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Abstract

The aim of this work is to study the quotient ring Rn of the ring Q½x1;y; xn� over the ideal
J n generated by non-constant homogeneous quasi-symmetric functions. This article is a

sequel of Aval and Bergeron (Proc. Amer. Math. Soc., to appear), in which we investigated the

case of infinitely many variables. We prove here that the dimension of Rn is given by Cn; the
nth Catalan number. This is also the dimension of the space SHn of super-covariant

polynomials, defined as the orthogonal complement of J n with respect to a given scalar

product. We construct a basis for Rn whose elements are naturally indexed by Dyck paths.

This allows us to understand the Hilbert series of SHn in terms of number of Dyck paths with

a given number of factors.

r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

We study, in this paper, a natural analog of the space Hn of covariant polynomials
of Sn: Let X denote the n variables x1;y; xn and Q½X � denote the ring of
polynomials in the variables X : Let In denote the ideal of Q½X � generated by all
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symmetric polynomials with no constant term. That is

I n ¼ /hkðXÞ; k40S;

where hkðXÞ is the kth homogeneous symmetric polynomials in the variables X (cf.
[12]). We consider the following scalar product on Q½X �:

/P;QS ¼ Pð@XÞQðXÞjX¼0; ð1:1Þ

where @X stands for @x1;y; @xn and in the same spirit X ¼ 0 stands for x1 ¼ ? ¼
xn ¼ 0: The space Hn is defined as the orthogonal complement, denoted by I>

n ; of
the ideal In in Q½X �:
Equivalently (cf. [6, Proposition I.2.3]), covariant polynomials (also known as Sn-

harmonic polynomials) can be defined as polynomials P such that Qð@XÞP ¼ 0; for
any symmetric polynomial Q with no constant term. Since elements of Hn satisfy the
Laplace equation

ð@x2
1 þ?þ @x2

nÞP ¼ DP ¼ 0;

every covariant polynomial is also harmonic.
Classical results [1,16] state that the space Hn affords a graded Sn-module

structure and is isomorphic (as a representation of Sn) to the left regular
representation. Furthermore, as a graded Sn-module, Hn is isomorphic to the
quotient

Qn ¼ Q½X �=I n:

The space Qn appears naturally in other contexts; for instance, as the cohomology
ring of the variety of complete flags [5]. The discussion above implies that

dimHn ¼ n!: ð1:2Þ

Part of the interesting results surrounding the study of Hn involve the fact that it can
also be described as the linear span of all partial derivatives of the Vandermonde
determinant. This is a special case of a general result for finite groups generated by
reflections [16].

By analogy, we consider here the space SHn ¼ J>
n of super-covariant polynomials,

where J n is the idea generated by quasi-symmetric polynomials with no constant
term. Since the ring of symmetric polynomials is a subring of the ring of quasi-

symmetric polynomials, we have I nDJ n hence J>
n DI>

n ; thus

SHnDHn;

which justifies the terminology. Quasi-symmetric polynomials were introduced by
Gessel in 1984 [8] and have since appeared as a crucial tool in many interesting
algebraico-combinatorial contexts (cf. [4,7,13–15]).
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As in the corresponding symmetric setup, we have a graded isomorphism

SHnCRn ¼ Q½X �=J n ð1:3Þ

and the approach used in the following work concentrates on this alternate
description. We construct a basis of Rn by giving an explicit set of monomial
representatives. This set is naturally indexed by Dyck paths of length n; hence we
obtain the following main theorem.

Theorem 1.1. The dimension of SHn is given y the well-known Catalan numbers:

dim SHn ¼ dimRn ¼ Cn ¼ 1

n þ 1

2n

n

 !
: ð1:4Þ

In fact, taking into account the grading (with respect to degree), we have the Hilbert

series

Xn�1
k¼0

dim SHðkÞ
n tk ¼

Xn�1
k¼0

n � k

n þ k

n þ k

k

 !
tk: ð1:5Þ

The article contains five section. In Section 2 we recall useful definitions and basic
properties. In Section 3 we construct a family G of generators for the ideal J n and
state useful properties of this set. Section 4 is devoted to the proof of the first part of
Theorem 1.1. We construct an explicit basis for Rn which allows us in Section 5 to
obtain the Hilbert series of SHn:
Before we begin, let us remark that Hivert [9] has developed an action of the

