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We prove a new characterization of weakly regular ternary bent
functions via partial difference sets. Partial difference sets are
combinatorial objects corresponding to strongly regular graphs.
Using known families of bent functions, we obtain in this way new
families of strongly regular graphs, some of which were previously
unknown. One of the families includes an example in [N. Hamada,
T. Helleseth, A characterization of some {3v2 + v3,3v1 + v2,3,3}-
minihypers and some [15,4,9;3]-codes with B2 = 0, J. Statist.
Plann. Inference 56 (1996) 129–146], which was considered to
be sporadic; using our results, this strongly regular graph is now
a member of an infinite family. Moreover, this paper contains
a new proof that the Coulter–Matthews and ternary quadratic bent
functions are weakly regular.
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1. Introduction

In this paper we describe a new connection between partial difference sets and ternary weakly
regular bent functions.

Partial difference sets (see the definition in Section 2.2) have been studied extensively because
of their connections with other combinatorial objects such as two-weight codes and strongly regular
graphs. We refer the reader to [3,18] for details.

There are many constructions of partial difference sets in elementary abelian groups, and recently
some have also been constructed in non-elementary abelian groups, see [18,9] for details. It is well
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known that partial difference sets can be used to construct strongly regular graphs (see the definition
in Section 2.2). In this paper, we are going to construct partial difference sets whose strongly regular
graphs (SRG) are of Latin square type and of negative Latin square type. For the precise definitions,
see Section 2.2.

Boolean bent functions, first introduced by Rothaus [23], have been extensively studied because of
their importance in cryptography. Such functions have the maximum Hamming distance to the set of
all affine functions. In [15], the authors generalized Boolean bent functions to the case of finite fields
of arbitrary characteristic (see Section 2.3). Bent functions f : Fn

p → Fp are those functions whose

Walsh coefficients have absolute value pn/2 (see Section 2.3 for the definition of Walsh coefficients).
In this paper we are interested in weakly regular bent functions. These are functions where the Walsh
coefficients take just the values μpn/2ζ i

p , where ζp = e2π i/p is a complex p-th root of unity and μ is
a complex number of absolute value 1. For the precise definition of weakly regularity, see Section 2.3.

We will show (Theorem 1) that a bent function f : F2m
3 → F3 which satisfies f (−x) = f (x) and

f (0) = 0 is weakly regular if and only if the sets D1 := {x ∈ Fn
3 | f (x) = 1} and D2 := {x ∈ F | f (x) = 2}

are partial difference sets with the same parameters. Therefore, ternary bent functions can be used to
construct partial difference sets, hence strongly regular graphs.

The partial difference sets constructed from ternary bent functions also correspond to projective
two-weight codes. We will not discuss this connection further, but refer to [3].

There are two very interesting classes of ternary bent functions: One class is derived from the
Coulter–Matthews planar functions, see [7], and the other one is constructed in [12], see the table in
Section 2.3. It seems that the strongly regular graphs of negative Latin square type corresponding to
these families are new. We can check this (by computer) only for small graphs, but we are quite sure
that the SRGs of negative Latin square type are new in general. One of our families contains a sporadic
example due to Hamada and Helleseth [11], therefore we generalize the Hamada–Helleseth strongly
regular graph to an infinite family.

It seems not to be easy to check whether a p-ary bent function is weakly regular or not. In [12],
Helleseth and Kholosha proved that all quadratic p-ary bent functions are weakly regular, and all
known monomial p-ary bent functions are weakly regular, except possibly the Coulter–Matthews
bent functions and a newly found family in [12]. It was conjectured that these two families are
weakly regular, too. Finally, this has been proven in [13]. Our characterization of ternary bent func-
tions (Theorem 1) through partial difference sets gives an alternative proof for the weak regularity of
the Coulter–Matthews bent functions (Theorem 2).

The paper is organized as follows. In Section 2, we give the definitions and results used in this
paper. Section 3 contains the main theorems and proofs. We discuss the “newness” of the strongly
regular graphs constructed from ternary bent functions in Section 4.

2. Preliminaries

2.1. Group rings and characters

Group rings are a very useful tool to study difference set problems, the reader may refer to any
good textbook on algebra for basic facts and notations, see [20] for instance. Let F be an arbitrary
field, and let G be a multiplicatively written abelian group with identity element 1G . We restrict
ourselves to abelian groups since these are the only groups which will appear throughout this paper.

We identify a subset S of G with the group ring element
∑

s∈S s, which will also be denoted by S
(by abuse of notation). For A = ∑

g∈G ag g ∈ F[G] and t an integer, we define A(t) := ∑
g∈G ag gt .

