the p; q-Stirling numbers of the second kind as a generating function
of the joint distribution of inversion and non-inversion numbers. Leroux [16] and De
Medicis and Leroux [7] further studied these numbers, along with the p; q-Stirling
numbers of the 5rst kind. Further, a generalization of the p; q-Stirling numbers of the
5rst and second kind, inspired from their interpretation in terms of the 0− 1 tableaux,
is thoroughly examined by De Medicis and Leroux [8].
Recently, Crippa et al. [6] considered a sequence of Bernoulli trials with �n;k the

conditional probability of success at the nth trial, given that k successes occur before
that trial. Then, the probability function of the number of successes up to the nth trial
was expressed in terms of the q-Stirling numbers of the 5rst kind if �n;k = qn and in
terms of the q-Stirling numbers of the second kind if �n;k = qk . A graph theoretical
interpretation of these q-distributions was provided. Also, the probability function of the
value of the counting register in the approximate counting algorithm, derived by Flajolet
[9], is merely the second of these q-distributions. Crippa and Simon [5] examined
the distribution of the number of successes up to the nth trial for �n;k = qan+bk+c,
with a, b and c such that 06 �n;k6 1 for k = 0; 1; : : : ; n; n= 0; 1; : : : : The probability
function of this distribution was expressed as an alternate sum of products of q-binomial
coe#cients. Further, it was shown that the probability of k successes in n trials with
�n;k = 1 − q(a+b)n−bk+c equals the probability of n − k + 1 successes in n trials with
�n;k=qan+bk+c. This alternate sum constitutes a generalization of both q-Stirling numbers
of the 5rst and second kind to which it reduces when a = 1, b = c = 0 and b = 1,
a= c = 0, respectively. A thorough study of its properties is thus justi5ed and useful.
In the present paper the coe#cient Cq(n; k; s; r) of kth order qs-factorial of t in the

expansion of the non-central generalized q-factorial of t of order n, scale parameter s
and non-centrality parameter r is thoroughly investigated. The q-distributions studied by
Crippa and Simon [5] are expressed in terms of the coe#cients |Cq−a(n; k;−s;−r)|=
[−1]nqaCq−a(n; k;−s;−r), k=0; 1; : : : ; n, n=0; 1; : : : ; with s=b=a and r=c=a. In addition,
the distribution of the number of trials until the occurrence of the kth success is also
expressed in terms of these coe#cients.

2. Preliminaries, de�nitions and notation

Let 0¡q¡ 1, x a real number and k a positive integer. The number [x]q =
(1 − qx)=(1 − q) is called q-real number and in particular the number [k]q is called
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q-positive integer. The kth order factorial of the q-number [x]q, which is de5ned by

[x]k;q = [x]q[x − 1]q · · · [x − k + 1]q =
(1− qx)(1− qx−1) · · · (1− qx−k+1)

(1− q)k
;

is called q-factorial of x of order k. In particular, [k]q! = [1]q[2]q · · · [k]q is called
q-factorial. The q-binomial coe3cient is de5ned by[

x

k

]
q

=
[x]k;q
[k]q!

=
(1− qx)(1− qx−1) · · · (1− qx−k+1)

(1− q)(1− q2) · · · (1− qk)
:

Note that

lim
q→1

[
x

k

]
q

=

(
x

k

)
:

The general q-binomial and the negative q-binomial formulae may be expressed as
∞∏
i=1

1 + tqi−1

1 + tqx+i−1 =
∞∑
k=0

q(
k
2 )

[
x

k

]
q

tk ; |t|¡ 1; 0¡q¡ 1 (2.1)

and
∞∏
i=1

1− tqx+i−1

1− tqi−1 =
∞∑
k=0

[
x + k − 1

k

]
q

tk ; |t|¡ 1; 0¡q¡ 1; (2.2)

respectively. In particular, for x = n a positive integer, these formulae reduce to
n∏
i=1

(u+ tqi−1) =
n∑

k=0

q(
k
2 )

[
n

k

]
q

tkun−k ; 0¡q¡ 1 (2.3)

and
n∏
i=1

(1− tqi−1)−1 =
∞∑
k=0

[
n+ k − 1

k

]
q

tk ; |t|¡ 1; 0¡q¡ 1; (2.4)

respectively. In general, the transition from a formula to its q-analogue is not unique.
Thus, another useful q-binomial formula is the following

qnt =
n∑

k=0

(−1)k(1− q)kq(
k
2 )

[
n

k

]
q

[t]k;q: (2.5)

Also, useful are the following two q-exponential functions:

eq(t) =
∞∏
i=1

(1− (1− q)qi−1t)−1 =
∞∑
k=0

tk

[k]q!
; |t|¡ 1=(1− q); (2.6)

Eq(t) =
∞∏
i=1

(1 + (1− q)qi−1t) =
∞∑
k=0

q(
k
2 )

tk

[k]q!
; −∞¡t¡∞; (2.7)
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with eq(t)Eq(−t) = 1. The q-Vandermonde’s formula may be expressed as

[u+ t]n;q =
n∑

k=0

q−k(n−k−u)

[
n

k

]
q

[u]n−k;q[t]k;q: (2.8)

The q-Newton expansion of a polynomial fn(t) in qt , of degree less than or equal to
n, into a polynomial of q-factorials of t is given by

fn(t) =
n∑

k=0

1
[k]q!