Hecke algebra on Q½X � for which a polynomial is invariant if and only if it is quasi-

symmetric. One way to reformulate his result is to consider the generators ei ¼ q�Ti

ð1þqÞ
of the Hecke algebra, where Ti are the standard generators and q is an arbitrary
parameter. Then

eiei71ei �
q

ð1þ qÞ2
ei ð1:6Þ

acts, via Hivert’s action, as zero on the polynomial ring and generates the
kernel of this action. Hence, the Temperley–Lieb algebra TLnðqÞ (cf. [10]) classically
defined as the quotient of the Hecke algebra by relation (1.6), faithfully acts on
polynomials. The algebra TLnðqÞ is known to have dimension equal to Cn and at
q ¼ 1 this is a quotient of the symmetric group algebra. The quasi-symmetric

polynomials are thus identified as the polynomial invariants Q½X �TLn of the algebra
TLn ¼ TLnð1Þ:
The action of Hivert is not compatible with multiplication and does not preserve

the ideal J n; yet there are some striking facts related to TLn-invariants. The quasi-
symmetric functions are closed under multiplication [14], in particular they form a
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subring of Q½X �: Moreover, if we let n go to infinity, there is a graded Hopf algebra
structure on quasi-symmetric functions [8] that is free and cofree with cogenerators
in every degree [13]. That is, the graded dual is isomorphic to a free non-
commutative Hopf algebra Q/h1; h2;yS where degðhkÞ ¼ k: Moreover, in this
paper, we show that the space Rn of TLn-covariants has dimension equal to Cn ¼
dimðTLnÞ:
These facts are very similar to the classical theory of group invariants [16].

Unfortunately the analogy is incomplete as Hivert’s action does not induce an action
on Rn: This raises new open questions for future investigation: how can we explain
that dimðRnÞ ¼ dimðTLnÞ?

2. Basic definitions

A composition a ¼ ða1; a2;y; akÞ of a positive integer d is an ordered list of
positive integers ð40Þ whose sum is d: We denote this by aFd and also say that a is
a composition of size d and denote this by jaj: The integers ai are the parts of a; and
the length cðaÞ is set to be the number of parts of a:We denote by 0 the unique empty
composition of size d ¼ 0:
There is a natural one-to-one correspondence between compositions of d and

subsets of f1; 2;y; d � 1g: Let S ¼ fa1; a2;y; akg be such a subset, with
a1o?oak; then the composition associated to S is adðSÞ ¼ ða1 � a0; a2 �
a1;y; akþ1 � akÞ; where we set a0 :¼ 0 and akþ1 :¼ d: We denote by DðaÞ the set
associated to a through this correspondence. For compositions a and b; we say that b
is a refinement of a; if DðaÞCDðbÞ; and denote this by bka:
We use vector notation for monomials. More precisely, for n ¼ ðn1;y; nnÞANn;

we denote X n the monomial

xn1
1 xn2

2 ?xnn
n : ð2:1Þ

For a polynomial PAQ½X �; we further denote ½X n�PðXÞ as the coefficient of the
monomial X n in PðXÞ:
For a vector nANn; let cðnÞ represent the composition obtained by erasing zero (if

any) in n: A polynomial PAQ½X � is said to be quasi-symmetric if and only if, for any n
and m in Nn; we have

½X n�PðXÞ ¼ ½X m�PðXÞ

whenever cðnÞ ¼ cðmÞ: The space of quasi-symmetric polynomials in n variables is

denoted by Qsymn: The space Qsym
ðdÞ
n of homogeneous quasi-symmetric poly-

nomials of degree d admits as linear basis the set of monomial quasi-symmetric
polynomials indexed by compositions of d: More precisely, for each composition a
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of d with at most n parts, we set

Ma ¼
X

cðnÞ¼a

X n: ð2:2Þ

For the 0 composition, we set M0 ¼ 1: Another important linear basis is that of the
fundamental quasi-symmetric polynomials (cf. [8]):

Fa ¼
X
bka

Mb ð2:3Þ

with aFn and cðaÞpn: For example, with n ¼ 4;

F21ðx1; x2; x3; x4Þ ¼M21ðx1; x2; x3; x4Þ þ M111ðx1; x2; x3; x4Þ

¼ x2
1x2 þ x2

1x3 þ x2
1x4 þ x2

2x3 þ x2
2x4 þ x2

3x4

þ x1x2x3 þ x1x2x4 þ x1x3x4 þ x2x3x4:

Part of the interest of fundamental quasi-symmetric functions comes from the
following properties. The first is trivial, but very useful and the second comes from
the theory of P-partitions [14,15].