A character χ of a finite abelian group G is a homomorphism from G to C∗ , the multiplicative
group of C. A character χ is called principal if χ(g) = 1 for all g ∈ G , otherwise it is called non-
principal. All characters form a group which is denoted by Ĝ and called the character group Ĝ which
is isomorphic to G .

By linearity, we extend each character χ ∈ Ĝ to a homomorphism from C[G] to C, and we still
denote this homomorphism by χ . The following are the well-known orthogonality relations for char-
acters.
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Result 1 (Orthogonality relations). Let G be a finite abelian group and Ĝ be its character group. Then
the following hold:

∑
g∈G

χ(g) =
{

0 if χ is non-principal,
|G| if χ is principal;

∑
χ∈Ĝ

χ(g) =
{

0 if g �= 1G ,

|G| if g = 1G .

Corollary 1 (Inversion formula). If A = ∑
g∈G ag g in C[G], then

ag =
∑
χ∈Ĝ

χ(A)χ
(

g−1).
If G = Fm

p is elementary abelian, there are two possibilities to describe characters. We may iden-
tify Fm

p with the additive group of the finite field Fpm . Let Tr : Fpm → Fp be the absolute trace

function, i.e. Tr(x) := ∑m−1
i=0 xpi

. Define χ1 : Fpm → C as χ1(x) := ζ
Tr(x)
p for all x ∈ Fpm . Then χ1 is an

additive character of Fpm . Moreover, every additive character χ is of the form χβ (β ∈ Fpm ), where
χβ is defined by χβ(x) = χ1(βx) for all x ∈ Fpm .

If we do not want to identify Fm
p with the additive group of a field, characters are simply the

mappings x �→ ζ
〈b,x〉
p (b ∈ Fm

p ) where 〈 , 〉 denotes the standard inner product. Using any of these
descriptions of the characters, it is easy to see that G ∼= Ĝ .

If G = H1 × H2, then Ĝ ∼= Ĥ1 × Ĥ2. If μ1 ∈ Ĥ1 and μ2 ∈ Ĥ2, then the mapping (μ1,μ2) : H1 ×
H2 → C with (μ1,μ2)(h1,h2) := μ1(h1) ·μ2(h2) is a character of G , and all characters can be written
in this form.

2.2. Partial difference sets and strongly regular graphs

Let G be a multiplicative group of order v . A k-subset D of G is a (v,k, λ,μ) partial difference
set (PDS) if each non-identity element in D can be represented as gh−1 (g,h ∈ D , g �= h) in exactly
λ ways, and each non-identity element in G \ D can be represented as gh−1 (g,h ∈ D , g �= h) in
exactly μ ways. We shall always assume that the identity element 1G of G is not contained in D . The
terminology “partial difference set” is quite common, even if the groups are written multiplicatively.

In group ring notation, a k-subset D of G is a (v,k, λ,μ)-partial difference set if and only if the
following group ring equation holds in C[G] (see [18]):

D D(−1) = (k − μ)1G + (λ − μ)D + μG and D(−1) = D.

Using a simple counting argument, we have the following necessary condition for the parameter set
(v,k, λ,μ):

k2 = (k − μ) + k(λ − μ) + μv. (1)

We may apply characters to the equation above and obtain the following character theoretic char-
acterization of partial difference sets:

Result 2. (See [18].) Let G be an abelian group of order v . Suppose D is a k-subset such that
D(−1) = D , 1 /∈ D . Then D is a (v,k, λ,μ)-PDS if and only if for every non-principal character χ
of G ,

χ(D) = β ± √
�

2
,

where β = λ − μ, γ = k − μ and � = β2 + 4γ .
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Combinatorial objects associated with partial difference sets are strongly regular graphs: A graph Γ

with v vertices is called a (v,k, λ,μ) strongly regular graph (SRG) if each vertex is adjacent to exactly
k other vertices, and if any two adjacent vertices have exactly λ common neighbors, and two non-
adjacent vertices have exactly μ common neighbors.

Given a group G of order v and a k-subset D of G with 1G /∈ D and D(−1) = D , the graph Γ = (V,E)

defined as follows is called the Cayley graph generated by D:

(1) The vertex set V is G;
(2) Two vertices g,h are joined by an edge if and only if gh−1 ∈ D .