[�kqfn(t)]t=0[t]k;q; (2.9)

where �q is the q-di1erence operator de5ned, in terms of the usual shift operator
E, by

�kq =
k∏
i=1

(E − qi−1); k = 1; 2; : : : : (2.10)

The non-central q-factorial of t of order n and non-centrality parameter r, [t − r]n;q,
upon using the relation [t− r− j]q= q−r−j([t]q− [r+ j]q), j=0; 1; : : : ; is expressed as

[t − r]n;q = q−( n2 )−rn([t]q − [r]q)([t]q − [r + 1]q) · · · ([t]q − [r + n− 1]q):

This is a polynomial of the q-number [t]q of degree n. Executing the multiplications
and arranging the terms in ascending order of powers of [t]q we get

[t − r]n;q = q−( n2 )−rn
n∑

k=0

sq(n; k; r)[t]kq; n= 0; 1; : : : : (2.11)

Inversely, the nth power of the q-number [t]q may be expressed in the form of a
polynomial of non-central q-factorials of t. Speci5cally

[t]nq =
n∑

k=0

q(
k
2 )+rkSq(n; k; r)[t − r]k;q; n= 0; 1; : : : ;

or equivalently

[t + r]nq =
n∑

k=0

q(
k
2 )+rkSq(n; k; r)[t]k;q; n= 0; 1; : : : : (2.12)

Note that the expansion of the non-central ascending q-factorial of t of order n and
non-centrality parameter r,

[t + r + n− 1]n;q = [t + r]q[t + r + 1]q · · · [t + r + n− 1]q

= [− 1]nq[− t − r]n;q−1 ;

into a polynomial of the q-number [t]q is deduced from (2.11) as

[t + r + n− 1]n;q = q(
n
2 )+rn

n∑
k=0

|sq−1 (n; k; r)|[t]kq; (2.13)
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where |sq−1 (n; k; r)| = [ − 1]nqsq−1 (n; k; r). More generally, the non-central generalized
q-factorial of t of order n, scale parameter s and non-centrality parameter r,

[st + r]n;q = [st + r]q[st + r − 1]q · · · [st + r − n+ 1]q;

may be expressed as a polynomial of qs-factorials of t as

[st + r]n;q = q−( n2 )+rn
n∑

k=0

qs(
k
2 )Cq(n; k; s; r)[t]k;qs : (2.14)

Further, the expansion of the non-central ascending generalized q-factorial of t of order
n, scale parameter s and non-centrality parameter r,

[st + r + n− 1]n;q = [st + r]q[st + r + 1]q · · · [st + r + n− 1]q

= [− 1]nq[− st − r]n;q−1 ;

into a polynomial of qs-factorials of t may be deduced from (2.14) as

[st + r + n− 1]n;q = q(
n
2 )+rn

n∑
k=0

qs(
k
2 )|Cq−1 (n; k;−s;−r)[t]k;qs ; (2.15)

where |Cq−1 (n; k;−s;−r)| = [ − 1]nqCq−1 (n; k;−s;−r). Also, in the particular case of
s=−1, upon replacing q by q−1 and introducing the coe#cient Lq(n; k; r)=Cq−1 (n; k;
−1; r), we get the expression

[− (t − r)]n;q−1 = q(
n
2 )−rn

n∑
k=0

q(
k
2 )Lq(n; k; r)[t]k;q: (2.16)

Further, since [ − (t − r)]n;q−1 = [t − r + n − 1]n;q=[ − 1]nq and setting |Lq(n; k; r)| =
[− 1]nqLq(n; k; r), we 5nd

[t − r + n− 1]n;q = q(
n
2 )−rn

n∑
k=0

q(
k
2 )|Lq(n; k; r)|[t]k;q: (2.17)

Note that, on using (2.9) with fn(t) = [t + r]n;q, it follows from (2.13) that

Sq(n; k; r) = q−( k2 )−rk

[
1

[k]q!
�kq[t + r]nq

]
t=0

: (2.18)

Similarly,

Cq(n; k; s; r) = q(
n
2 )−s( k2 )−rn

[
1

[k]qs !
�kqs [st + r]n;q

]
t=0

: (2.19)

The coe#cients sq(n; k; r) and Sq(n; k; r) of expansions (2.11) and (2.12) are called
non-central q-Stirling numbers of the 6rst and second kind, respectively. The coe#-
cients Cq(n; k; s; r) of expansion (2.14) may be called non-central generalized
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q-factorial coe3cients. In particular, the coe#cients Lq(n; k; r) and |Lq(n; k; r)| of ex-
pansions (2.16) and (2.17) are called non-central q-Lah and signless non-central q-Lah
numbers, respectively.
Clearly, from (2.11), (2.12) and (2.14) it follows that

sq(n; k; r) = Sq(n; k; r) = Cq(n; k; s; r) = 0; k ¿n;

sq(0; 0; r) = Sq(0; 0; r) = Cq(0; 0; s; r) = 1:

Further, from (2.13),
n∑

k=0

|sq−1 (n; k; r)|[t]kq

=([t]q + q−1[r]q−1 )([t]q + q−1[r + 1]q−1 ) · · · ([t]q + q−1[r + n− 1]q−1 );

it follows that

|sq−1 (n; k; r)|= q−(n−k)
∑

[r + i1]q−1 [r + i2]q−1 · · · [r + in−k ]q−1

and so

|sq(n; k; r)|= qn−k
∑

[r + i1]q[r + i2]q · · · [r + in−k ]q;

where the summation is extended over all (n− k)-combinations {i1; i2; : : : ; in−k} of the
n indices {0; 1; : : : ; n−1}. Hence, for r a non-negative integer, the numbers |sq(n; k; r)|,
k=0; 1; : : : ; n, n=0; 1; : : : ; which may be called signless non-central q-Stirling numbers
of the 6rst kind, are non-negative q-integers. Also, expanding the ascending q-factorial
[t − r + n− 1]n;q into q-factorials of t, by the aid of the q-Vandermonde’s formula, it
follows that

[t − r + n− 1]n;q =
n∑

k=0

qk(k−1)−kr

[
n

k

]
q

[n− r − 1]n−k;q[t]k;q

and so by (2.17),

|Lq(n; k; r)|= q−( n2 )+( k2 )+r(n−k) [n]q!

[k]q!

[
n− r − 1

k − r − 1

]
q

: (2.20)

Note that for r = 0 the non-central q-Stirling numbers of the 5rst and second kind re-
duce to the usual (central) q-Stirling numbers of the 5rst and second kind, respectively,
sq(n; k; 0) = sq(n; k), Sq(n; k; 0) = Sq(n; k). Similarly, for r = 0 the non-central gener-
alized q-factorial coe#cients and in particular the non-central q-Lah numbers reduce
to the usual (central) generalized q-factorial coe#cients and the usual (central) q-Lah
numbers, respectively, Cq(n; k; s; 0) =Cq(n; k; s), Lq(n; k; 0) = Lq(n; k). The generalized
q-factorial coe#cients Cq(n; k; s) were studied in Charalambides [3], while the q-Lah
numbers Lq(n; k) appeared in Hahn [15] and discussed in Garsia and Remmel [10] as
q-Laguerre numbers. For r �= 0 the non-central q-Stirling numbers of the 5rst kind may
be expressed in terms of the usual q-Stirling numbers of the 5rst kind. Speci5cally,
expanding [t − r]n;q into powers of [t − r]q = q−r([t]q − [r]q), by the aid of the usual
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q-Stirling numbers of the 5rst kind, and then expanding the powers of [t]q − [r]q into
powers of [t]q, by the aid of Newton’s binomial formula, we deduce the expression

sq(n; k; r) =
n∑
j=k

(−1)j−kqr(n−j)( j
k

)
[r]j−k

q sq(n; j):

Also, expanding [t− r]n;q into q-factorials of t, by the aid of Vandermonde’s formula,
and then expanding the factorials of t into powers of t, by the aid of the usual q-Stirling
numbers of the 5rst kind, we conclude the expression

sq(n; k; r) =
n∑
j=k

q(
n−j
2 )+r(n−j)

[
n

j

]
q

[− r]n−j;qsq(j; k):

Similarly

Sq(n; k; r) =
n∑
j=k

q(
j−k
2 )

[
j

k

]
q

[r]j−k;qSq(n; j)

and

Sq(n; k; r) =
n∑
j=k

qr( j−k)( n
j

)
[r]n−j

q Sq(j; k):

Also

Cq(n; k; s; r) = q−r(n−k)
n∑
j=k

qs(
j−k
2 )

[
j

k

]
qs

[r=s]j−k;qsCq(n; j; s)

and

Cq(n; k; s; r) =
n∑
j=k

q(
n−j
2 )−r(n−j)

[
n

j

]
q

[r]n−j;qCq(j; k; s):

Moreover, for q → 1 the non-central q-Stirling numbers of the 5rst and second kind
converge to the non-central Stirling numbers of the 5rst and second kind, respectively,

lim
q→1

sq(n; k; r) = s(n; k; r); lim
q→1

Sq(n; k; r) = S(n; k; r):

Similarly, for q → 1 the non-central generalized q-factorial coe#cients and, in partic-
ular, the non-central q-Lah numbers converge to the non-central generalized factorial
coe#cients and the non-central Lah numbers, respectively,

lim
q→1

Cq(n; k; s; r) = C(n; k; s; r); lim
q→1

Lq(n; k; r) = L(n; k; r):

A review of the basic properties and combinatorial applications of the non-central
Stirling numbers and the non-central generalized factorial coe#cients is included in
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Charalambides [4]. Further, expression (2.14) may be written as

[t + r]n;q = q−( n2 )+rn
n∑

k=0

qs(
k
2 ){[s]−k

q Cq(n; k; s; r)}{[s]kq[t=s]k;qs}

and since lims→0[s]kq[t=s]k;qs = [t]kq it follows, by virtue of (2.11), that

lim
s→0

[s]−k
q Cq(n; k; s; r) = sq(n; k;−r): (2.21)