Proposition 2.1. For a ¼ ða1; a2;y; akÞFd;

FaðXÞ ¼
x1Fða1�1;a2;y;akÞðXÞ þ Faðx2;y; xnÞ if a141;

x1Fða2;a3;y;akÞðx2;y; xnÞ þ Faðx2;y; xnÞ if a1 ¼ 1:

(
ð2:4Þ

Let u ¼ u1?ulASc and v ¼ v1?vmAS½cþ1;cþm�: Let u v denote the set of shuffles

of the words u and v; i.e. u v is the set of all permutations w of cþ m such that u and

v are subwords of w: In particular u v contains ðcþm
m
Þ permutations. Let DðuÞ ¼

fi; ui4uiþ1g denote the descent set of u: If b and g are the two compositions such
that DðbÞ ¼ DðuÞ and DðgÞ ¼ DðvÞ; then

Proposition 2.2 (Stanley [15, Exercise 7.93]).

Fb Fg ¼
X

wAu v

FacþmðDðwÞÞ: ð2:5Þ

In (2.1), the monomials are in correspondence with vectors nANn: Just as for
compositions, the size n1 þ?þ nn of n is denoted by jnj: It is also convenient to
denote by cðnÞ the position of its last non-zero component. As usual, nþ m is the
componentwise addition of vectors.
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For ease of reading, we reserve the use of a; b and g to represent compositions,
and the other Greek letters to represent vectors. We use the same symbol a
for both the composition ða1;y; acÞ and the word a1?ac; likewise for vectors.
In general, the length of vectors (or number of variables) is fixed and equal to n:

If w is a word of integers (that is an element of Nk for 0pkpn) we denote

by w0� ¼ w0n�k the vector whose first k parts are the letters of w; to which are
added n � k zeros at the end. If u ¼ u1?uk and v ¼ v1?vm are words of integers, the
word

uv :¼ u1?ukv1?vm

is the concatenation of u and v:
We next associate to any vector n a path pðnÞ in the N�N plane with steps going

north or east as follows. If n ¼ ðn1;y; nnÞ; the path pðnÞ is

ð0; 0Þ- ðn1; 0Þ-ðn1; 1Þ-ðn1 þ n2; 1Þ-ðn1 þ n2; 2Þ-?

- ðn1 þ?þ nn; n � 1Þ-ðn1 þ?þ nn; nÞ:

For example the path associated to n ¼ ð2; 1; 0; 3; 0; 1Þ is

π(ν) = 

Observe that the height of the path is always n; whereas its width is jnj:
We distinguish two kinds of paths, thus two kinds of vectors, with respect

to their ‘‘behavior’’ with respect to the diagonal y ¼ x: If the path remains above
the diagonal, we call it a Dyck path, and say that the corresponding vector is
Dyck. If not, we say that the path (or equivalently the associated vector) is
transdiagonal. For example Z ¼ ð0; 0; 1; 2; 0; 1Þ is Dyck and e ¼ ð0; 2; 1; 0; 2; 2Þ
is transdiagonal.
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  η

ε

Observe that n ¼ n1?nn is transdiagonal if and only if there exists 1pmpn such
that

mon1 þ?þ nm: ð2:6Þ

Recall that the classical lexicographic order, on monomials of same degree, is

X n
XlexX

m iff nXlex m; ð2:7Þ

where we say that n is lexicographically larger than m; n4lex m; if the first non-zero
part of the vector n� m is positive. For example

x3
1 4lex x2

1x2 4lex x1x
2
2 4lex x3

2 since ð3; 0Þ4lex ð2; 1Þ4lex ð1; 2Þ4lex ð0; 3Þ:

3. The G basis

Following [2], we exploit relations (2.4) to construct a family

G ¼ fGegCJ n

indexed by vectors that are transdiagonal. For a any composition of kpn; the
polynomial Ge; with e :¼ a0�; is defined to be