A Cayley graph generated by D is strongly regular if and only if D is a PDS with D(−1) = D:

Result 3. (See [18].) Let Γ be the Cayley graph generated by a k-subset D of a finite multiplicative
group G . Then Γ is a (v,k, λ,μ) strongly regular graph if and only if D is a (v,k, λ,μ)-PDS with
1 /∈ D and {d−1 | d ∈ D} = D .

The parameters of SRGs have to satisfy some necessary conditions. In this paper, we consider
only SRGs which are of Latin square or negative Latin square type. Strongly regular graphs (or partial
difference sets) with parameters (n2, r(n + ε),−εn + r2 + 3εr, r2 + εr) are called of Latin square type if
ε = −1, and negative Latin square type if ε = 1. There are many constructions of SRGs of Latin square
type (any collection of r − 1 mutually orthogonal Latin squares gives rise to such a graph, see [18],
for instance), but only a few constructions of negative Latin square type seem to be known. We will
show that weakly regular ternary bent functions can be used to construct PDSs of Latin square and of
negative Latin square type.

2.3. Bent functions

In this section and throughout the rest of the paper, we identify the group Fm
p with the additive

group of the finite field Fpm . This has the advantage that we may use the multiplicative structure
of Fpm to define functions on Fm

p , as we will see below.

For a prime p, we define a primitive complex p-th root of unity ζp := e
2π i

p . Let f be a function
Fpm → Fp . The Walsh transform of f is the complex-valued function W f : Fpm → C defined by

W f (β) :=
∑

x∈Fpm

ζ
f (x)+Tr(βx)

p , β ∈ Fpm .

The function f is called p-ary bent if every Walsh coefficient W f (β) has magnitude pm/2, i.e.
|W f (β)| = pm/2 for all β ∈ Fpm . The classical examples of p-ary bent functions are the quadratic
ones. For background about quadratic functions on finite fields, we refer to [16].

We call a bent function f regular if there exists some function f ∗ : Fpm → Fp such that W f (β) =
pm/2ζ

f ∗(b)
p , and f is called to be weakly regular if W f (β) = μpm/2ζ f ∗(b) for some constant μ ∈ C

with |μ| = 1. There are restrictions on the existence of regular bent functions: They can only exist
when m is even, or m is odd and p ≡ 1 mod 4, see [15]. All quadratic bent functions are (weakly)
regular, see [12].

Since bent functions exist for all p and m, there are many bent functions which are not regular.
The situation is different for the weak regularity: Many families of bent functions seem to be weakly
regular. In particular, all known monomial bent functions are weakly regular except one sporadic ex-
ample in [12]. We say that a p-ary function f : Fpm → Fp is monomial if there is an integer d and an
element α ∈ Fpm such that f (x) = Tr(αxd). A well-rounded treatment of the regularity properties of
the known monomial p-ary bent functions is [12].

Helleseth and Kholosha gave a table of the known families of monomial p-ary bent functions of
the form Tr(αxd) (α ∈ F∗

pm ) over Fpm . We record Table 1 here for the convenience of the reader. In
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Table 1

Bent functions m d α

Sidelnikov (wr) Arbitrary 2 α �= 0

p-ary Kasami (wr) 2k pk + 1 α + αpk �= 0
K–M (wr) Arbitrary p j + 1, n

(n, j) -odd α �= 0

C–M (wr) Arbitrary 3k+1
2 , (k,2n) = 1 α �= 0

p-ary Gold (wr) Arbitrary p j + 1 αgcd(2 j,m) − 1 � pm−1
2 − i0(p j − 1)

Ternary Dillon (r) 2k t(3k − 1), (t,3k + 1) = 1
∑

c∈F
∗
pm/2

ζ
Tr(c+α3k+1c−1)
3 = −1

H–K (wr) 2k, k odd 3m−1
4 + 3k + 1 α = ξ

3k+1
4

Table 1, r (resp. wr) means that the bent function is regular (resp. weakly regular), and α = ξ i0 where
ξ is a primitive element in Fpn .

Some remarks are in order: First of all, “C–M” stands for “Coulter–Matthews”, “K–M” for Kumar–
Moreno, and “H–K” for Helleseth–Kholosha”. Please see [12] for references. Moreover, the weak regu-
larity of the C–M family and the H–K family has been proved in [13].

We say that a function f : Fm
p → Fn

p is quadratic if for all a �= 0, the mapping x �→ f (x + a) − f (x)
is nonzero and linear (here n is not necessarily 1). We note that the C–M, the H–K and the Dillon
functions are the only non-quadratic bent functions in Table 1.

2.4. Relative difference sets and planar functions

In this section, we briefly describe the connection between p-ary bent functions and relative dif-
ference sets.