Similarly, writing (2.14) in the form

[s]−n
q1=s [s(t + r)]n;q1=s = q−

1
s (
n
2 )

n∑
k=0

q(
k
2 )+rk{qr(n−k)[s]−n

q1=sCq1=s(n; k; s; rs)}[t]k;q

and since lims→∞ [s]−n
q1=s [s(t + r)]n;q1=s = [t + r]nq it follows, by virtue of (2.12), that

lim
s→∞ qr(n−k)[s]−n

q1=sCq1=s(n; k; s; rs) = Sq(n; k; r): (2.22)

3. Explicit expressions and recurrence relations

Explicit expressions and a recurrence relation for the non-central generalized
q-factorial coe#cients are derived in the following theorems.

Theorem 3.1. The non-central generalized q-factorial coe3cients are given by

Cq(n; k; s; r) =
q(

n
2 )−s( k2 )−rn

[k]qs !

k∑
j=0

(−1)k−jqs(
k−j
2 )

[
k

j

]
qs

[sj + r]n;q: (3.1)

Also

Cq(n; k; s; r) =
[s]kq

(1− q)n−k

n∑
j=k

(−1)j−kq(
n−j
2 )−r(n−j)

[
n

j

]
q

[
j

k

]
qs

: (3.2)

Proof. The qs-di1erence operator of order k, �kqs =
∏k

i=1 (E − qs(i−1)), on using the
q-binomial theorem, is expressed as

�kqs =
k∑
j=0

(−1)k−jqs(
k−j
2 )

[
k

j

]
qs

Ej:

Performing this operator on [st + r]n;q, (2.19) yields (3.1).
The non-central generalized q-factorial of t of order n, scale parameter s and non-

centrality parameter r, [st + r]n;q, on using successively the q-binomial formulae (2.3)
and (2.5), is expressed as a polynomial of qs-factorials of t as

q(
n
2 )−rn[st + r]n;q

=
1

(1− q)n

n∏
i=1

(q−r+i−1 − qst)
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=
1

(1− q)n

n∑
j=0

(−1)jq(
n−j
2 )−r(n−j)

[
n

j

]
q

(qst)j

=
n∑
j=0

(−1)jq(
n−j
2 )−r(n−j)

[
n

j

]
q

j∑
k=0

(−1)k
[s]kqq

s( k2 )

(1− q)n−k

[
j

k

]
qs

[t]k;qs

=
n∑

k=0

[s]kqq
s( k2 )

(1− q)n−k




n∑
j=k

(−1)j−kq(
n−j
2 )−r(n−j)

[
n

j

]
q

[
j

k

]
qs


 [t]k;qs ;

yielding (3.2).

Theorem 3.2. The non-central generalized q-factorial coe3cients satisfy the triangu-
lar recurrence relation

Cq(n; k; s; r) = [s]qCq(n− 1; k − 1; s; r)

+ ([sk]q − [n− r − 1]q)Cq(n− 1; k; s; r); (3.3)

for k = 1; 2; : : : ; n; n= 1; 2; : : : ; with initial conditions

Cq(0; 0; s; r) = 1; Cq(0; k; s; r) = 0; k ¿ 0;

Cq(n; 0; s; r) = q(
n
2 )−rn[r]n;q; n¿ 0:

Proof. Expanding both members of the recurrence relation [st + r]n;q = [st + r − n +
1]q[st+ r]n−1; q into qs-factorials of t, by the aid of (2.14) and since [st+ r−n+1]q=
q−(n−1)+r([s]q[t]qs − [n− r − 1]q), we get the relation

n∑
k=0

qs(
k
2 )Cq(n; k; s; r)[t]k;qs =

n−1∑
k=0

qs(
k
2 )Cq(n− 1; k; s; r)[s]q[t]qs [t]k;qs

+
n−1∑
k=0

qs(
k
2 )[n− r − 1]qCq(n− 1; k; s; r)[t]k;qs ;

which, on using the expressions [t]qs [t]k;qs = qsk [t]k+1; qs + [k]qs [t]k;qs , [s]q[k]qs = [sk]q,
yields

n∑
k=0

qs(
k
2 )Cq(n; k; s; r)[t]k;qs =

n−1∑
k=0

qs(
k+1
2 )[s]qCq(n− 1; k; s; r)[t]k+1; qs

+
n−1∑
k=0

qs(
k
2 )([sk]q−[n−r−1]q)Cq(n−1; k; s; r)[t]k;qs :

Equating the coe#cients of [t]k;qs in both sides of the last relation we deduce (3.3).
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Explicit expressions and recurrence relations for the non-central q-Stirling numbers,
on using (2.21) and (2.22), are deduced in the following corollaries of Theorems 3.1
and 3.2, respectively.