Ge :¼ Fa: ð3:1Þ
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When aa0; the vector e ¼ a0� is clearly transdiagonal. For a general vector e (not of
the form a0�), the polynomial Ge is defined recursively in the following way. Let
e ¼ w0ab0� be the unique factorization of e such that w is a word of k � 1 non-
negative integers, a40 is a positive integer, and b is a composition (parts 40). Then
we set

Ge ¼ Gwab0� � xkGwða�1Þb0� : ð3:2Þ

By induction on the length of the indexing vectors, both terms on the right of (3.2)
are well defined, and we have

* cðwab0�Þ ¼ cðwða � 1Þb0�Þ ¼ cðeÞ � 1;
* wab0� and wða � 1Þb0� are transdiagonal as soon as e is transdiagonal.

In fact, let m be the first ordinate where pðeÞ crosses the diagonal, this is to say the
smallest integer such that moe1 þ?þ em: Then the second assertion follows from

j1 þ?þ jm4c1 þ?þ cm ¼ e1 þ?þ em � 14m � 1;

where j ¼ wab0� and c ¼ wða � 1Þb0�:
For example,

G1020 ¼G1200 � x2G1100

¼F12ðx1; x2; x3; x4Þ � x2F11ðx1; x2; x3; x4Þ

¼ x1x
2
2 þ x1x

2
3 þ x1x

2
4 þ x2x

2
3 þ x2x

2
4 þ x3x

2
4 þ x1x2x3 þ x1x2x4

þ x1x3x4 þ x2x3x4 � x2ðx1x2 þ x1x3 þ x1x4 þ x2x3 þ x2x4 þ x3x4Þ

¼ x1x
2
3 þ x1x3x4 þ x1x

2
4 � x2

2x3 � x2
2x4 þ x2x

2
3 þ x2x

2
4 þ x3x

2
4:

We observe in this example that the leading monomial (in lex order) of G1020 is

X 1020 ¼ x1
1x

0
2x

2
3x

0
4: This holds in general for the G family as stated in the following

proposition, for which all technical details can be found in [2].

Proposition 3.1 (Aval and Bergeron [2, Corollary 3.4]). The leading monomial

LMðGeÞ of Ge is X e:

4. Proof of the main theorem

We now give an explicit basis for the space Rn naturally indexed by Dyck paths.
This proves the first part of Theorem 1.1.
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Theorem 4.1. The set of monomials

Bn ¼ fX Z j pðZÞ is a Dyck pathg ð4:1Þ

is a basis of the space Rn:

The proof is achieved in a few steps. We start with the following lemma.

Lemma 4.2. Any PðXÞAQ½X � is in the linear span of Bn modulo J n: That is

PðXÞ �
X

X ZABn

cZX
Z ðmod J nÞ: ð4:2Þ

Proof. It clearly suffices to show that (4.2) holds for any monomial X n; with n
transdiagonal. We assume that there exists X n not reducible of the form (4.2) and we
choose X e to be the smallest amongst them with respect to the lexicographic order.
Let us write

X e ¼LMðGeÞ

¼ ðX e � GeÞ þ Ge

�X e � Ge ðmod J nÞ:

All monomials in ðX e � GeÞ are lexicographically smaller than X e; thus they are
reducible. This contradicts our assumption on X e and completes our proof. &

Thus Bn spans the space Rn: We now prove its linear independence. This is
equivalent to showing that the set G is a Gröbner basis of the ideal J n: A crucial
lemma is the following one, which is the quasi-symmetric analogue of a classical
result is the case of symmetric polynomials ([6, Theorem II.2.2]).

Lemma 4.3. If we denote by L½S� the linear span of a set S, then

Q½X � ¼ L½X ZFa j X ZABn; aFrX0�: ð4:3Þ

Proof. We have already obtained the following reduction for any monomial X e in
Q½X �:

X e �
X

X ZABn

cZX Z ðmodJ nÞ;

which is equivalent to

X e ¼
X

X ZABn

cZX Z þ
X

aFrX1

QaFa: ð4:4Þ
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We then apply reduction (4.4) to each monomial of the Qa’s and use Proposition 2.2
to reduce products of fundamental quasi-symmetric functions. We obtain (4.3) in a
finite number of operations since degrees strictly decrease at each operation, because
aFrX1 implies deg Qaojej: &

The next lemma is the final step in our proof of Theorem 4.1.