Let G be a group of order mn, and let N be a subgroup of order n. A k-subset R of G is called an
(m,n,k, λ)-relative difference set (RDS) in G relative to N if every element g ∈ G \ N can be represented
in exactly λ ways in the form r1r−1

2 (r1, r2 ∈ R , r1 �= r2), and no non-identity element in N has such
a representation. In the language of group rings, a k-subset R of G is an (m,n,k, λ)-RDS in G relative
to N if and only if

R R(−1) = k + λ(G − N) in C[G]. (2)

If χ is a complex-valued character of an abelian group, then χ(R(−1)) = χ(R), i.e. χ(R(−1)) is the
complex conjugate of χ(R). If we apply complex characters to (2), we get

∣∣χ(R)
∣∣2 =

⎧⎨
⎩

k2 if χ is principal,
k − nλ if χ is non-principal, but χ is principal on N,

k if χ is non-principal on N.

(3)

Similar to Result 2, we have a characterization of relative difference sets using characters

Result 4. (See [22].) Let G be a group of order mn and N < G a subgroup of order n. A subset of R is
a relative (m,n,k, λ)-difference set in G relative to N if and only if (3) holds for all characters.

If R is a relative (m,n,m, λ)-difference set in H × N , then R defines a function f : H → N: For
h ∈ H , there is precisely one element nh ∈ N such that (h,nh) ∈ R , hence we may define f (h) := nh .
Conversely, any function f : H → N defines an m-set R f := {(h, f (h)) | h ∈ H}. Note that in the case
m = k we have λ = m/n, which can be seen by an easy counting argument. The following proposition
is easy to prove and well known, see [22], for instance.

Proposition 1. A set R is an (m,n,m, λ)-difference set in H × N if and only if the corresponding function f
has the following property: the equation f (x + a) − f (x) = b has precisely λ solutions x for all non-identity
a ∈ H and all b ∈ N.
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If f : Fm
p → Fp , then the character values of R f ∈ C[Fm

p × Fp] are∑
x∈Fm

p

ζ
α f (x)+Tr(βx)
p

for α ∈ Fp and β ∈ Fpm , where ζ = e
2π i

p . If α �= 0, then the character χ is non-principal on {0} × Fp .
The character values of R f (with α = 1) are precisely the Walsh coefficients of f . This implies, using
Result 4, the following well-known proposition:

Proposition 2. The set R is a relative (pm, p, pm, pm−1)-difference set in an elementary abelian group if and
only if the corresponding function is p-ary bent.

The functions corresponding to (n,n,n,1)-relative difference sets in H × N are called planar. Planar
functions have the property that all the mappings x �→ f (x + a) − f (x) are bijective. All known planar
functions are between elementary abelian groups. If f : Fm

p → Fm
p is planar, then x �→ Tr(α f (x)) is

p-ary bent for all α �= 0, hence planar functions give rise to many bent functions. With the exception
of the Coulter–Matthews planar function, all known planar functions are quadratic.

We need the following highly nontrivial result on the Walsh coefficients of planar functions:

Result 5. (See [10].) Let p be an odd prime. Define

W +
K := {

ζ i
p

∣∣ 0 � i � p − 1
}
, W −

K := {−ζ i
p

∣∣ 0 � i � p − 1
}

where ζp = e
2π i

p . Suppose f is a planar function which is quadratic or of Coulter–Matthews type. Then
for all α ∈ F∗ and β ∈ F, we have

WTr(α f )(β) = εα,β(
√

p∗ )m, εα,β ∈ W +
K ∪ W −

K ,

where εα,0 ∈ {±1}, p∗ = (−1)
p−1

2 p and εα,β · εα,0 ∈ W +
K .

2.5. Amorphic association schemes

Let V be a finite set of vertices, and let {R0, R1, . . . , Rd} be binary relations on V with R0 :=
{(x, x): x ∈ V }. The configuration (V ; R0, R1, . . . , Rd) is called an association scheme of class d on V if
the following hold:

(1) V × V = R0 ∪ R1 ∪ · · · ∪ Rd and Ri ∩ R j = ∅ for i �= j.
(2) t Ri = Ri′ for some i′ ∈ {0,1, . . . ,d}, where t Ri := {(x, y): (y, x) ∈ Ri}. If i′ = i, we call Ri is sym-

metric.
(3) For i, j,k ∈ {0,1, . . . ,d}, the number 
{z ∈ V | (x, z) ∈ Ri, (z, y) ∈ R j} is a constant, which is

denoted by pk
i j .