Corollary 3.1. (a) The non-central q-Stirling numbers of the 6rst kind are given by

sq(n; k; r) =
1

(1− q)n−k

n∑
j=k

(−1)j−kq

(
n−j
2

)
+r(n−j)

[
n

j

]
q

( j
k

)
: (3.4)

(b) The non-central q-Stirling numbers of the second kind are given by

Sq(n; k; r) =
1

[k]q!

k∑
j=0

(−1)k−jq

(
j+1
2

)
−(r+j)k

[
k

j

]
q

[r + j]nq: (3.5)

Also

Sq(n; k; r) =
1

(1− q)n−k

n∑
j=k

(−1)j−kqr( j−k)
( n
j

)[ j
k

]
q

: (3.6)

Corollary 3.2. (a) The non-central q-Stirling numbers of the 6rst kind satisfy the
triangular recurrence relation

sq(n; k; r) = sq(n− 1; k − 1; r)− [n+ r − 1]qsq(n− 1; k; r); (3.7)

for k = 1; 2; : : : ; n, n= 1; 2; : : : ; with initial conditions

sq(0; 0; r) = 1; sq(0; k; r) = 0; k ¿ 0; sq(n; 0; r) = q(
n
2 )+rn[− r]n;q; n¿ 0:

(b) The non-central q-Stirling numbers of the second kind satisfy the triangular
recurrence relation

Sq(n; k; r) = Sq(n− 1; k − 1; r) + [r + k]qSq(n− 1; k; r); (3.8)

for k = 1; 2; : : : ; n, n= 1; 2; : : : ; with initial conditions

Sq(0; 0; r) = 1; Sq(0; k; r) = 0; k ¿ 0; Sq(n; 0; r) = [r]nq; n¿ 0:

Theorem 3.3. The non-central generalized q-factorial coe3cients are connected with
the non-central q-Stirling numbers of the 6rst and second kind by

Cq(n; k; s; s�− r) = q−s�(n−k)
n∑
j=k

sq(n; j; r)Sqs(j; k; �)[s]jq: (3.9)

Proof. Expanding [s(t+ �)− r]n;q into powers of [s(t+ �)]q= [s]q[t+ �]qs , by the aid
(2.11), and then expanding the powers of [t+�]qs into q

s-factorials of t, by the aid of
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(2.12), we get the expression

[s(t + �)− r]n;q

= q−( n2 )−rn
n∑
j=0

sq(n; j; r)[s]jq[t + �]jqs

= q−( n2 )−rn
n∑
j=0

sq(n; j; r)[s]jq

j∑
k=0

qs(
k
2 )+s�kSqs(j; k; �)[t]k;qs

= q−( n2 )+(s�−r)n
n∑

k=0

qs(
k
2 )


q−s�(n−k)

n∑
j=k

sq(n; j; r)Sqs(j; k; �)[s]jq


 [t]k;qs

and since, by (2.14),

[s(t + �)− r]n;q = q−( n2 )+(s�−r)n
n∑

k=0

qs(
k
2 )Cq(n; k; s; s�− r)[t]k;qs ;

we deduce (3.9).

Setting in (3.9) s=1 and �=r and since Cq(n; k; 1; 0)=�n;k we deduce the following
corollary.

Corollary 3.3. The non-central q-Stirling numbers of the 6rst and second kind satisfy
the orthogonality relations

n∑
j=k

sq(n; j; r)Sq(j; k; r) = �n;k ;
n∑
j=k

Sq(n; j; r)sq(j; k; r) = �n;k : (3.10)

Theorem 3.4. The non-central generalized q-factorial coe3cients satisfy the following
relation

C1(n; k; s1s2; r1 + s1r2) =
n∑
j=k

q−s1r2(n−j)Cq(n; j; s1; r1)Cqs1 (j; k; s2; r2): (3.11)

In particular,

n∑
j=k

qr(n−j)Cq(n; j; s; r)Cqs(j; k; 1=s;−r=s) = �n;k : (3.12)

Proof. Expanding the generalized q-factorial [s1(s2t + r2) + r1]n;q into generalized
q-factorials [s2t + r2]j;qs1 , j = 0; 1; : : : ; n and then expanding these factorials into
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q-factorials [t]k;qs1s2 , k = 0; 1; : : : ; j, by the aid of (2.14), we get

[s1(s2t + r2) + r1]n;q

= q−( n2 )+r1n
n∑
j=0

qs1(
j
2 )Cq(n; j; s1; r1)[s2t + r2]j;qs1

= q−( n2 )+r1n
n∑
j=0

Cq(n; j; s1; r1)qs1r2j
j∑

k=0

qs1s2(
k
2 )Cqs1 (j; k; s2; r2)[t]k;qs1s2

and so

[s1(s2t + r2) + r1]n;q

= q−( n2 )+r1n
n∑

k=0

qs1s2(
k
2 )




n∑
j=k

qs1r2jCq(n; j; s1; r1)Cqs1 (j; k; s2; r2)


 [t]k;qs1s2 :

Also from (2.14) we 5nd

[s1s2t + s1r2 + r1]n;q = q−( n2 )+(r1+s1r2)n
n∑

k=0

qs1s2(
k
2 )Cq(n; k; s1s2; r1 + s1r2)[t]k;qs1s2 :

The last two expressions imply (3.11).