Lemma 4.4. The set G is a linear basis of the ideal J n; i.e.

J n ¼ L½Ge j e transdiagonal�: ð4:5Þ

Proof. Let us denote by An the set

An ¼ fX x j x
xn

1 x
xn�1
2 ?xx1

n ABng: ð4:6Þ

Now the algebra endomorphism of Q½X � that reverses the variables,

xi/xn�iþ1;

clearly fixes the subalgebra Qsym: In fact it maps Fa to Fa0 ; where a0 is the reverse
composition.
It follows from Lemma 4.3 and the endomorphism above that

Q½X � ¼ L½X xFa j X xAAn; aFrX0�: ð4:7Þ

Now to prove Lemma 4.4, we reduce the problem as follows. We first use (4.7) and
Proposition 2.2 to write

J n ¼/Fa; aFsX0SQ½X � ¼ L½X xFaFb j X xAAn; aFsX0; bFtX1�

¼L½X xFg j X xAAn; gFrX1�:

It is now sufficient to prove that for all X xAAn and all gFrX1

X xFaAL½Ge j e transdiagonal�: ð4:8Þ

But Lemma 4.2 implies that any monomial of degree greater than n is in J n: Hence
to prove (4.8), we need only show it for x and g such that jxj þ jgjpn: To do that, we
reduce the product

xxn
n ðxxn�1

n�1ð?ðxx2
2 ðx

x1
1 FaÞÞÞÞ ð4:9Þ

recursively, using

xkGwbb0� ¼ Gwðbþ1Þb0� � Gw0ðbþ1Þb0� ð4:10Þ
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or

xkGw0�00� ¼ Gw0�10� � Gw0�010� : ð4:11Þ

Relations (4.10) and (4.11) are immediate consequences of the definition of the G
basis (relation (3.2)).
We have to show that the vectors e generated in this process are all transdiagonal

and that the length cðeÞ always remains at most equal to n: Let us first check that the
transdiagonal part. This is obvious in the case of relation (4.11). In the other case
(relation (4.10)), for j ¼ wbb0�; it is sufficient to observe that if m is such that

j1 þ?þ jm4m

with m4cðwÞ (if not, it is evident), then

j0
1 þ?þ j0

m4m þ 14m and j00
1 þ?þ j00

mþ14m þ 1;

where j0 ¼ wðb þ 1Þb0�; and j00 ¼ w0ðb þ 1Þb0�:We shall now prove that the length
of the e’s always remains at most equal to n: For this we need to keep track of the
term ecðeÞ: Two cases have to be considered.

* First case: ecðeÞ comes from acðaÞ that has shifted to the right by relation (4.10). It

could move at most jxj steps to the right, whence

cðeÞpcðaÞ þ jxjpjaj þ jxjpn:

* Second case: ecðeÞ is a ‘‘1’’ generated by relation (4.11) that has shifted to the right.
If it is generated by a multiplication by xk; then we consider the vector

Z ¼ xnxn�1?xk0
�:

Since X xAAn implies pðZÞ is a Dyck path, we have

jZjocðZÞ ¼ n � k þ 1

hence the generated ‘‘1’’ can shift at most to position

k þ jZjpk þ n � k ¼ n: &

The recursive process used to reduce a product of form (4.9) is illustrated in the
following example, where n ¼ 5:

x1x3F21 ¼ x3ðx1F21Þ

¼ x3ðG31000 � G03100Þ
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¼ x3G31000 � x3G03100

¼G31100 � G31010 � G03200 þ G03020:

End of proof of Theorem 4.1: By Lemma 4.2, the set Bn spans the quotient Rn:
Assume we have a linear dependence relation modulo J n; i.e. there exists P

P ¼
X

X xABn

axX x A I n:

By Lemma 4.4, J n is linearly spanned by the Ge’s, thus

P ¼
X

e transdiagonal

beGe:

This implies LMðPÞ ¼ X e; with e transdiagonal, which is absurd. &

A consequence of Lemma 4.4 and Theorem 4.1 is that the set G is a Gröbner basis
of J n with respect to the lex order. From this we see below that a minimal Gröbner
basis of J n is obtained from G if we select the GeAG such that pðeÞ has exactly one
step under the line y ¼ x and no other horizontal steps after that.