An association scheme is said to be symmetric if every Ri is symmetric.
Given an association scheme (V , {Rl}0�l�d), we can take the union of classes to form schemes

with larger sets (this is called fusion), but it is not necessarily guaranteed that the fused collection of
relations will form an association scheme on V . If an association scheme has the property that any of
its fusions is also an association scheme, then we call the association scheme amorphic. Van Dam [8]
could prove the following result:

Result 6. Let V be a set of size v , and let {G1, G2, . . . , Gd} be an edge-decomposition of the complete
graph on V , where each Gi is a strongly regular graph on V . If Gi,1 � i � d, are all of Latin square
type or all of negative Latin square type, then the decomposition is a d-class amorphic association
scheme on V .
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Using Result 6, we will construct a family of amorphic association schemes on the additive group
of the finite field F2m

3 (Theorem 3).

3. Main results

We first introduce some notations. Let F be the Galois field F32m with m � 2, and let ξ be a prim-
itive element in F. Moreover, ζ3 = e2π i/3 is a complex third root of unity. Denote by G and H the
additive group of F32m and F3 respectively. Let f : F → F3 be a ternary bent function satisfying
f (−x) = f (x). We define

Di := {
x ∈ F

∣∣ f (x) = i
}
, 0 � i � 2.

Clearly, D0 + D1 + D2 = G . We may assume f (0) = 0 without loss of generality, since otherwise we
may replace f (x) by f (x) − f (0). For β ∈ F∗ , we have χβ(D0) + χβ(D1) + χβ(D2) = 0, see Result 1.

From f (−x) = f (x) we get Di = D(−1)
i for each i, hence χβ(Di) = χβ(Di). Since χβ(Di) ∈ Z[ζ3],

we have χβ(Di) ∈ Z. Since f is a bent function from G to H , the set R := {(x, f (x)) | x ∈ G} is
a (32m,3,32m,32m−1)-RDS in G × H relative to H , see Proposition 2. By the definition of Di , we
have R = (D0,0) + (D1,1) + (D2,2). Let η be the character of H which maps 1 to ζ3, and define
(χβ,η) : G × H → C by (χβ,η)(x, y) = χβ(x)η(y). Then (χβ,η) is a character of G × H , and we have

(χβ,η)(R) = χβ(D0) + χβ(D1)ζ3 + χβ(D2)ζ
2
3 . (4)

Using (4) and 1 + ζ3 + ζ 2
3 = 0, we have

(χβ,η)(R) = (−χβ(D1) − 2χβ(D2)
) + (

χβ(D1) − χβ(D2)
)
ζ3. (5)

On the other hand,

W f (β) =
∑
x∈D0

χβ(x) +
∑
x∈D1

χβ(x)ξ3 +
∑
x∈D2

χβ(x)ξ2
3

= χβ(D0) + χβ(D1)ξ3 + χβ(D2)ξ
2
3

= (χβ,η)(R). (6)

If β = 0, we get

W f (0) = (χ0, η)(R)

= |D0| + |D1|ζ3 + |D2|ζ 2
3

= (
32m − |D1| − 2|D2|

) + (|D1| − |D2|
)
ζ3.

The last step uses |D0| + |D1| + |D2| = 32m and 1 + ζ3 + ζ 2
3 = 0. Since f is a bent function,

|W f (0)|2 = 32m , i.e.((
32m − |D1| − 2|D2|

) + (|D1| − |D2|
)
ξ
)((

32m − |D1| − 2|D2|
) + (|D1| − |D2|

)
ξ
) = 32m.

Simplifying the above equation and denoting |D1|, |D2| by x, y, respectively, we get

x2 + xy − 32mx + y2 − 32m y = 32m−1 − 34m−1. (7)

Next we give a lemma to determine the cardinalities of D1 and D2.

Lemma 1. The integer solutions (x, y) of the equation x2 + xy − 32mx + y2 − 32m y = 32m−1 − 34m−1 are
given by(

32m−1 + 3m−1,32m−1 + 3m−1
)
,

(
32m−1 + 3m−1,32m−1 − 2 · 3m−1

)
,(

32m−1 − 3m−1,32m−1 − 3m−1
)
,

(
32m−1 + 3m−1,32m−1 + 2 · 3m−1

)
,(

32m−1 + 2 · 3m−1,32m−1 − 3m−1
)
,

(
32m−1 − 2 · 3m−1,32m−1 + 3m−1

)
.
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Proof. Suppose 3i ‖ x, i.e. 3i | x but 3i+1 � x. We may assume i � m − 1. Assume otherwise 3m | x.
Then 32m−1 | x2 + xy − 32mx + y2 − 32m y implies 32m−1 | y(x + y), hence 3m | y, which contradicts to
x2 + xy − 32mx + y2 − 32m y = 32m−1 − 34m−1.