4. Generating functions and other properties

Theorem 4.1. (a) The generating function of the non-central q-Stirling numbers of the
second kind Sq(n; k; r), n= k; k + 1; : : : ; for 6xed k, is given by

�k;q(u) =
∞∑
n=k

Sq(n; k; r)un = uk
k∏
i=0

(1− [r + i]qu)
−1; u¡ 1=[r + k]q: (4.1)

(b) The non-central q-Stirling numbers of the second kind are given by the sum

Sq(n; k; r) =
∑

[r + i1]q[r + i2]q · · · [r + in−k ]q; (4.2)

where the summation is extended over all (n− k)-combinations with repetition of the
k + 1 non-negative integers {0; 1; : : : ; k}.

Proof. (a) Note 5rst that the series
∑∞

n=k an for an = Sq(n; k; r)un, u¡ 1=[r + k]q, is
convergent, since

lim
n→∞ an = lim

n→∞
Sq(n; k; r)

[k]q![r + k]nq
([r + k]qu)

n =
1

[k]q!
lim
n→∞([r + k]qu)

n = 0:

Further, multiplying the triangular recurrence relation of the non-central q-Stirling num-
bers of the second kind by un and summing the resulting expression for n=k; k+1; : : : ;
we obtain for the generating function �k;q(u) the recurrence relation

�k;q(u) = u�k−1;q(u) + [r + k]qu�k;q(u); k = 1; 2; : : : :
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Hence

�k;q(u) = u(1− [r + k]qu)
−1�k−1;q(u); k = 1; 2; : : : :

Applying successively this recurrence and since

�0;q(u) =
∞∑
n=k

Sq(n; 0; r)un =
∞∑
n=k

[r]nqu
n = (1− [r]qu)

−1;

we 5nd (4.1).
(b) Expanding each factor in (4.1), by the aid of the geometric series, we get

�k;q(u) =
∞∑
n=k

Sq(n; k; r)un = uk
k∏
i=0


 ∞∑

ji=0

[r + i]jiq u
ji




=
∞∑
n=k

(∑
[r]j0q [r + 1]j1q · · · [r + k]jkq

)
un

and so

Sq(n; k; r) =
∑

[r]j0q [r + 1]j1q · · · [r + k]jkq ;

where the summation is extended over all integers ji¿ 0, i = 0; 1; : : : ; k, such that
j0 + j1 + · · ·+ jk = n− k. Clearly, this expression is equivalent to (4.2).

Corollary 4.1. The reciprocal non-central q-factorial 1=[t − r]k+1; q is expanded into
reciprocal q-powers 1=[t]n+1

q , n= k; k + 1; : : : ; as

1
[t − r]k+1; q

= q(
k+1
2 )+r(k+1)

∞∑
n=k

Sq(n; k; r)
1

[t]n+1
q

; t ¿ k + r: (4.3)

Inversely, the reciprocal q-power 1=[t]k+1
q , is expanded into reciprocal non-central

q-factorials 1=[t − r]n+1; q, n= k; k + 1; : : : ; as

1

[t]k+1
q

=
∞∑
n=k

q−( n+1
2 )−r(n+1)sq(n; k; r)

1
[t − r]n+1; q

: (4.4)

Proof. Setting in (4.1) u= 1=[t]q and since

([t]q − [r]q)([t]q − [r + 1]q) · · · ([t]q − [r + k]q) = q(
k+1
2 )+r(k+1)[t − r]k+1; q

we conclude (4.3). Inverting (4.3), by the aid of the second of (3.10), we get (4.4).

A more general expansion in terms of the non-central generalized q-factorial coe#-
cients is derived in the following theorem.

Theorem 4.2. The reciprocal q-factorial 1=[t]k+1; qs is expanded into reciprocal non-
central generalized q-factorials 1=[st + r]n+1; q, n= k; k + 1; : : : ; as

1
[t]k+1; qs

= qs(
k+1
2 )

∞∑
n=k

q−( n+1
2 )+r(n+1)[s]qCq(n; k; s; r)

1
[st + r]n+1; q

: (4.5)
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Proof. Consider the series

Ck;q(t) =
∞∑
n=k

q−( n+1
2 )+r(n+1)Cq(n; k; s; r)

1
[st + r]n+1; q

:

Multiplying both sides of the recurrence relation

Cq(n; k; s; r) = [s]qCq(n− 1; k − 1; s; r) + ([sk]q − [n− r − 1]q)Cq(n− 1; k; s; r)

by

q−( n2 )+rn

[st + r]n;q
=
q−( n+1

2 )+r(n+1)([st]q − [n− r]q)

[st + r]n+1; q

we 5nd

q−( n+1
2 )+r(n+1)[st]qCq(n; k; s; r)

1
[st + r]n+1; q

− q−( n+1
2 )+r(n+1)[n− r]qCq(n; k; s; r)

1
[st + r]n+1; q

= q−( n2 )+rn[sk]qCq(n− 1; k; s; r)
1

[st + r]n;q

− q−( n2 )+rn[n− r − 1]qCq(n− 1; k; s; r)
1

[st + r]n;q

+ q−( n2 )+rn[s]qCq(n− 1; k − 1; s; r)
q

[st + r]n;q
:

Summing for n= k; k + 1; : : : ; we get the recurrence relation

Ck;q(t) =
q−sk

[t − k]qs
Ck−1;q(t); k = 1; 2; : : : :

Hence

Ck;q(t) = C0;q(t)
q−s( k+1

2 )

[t − 1]k;qs
:

Since Cq(n; 0; s; r) = q(
n
2 )−rn[r]n;q, n¿ 0, we have

C0;q(t) =
∞∑
n=0

q−n+r [r]n;q
[st + r]n+1; q

=
1

[s]q[t]qs
;

whence

Ck;q(t) =
q−( k+1

2 )

[s]q[t]k+1; qs

and (4.5) is established.
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Bivariate generating functions for the non-central q-Stirling numbers of the 5rst and
second kind, analogous to the generating functions for the corresponding usual (central)
q-Stirling numbers, derived by Gessel [13] and Garsia and Remmel [12], are deduced
in the following theorem.

Theorem 4.3. Let sq(n; k; r) and Sq(n; k; r), k = 0; 1; : : : ; n; n = 0; 1; : : : ; be the non-
central q-Stirling numbers of the 6rst and second kind, respectively. Then

∞∑
n=0

n∑
k=0

sq(n; k; r)tk
un

[n]q!
=

∞∏
i=1

1 + uqr+i−1

1 + (1− (1− q)t)uqi−1 (4.6)

and
∞∑
n=0

n∑
k=0

q(
k
2 )+rkSq(n; k; r)tk

un

n!
= Eq(−t)

∞∑
j=0

e[r+j]qu
tj

[j]q!
; (4.7)

where Eq(t) =
∑∞

k=0 q
( k2 )tk =[k]q! is a q-exponential function.

Proof. Multiplying both members of (2.11) by un=[n]q! and summing for n= 0; 1; : : : ;
we get the relation

∞∑
n=0

n∑
k=0

sq(n; k; r)[t]kq
un

[n]q!
=

∞∑
n=0

q(
n
2 )

[
t − r

n

]
q

(uqr)n;

which, on using the q-binomial formula (2.1), yields
∞∑
n=0

n∑
k=0

sq(n; k; r)[t]kq
un

[n]q!
=

∞∏
i=1

1 + uqr+i−1

1 + uqt+i−1

=
∞∏
i=1

1 + uqr+i−1

1 + (1− (1− q)[t]q)uqi−1 :

Replacing in the last expression [t]q by t we deduce (4.6). From the explicit expression
(3.5) of the q-Stirling numbers of the second kind we 5nd

∞∑
n=0

n∑
k=0

q(
k
2 )+rkSq(n; k; r)tk

un

n!

=
∞∑
k=0

k∑
j=0

(−1)k−jq(
k−j
2 ) e[r+j]q tk

[k − j]q![j]q!

=
∞∑
j=0




∞∑
k=j

(−1)k−jq(
k−j
2 ) tk−j

[k − j]q!


 e[r+j]qu

tj

[j]q!
:

Introducing the q-exponential function (2.7), we get (4.7).
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5. Probability distributions

Consider a sequence of Bernoulli trials and assume that the conditional probability
of success at the nth trial, given that k successes occur before that trial, varies ge-
ometrically with n and k. Speci5cally, suppose that the probability of success at the
(n+ 1)th trial, given that k successes occur up to the nth trial, is given by

�n;k = qan+bk+c; k = 0; 1; : : : ; n; n= 0; 1; : : : ;

with a, b and c such that 06 �n;k6 1 for k=0; 1; : : : ; n and n=0; 1; : : : : The particular
case b=0, k=0; 1; : : : ; n, corresponds to the assumption that the probability of success
at any trial depends only on the number of previous trials, while other particular case
a=0, n=0; 1; : : : ; corresponds to the assumption that the probability of success at any
trial depends only on the number of previous successes.

Theorem 5.1. Consider a sequence of Bernoulli trials and assume that the probability
of success at the (n + 1)th trial, given that k successes occur up to the nth trial, is
given by

�n;k = qan+bk+c; k = 0; 1; : : : ; n; n= 0; 1; : : : ;

with a, b and c such that 06 �n;k6 1 for k = 0; 1; : : : ; n and n= 0; 1; : : : : Then the
probability function pk(n) = P(Xn = k), k = 0; 1; : : : ; n, of the number Xn of successes
up to the nth trial is given by

pk(n) = qa(
n
2 )+b(

k
2 )+cn

(1− qa)n

(1− qb)k
|Cq−a(n; k;−s;−r)|; k = 0; 1; : : : ; n; (5.1)

where |Cq−a(n; k;−s;−r)|= [− 1]nqaCq−a(n; k;−s;−r), with s= b=a and r = c=a.