Corollary 4.5. A minimal Gröbner basis for J n is given by

fGeAG j e ¼ w0�; cðwÞ ¼ jwj þ 1; w1 þ?þ wsps; for socðwÞg: ð4:12Þ

Proof. Theorem 4.1 implies that the monomial ideal LTðJ nÞ of leading terms of J n

is generated by all monomials X Z where pðZÞ is transdiagonal. For any such Z let m

be the smallest integer such that moZ1 þ?þ Zm and let e ¼ Z1?Zm�1a0
� where

a ¼ m � 1� Z1 �?� Zm�1: The monomial X e divides X Z which shows that
LTðJ nÞ is generated by the leading monomial of the Ge in (4.12). This gives that

(4.12) is a Gröbner basis. To show minimality, consider X x a monomial that strictly
divides the leading monomial of a Ge in (4.12). Since pðeÞ has exactly one step under

the line y ¼ x; we have that pðxÞ is not transdiagonal and X xeLTðJ nÞ: Hence the
leading monomials of the Ge in (4.12) is a minimal set of generators for LTðJ nÞ: &

5. Hilbert series

Since Theorem 4.1 gives us an explicit basis for the quotient Rn; which is
isomorphic to SHn as a graded vector space, we are able to refine relation (1.4) by
giving the Hilbert series of the space of super-covariant polynomials. For kAN; let
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SHðkÞ
n and RðkÞ

n denote the projections

SHðkÞ
n ¼ SHn-QðkÞ½X �CRn-QðkÞ½X � ¼ RðkÞ

n ; ð5:1Þ

where QðkÞ½X � is the vector space of homogeneous polynomials of degree k together
with zero. Here, we represent Dyck paths horizontally, with n rising steps ð1; 1Þ and n

falling steps ð1;�1Þ: Let us denote by D
ðkÞ
n the number of Dyck paths of length 2n

ending by exactly k falling steps and by C
ðkÞ
n the number of Dyck paths of length 2n

which have exactly k factors, i.e. k þ 1 points on the axis. The next figure gives an
example of a Dyck path of length 28; ending with four falling steps and made of
three factors.

It is well known that

DðkÞ
n ¼ CðkÞ

n ¼ kð2n � k � 1Þ!
n! ðn � kÞ! ; ð5:2Þ

where the first equality is classical (cf. [17] for example for a bijective proof), and the
second corresponds to [11, formula (7)].
Let us denote by FnðtÞ the Hilbert series of SHn; i.e.

FnðtÞ ¼
X
kX0

dim SHðkÞ
n tk: ð5:3Þ

Theorem 5.1. For 0pkpn � 1; the dimension of SHðkÞ
n is given by

dim SHðkÞ
n ¼ dimRðkÞ

n ¼ Dðn�kÞ
n ¼ Cðn�kÞ

n ¼ n � k

n þ k

n þ k

k

 !
: ð5:4Þ

For kXn the dimension of SHðkÞ
n is 0.

Proof. By Theorem 4.1, we know that the set

Bn ¼ fX Z j pðZÞ is a Dyck pathg

is a basis for Rn: It is then sufficient to observe that the path pðZÞ associated to Z ends
by exactly n � jZj falling steps. &
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For example, we have:

n FnðtÞ
1 1
2 1þ t

3 1þ 2t þ 2t2

4 1þ 3t þ 5t2 þ 5t3

5 1þ 4t þ 9t2 þ 14t3 þ 14t4

6 1þ 5t þ 14t2 þ 28t3 þ 42t4 þ 42t5

7 1þ 6t þ 20t2 þ 48t3 þ 90t4 þ 132t5 þ 132t6

This gives

FnðtÞ ¼
Xn�1
k¼0

n � k

n þ k

n þ k

k

 !
tk ð5:5Þ

from which one easily deduces that the generating series for the FnðtÞ’s is

X
n

FnðtÞxn ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4tx

p
� 2x

2ðt þ x � 1Þ : ð5:6Þ

Remark 5.2. The study of various filtrations of the space Q½X �; with respect to
family of ideals of quasi-symmetric polynomials, will be the object of a forthcoming
paper [3].
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