If 3i ‖ x with i � m − 1, then x2 + xy − 32mx + y2 − 32m y ≡ 0 mod 32i and hence y(x + y) ≡
0 mod 32i . This shows 3i | y. If 3i+1 | y, then the same arguments show that 3i+1 | x which is false.
Hence 3i ‖ y. Write x = 3i x′ , y = 3i y′ , with x′ , y′ not divisible by 3. Then (7) becomes

x′2 + x′ y′ − 32m−ix′ + y′2 − 32m−i y′ = 32m−2i−1 − 34m−2i−1, (8)

which is a quadratic equation in x′:

x′2 + x′(y′ − 32m−i) + y′2 − 32m−i y′ − 32m−2i−1 + 34m−2i−1 = 0. (9)

The discriminant of (9) is

� = 3
(
4 · 32m−2i−2 − (

y′ − 32m−i−1)2)
.

Since x is an integer, the discriminant � must be a positive square. If i < m−1, 3 � −(y′ −32m−i−1)2 +
4 · 32m−2i−2 since 3 � y′ . Therefore, i must be m − 1. In this case, (7) can be expressed as:

x′2 + x′(y′ − 3m+1) + y′2 − 3m+1 y′ − 3 + 32m+1 = 0. (10)

Its discriminant is now equal to � = −3(y′ − 3m)2 + 12. If (7) has an integer solution, then � � 0
which implies y′ = 3m ± 1 or 3m ± 2.

Since x′ = −(y′−3m+1)±√
�

2 , we know that if y′ = 3m + 1, then

x′ = −(3m + 1 − 3m+1) ± 3

2
= 3m + 1 or 3m − 2.

The same argument shows if y′ = 3m − 1, we have x′ = 3m − 1 or 3m + 2. If y′ = 3m + 2, note now

� = 0, and x′ = −(3m+2−3m+1)
2 = 3m − 1. Similarly, when y′ = 3m − 2, we have x′ = 3m + 1. �

Now we return to the determination of |D1| and |D2|. We assume f (0) = 0 and f (−x) = f (x).
Then it is clear that D(−1)

1 = D1, D(−1)
2 = D2 and 0 /∈ D1, D2, hence |D1|, |D2| should be even integers.

This shows that the only possible solution pairs are (32m−1 +3m−1,32m−1 +3m−1) and (32m−1 −3m−1,

32m−1 − 3m−1). Thus we have proved:

Corollary 2. Let f : F → F3 be a ternary bent function satisfying f (−x) = f (x) and f (0) = 0. Define Di :=
{x ∈ F | f (x) = i} for each 0 � i � 2. Then |D1| = |D2| = 32m−1 + 3m−1 or |D1| = |D2| = 32m−1 − 3m−1 .

Since f is a ternary bent function over F32m , and by (4), we have

32m = (χβ,η)(R)(χβ,η)(R) = 3
(
χβ(D1)

2 + χβ(D2)
2 + χβ(D1)χβ(D2)

)
.

We obtain

χβ(D1)
2 + χβ(D2)

2 + χβ(D1)χβ(D2) = 32m−1. (11)

Using similar arguments as in Lemma 1, we have the following lemma:

Lemma 2. The integer solutions (x, y) of the equation x2 + y2 + xy = 32m−1 are given by (δ := 3m−1)

(δ, δ), (δ,−2δ), (−2δ, δ), (−δ,−δ), (−δ,2δ), (2δ,−δ).

This lemma shows that χ(D1),χ(D2) ∈ {±δ,±2δ} for any non-principal character χ of G . We are
now ready to prove our first main theorem:

Theorem 1. Let F be the Galois field F32m with m � 2. Let f : F → F3 be a ternary bent function satisfying
f (−x) = f (x) and f (0) = 0. Define Di := {x ∈ F | f (x) = i} for each 0 � i � 2. Then the following hold:
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(1) f is weakly regular if and only if D1 and D2 are both(
32m,32m−1 + ε3m−1,32m−2,32m−2 + ε3m−1)-PDSs, (12)

where ε = ±1 (the choice of ε for D1 and D2 should be the same).
(2) The set D := D0 \ {0} is a(

32m,32m−1 − 1 − 2ε3m−1,32m−2 − 2ε3m−1 − 2,32m−2 − ε3m−1)-PDS, (13)

where we have to choose the same ε as in the first part of the theorem.