Proof. The probability function pk(n)=P(Xn= k), k =0; 1; : : : ; n, n=0; 1; : : : ; satis5es
the recurrence relation

pk(n) = (1− qa(n−1)+bk+c)pk(n− 1) + qa(n−1)+b(k−1)+cpk−1(n− 1);

for k = 1; 2; : : : ; n, n= 1; 2; : : : ; with initial conditions

p0(0) = 1; p0(n) = qa(
n
2 )+cn

n−1∏
i=0

(1− q−ai−c); n¿ 0; pk(0) = 0; k ¿ 0:

The recurrence relation and its initial conditions suggest considering the following
expression of the probability function

pk(n) = qa(
n
2 )+b(

k
2 )+cn

(1− qa)n

(1− qb)k
cn;k ; k = 0; 1; : : : ; n; n= 0; 1; : : : ;

where the sequence cn;k , k = 0; 1; : : : ; n, n= 0; 1; : : : ; is to be determined. Clearly, this
sequence satis5es the recurrence relation

cn;k = ([− sk]q−a − [n+ r − 1]q−a)cn−1; k + [− s]q−acn−1; k−1;
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for k = 1; 2; : : : ; n, n= 1; 2; : : : ; with initial conditions

c0;0 = 1; cn;0 = q−a( n2 )−cn[− r]n;q−a ; n¿ 0; c0; k = 0; k ¿ 0

and s = b=a, r = c=a. Comparing the last recurrence relation with the recurrence
relation (3.3) of the non-central generalized q-factorial coe#cients, we get cn;k =
Cq−a(n; k;−s;−r) and since (1− q−a) = [− 1]qa(1− qa), (5.2) is established.

Remark 5.1. The probability generating function (5.1), where, according to (3.2),

|Cq−a(n; k;−s;−r)|= q−a( n2 )−cn (1− qb)k

(1− qa)n

n∑
j=k

(−1)j−kqa(
j
2 )+cj

[
n

j

]
qa

[
j

k

]
qb

;

was deduced by Crippa and Simon [5] from the corresponding probability generating
function.

Theorem 5.2. Consider a sequence of Bernoulli trials and assume that the probability
of success at the (n + 1)th trial, given that k successes occur up to the nth trial, is
given by

�n;k = qan+bk+c; k = 0; 1; : : : ; n; n= 0; 1; : : : ;

with a, b and c such that 06 �n;k6 1 for k = 0; 1; : : : ; n and n= 0; 1; : : : : Then the
probability function qn(k) = P(Wk = n), n = k; k + 1; : : : ; of the number Wk of trials
until the occurrence of the kth success is given by

qn(k) = qa(
n
2 )+b(

k
2 )+cn

(1− qa)n−1

(1− qb)k−1 |Cq−a(n− 1; k − 1;−s;−r)|; (5.2)

for n= k; k + 1; : : :, where |Cq−a(n; k;−s;−r)|= [− 1]nqCq−a(n; k;−s;−r), with s= b=a
and r = c=a.

Proof. Clearly, the probability function qn(k)=P(Wk=n), n=k; k+1; : : : ; is connected
with the probability function pk(n) = P(Xn = k), k = 0; 1; : : : ; n by

qn(k) = pk−1(n− 1)�n−1; k−1;

which, by virtue of (5.1), implies (5.2).

Corollary 5.1. Consider a sequence of Bernoulli trials with varying success probabil-
ity. Let Xn be the number of successes up to the nth trial and pn(n) = P(Xn = k),
k = 0; 1; : : : ; n its probability function.
(a) If the probability of success at the (n + 1)th trial is given by �n;k = qn+r ,

k = 0; 1; : : : ; n, n= 0; 1; : : : ; then

pk(n) = q(
n
2 )+rn(1− q)n−k |sq−1 (n; k; r)|; k = 0; 1; : : : ; n; (5.3)

where |sq−1 (n; k; r)| is the signless non-central q-Stirling number of the 6rst kind.
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(b) If the probability of success at the (n+1)th trial, given that k successes occur
up to the nth trial, is given by �n;k = qk+r , k = 0; 1; : : : ; n, n= 0; 1; : : : ; then

pk(n) = q(
k
2 )+rk(1− q)n−kSq(n; k; r); k = 0; 1; : : : ; n; (5.4)

where Sq(n; k; r) is the non-central q-Stirling number of the second kind.

Corollary 5.2. Consider a sequence of Bernoulli trials with varying success proba-
bility. Let Wk be the number of trials until the occurrence of the kth success and
qn(k) = P(Wk = n), n= k; k + 1; : : : its probability function.
(a) If the probability of success at the (n + 1)th trial is given by �n;k = qn+r ,

k = 0; 1; : : : ; n, n= 0; 1; : : : ; then

qn(k) = q(
n
2 )+rn(1− q)n−k |sq−1 (n− 1; k − 1; r)|; n= k; k + 1; : : : ; (5.5)

where |sq−1 (n; k; r)| is the signless non-central q-Stirling number of the 6rst kind.
(b) If the probability of success at the (n+1)th trial, given that k successes occur

up to the nth trial, is given by �n;k = qk+r , k = 0; 1; : : : ; n, n= 0; 1; : : : ; then

qn(k) = q(
k
2 )+rk(1− q)n−kSq(n− 1; k − 1; r); n= k; k + 1; : : : ; (5.6)

where Sq(n; k; r) is the non-central q-Stirling number of the second kind.
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