Proof. For each β ∈ F∗ , the Walsh coefficient W f (β) is

W f (β) = χβ(D0) + χβ(D1)ζ3 + χβ(D2)ζ
2
3

= −(
χβ(D1) + χβ(D2)

) + χβ(D1)ζ3 + χβ(D2)(−1 − ζ3)

= −(
χβ(D1) + 2χβ(D2)

) + (
χβ(D1) − χβ(D2)

)
ζ3.

Since f is a ternary bent function, we have shown that for each non-principal character χβ of
G := (F,+), (χβ(D1),χβ(D2)) must be one of the six cases in Lemma 2. For each of these cases, we
compute the corresponding W f (β) below:

(1)
(
χβ(D1),χβ(D2)

) = (δ, δ): W f (β) = −3δ = −3m;
(2)

(
χβ(D1),χβ(D2)

) = (δ,−2δ): W f (β) = −3mξ2
3 ;

(3)
(
χβ(D1),χβ(D2)

) = (−2δ, δ): W f (β) = −3mξ3;
(4)

(
χβ(D1),χβ(D2)

) = (−δ,−δ): W f (β) = 3m;
(5)

(
χβ(D1),χβ(D2)

) = (2δ,−δ): W f (β) = 3mξ3;
(6)

(
χβ(D1),χβ(D2)

) = (−δ,2δ): W f (β) = 3mξ2
3 .

Therefore, the six cases are divided into two classes according to whether W f (β)/3m is in W −
K

or W +
K , where W −

K , W +
K are defined in Result 5. The first class consists of (δ, δ), (δ,−2δ), (−2δ, δ),

and the second class consists of their negatives.
“⇒” By Lemma 1, |D1| = |D2| = 32m−1 + ε3m−1. If f is weakly regular, we see from the above

computations that there is some f ∗ : F32m → F3 and μ = ±1 such that W f (β) = μ3mζ
f ∗(β)

3 . There-
fore, (χβ(D1),χβ(D2)) must lie in the same class for all β . In the case that (χβ(D1),χβ(D2)) lie in
the first class, we see that χβ(D1) and χβ(D2) can only take the values δ and −2δ, so it is a partial
difference set by Result 2. The size of D1 and D2 is k± = 32m−1 ± 3m−1. We can compute the param-
eters of the putative partial difference sets from the character values and the k-value using Result 2.
It turns out that in the case k = 32m−1 − 3m−1, the parameters do not satisfy the trivial necessary
conditions (1), hence |D1| must be 32m−1 + 3m−1 and the parameters are of negative Latin square
type.

The case that (χβ(D1),χβ(D2)) is in the second class is similar, and the parameters are
(32m,32m−1 − 3m−1,32m−2,32m−2 − 3m−1) of Latin square type.

“⇐” If D1 and D2 are both (32m,32m−1 + 3m−1,32m−2,32m−2 + 3m−1)-partial difference sets, then(
χβ(D1),χβ(D2)

) ∈ {
(δ, δ), (δ,−2δ), (−2δ, δ), (−2δ,−2δ)

}
for any non-principal additive character χβ where β ∈ F∗

32m and δ = 3m−1 by Result 2. If (χβ(D1),

χβ(D2)) = (−2δ,−2δ), we have W f (β) = 2 · 3m by a direct computation. Since f is bent and the
magnitude of W f (β) is 3m , this case is impossible. For each of the three remaining cases, we see that

W f (β) = −3mζ
f ∗(β)

3 for some function f ∗ : F32m → F3. In the case β = 0, W f (0) = |D0| + |D1|ζ3 +
|D2|ζ 2

3 = 32m − 3|D1| = −3m since |D1| = |D2| and D0 + D1 + D2 = G . Thus for any β ∈ F32m , the

Walsh coefficients W f (β) = −3mζ
f ∗(β)

3 for some function f ∗ : F → F3, which means that f is weakly
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regular. The case that D1, D2 are both (32m,32m−1 − 3m−1,32m−2,32m−2 − 3m−1)-partial difference
sets is similar.

Now let us prove the second part for the case ε = 1. The case ε = −1 is similar. We know that D1
and D2 are both negative Latin square type PDSs. Since D = F− D1 − D2 −0 in group ring notation, we
know |D| = 32m−1 − 2 · 3m−1 − 1. Moreover, for any non-principal additive character χβ of F, we have
χβ(D) = −(χβ(D1)+χβ(D2)+ 1). If D1, D2 are both (32m,32m−1 + 3m−1,32m−2,32m−2 + 3m−1)-PDSs,
then (χβ(D1),χβ(D2)) ∈ {(δ, δ), (δ,−2δ), (−2δ, δ)}, where δ = 3m−1. Therefore, χβ(D) = −(χβ(D1) +
χβ(D2) + 1) ∈ {2δ − 1,−δ − 1}. Result 2 finishes the proof. �
Remark 1.

(1) In the case ε = 1, the PDSs D0, D1, D2 are all of negative Latin square type, if ε = −1 they are of
Latin square type.

(2) We will show (see Proposition 3) that D1 and D2 are equivalent if the function f : F32m → F3 is
weakly regular of the form Tr(αxd), where α ∈ F32n and (d,32n − 1) = 2.

The above result characterizes the regularity property of ternary bent functions using partial dif-
ference sets. The next result shows that PDSs can be constructed from special types of ternary bent
functions. The proof is relatively easy since most of the work has been done in [10]. We empha-
size that our proof does not make use of the weak regularity of quadratic or Coulter–Matthews bent
functions.

Theorem 2. Let g(x) be a planar function which is quadratic or of Coulter–Matthews type, and fix an
α ∈ F∗

32m . Define Di := {x ∈ F32m | Tr(αg(x)) = i} for 0 � i � 2. Then D1 , D2 are both (32m,32m−1 + ε3m−1,

32m−2,32m−2 + ε3m−1)-partial difference sets with ε = ±1 (the choice of ε for D1 and D2 is the same).

Proof. The function f : F32m → F3 defined by f (x) = Tr(αg(x)) is a ternary bent function. It fol-
lows that (χβ(D1),χβ(D2)) can only be one of the six cases in the proof of Theorem 1. By Re-
sult 5, W f (β) = εα,b3m where εα,0 ∈ {±1} and εα,b · εα,0 ∈ W +

K . Since α is fixed here, we see that
(χβ(D1),χβ(D2)) must be in the same class. Now the result follows as in the proof of Theorem 1. �

Using Theorems 1 and 2, we get another proof of the weak regularity of Coulter–Matthews and
ternary quadratic bent functions, which is, through Theorem 2, based on the work by Feng and
Luo [10].

Corollary 3. The Coulter–Matthews and ternary quadratic bent functions are weakly regular.

Remark 2. (1) For an arbitrary p-ary weakly regular bent functions f : Fp2m → Fp with p � 5, the
subsets

Di := {
x ∈ Fp2m

∣∣ f (x) = i
}
, 1 � i � p − 1,

are not necessarily PDSs. For instance, if we take the bent function f : F54 → F5 defined by
f (x) = Tr(x2), then the set Di = {x | f (x) = i} is not a partial difference set for each i ∈ {1,2,3,4}
(checked by MAGMA [1]). This shows that Theorem 1 cannot be generalized to primes p � 5.

(2) For an arbitrary p-ary bent function f : Fp2m+1 → Fp , the subsets Di are not necessarily PDSs

(we may take Tr(x2) : Fp5 → Fp , where p = 3,5 as examples, and use MAGMA), hence we cannot
generalize Theorem 1 to odd exponents.

(3) The ternary bent function f (x) = Tr(ξ7x98) in F36 is not weakly regular, see [12]. The corre-
sponding sets Di are not partial difference sets, which can be verified by MAGMA, again. This shows
that the assumption of the weak regularity in Theorem 1 is essential.

Finally, we use ternary weakly regular bent functions to construct a family of amorphic association
schemes.
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Theorem 3. Let F be the Galois field F32m with m � 2. Let f : F → F3 be a ternary weakly regular bent
function satisfying f (−x) = f (x) and f (0) = 0. Define Di := {x ∈ F | f (x) = i} for each 0 � i � 2, and let
D = D0 \ {0}. Then the decomposition {D, D1, D2} is a 3-class amorphic association scheme on F.

Proof. This follows from Theorem 1 and Result 6. �
4. Newness

In this section, we discuss the known constructions of the strongly regular graphs of negative Latin
square type with parameters(

32m,32m−1 + 3m−1,32m−2,32m−2 + 3m−1), (14)

and (
32m,32m−1 − 1 − 2 · 3m−1,32m−2 − 2 · 3m−1 − 2,32m−2 − 3m−1). (15)

Such graphs can be constructed from Theorem 1. We show that the negative Latin square type
SRGs constructed via non-quadratic ternary bent functions over F32m using Theorem 1 are, to the best
of our knowledge, new for small m. We do not discuss the SRGs of Latin square type constructed via
Theorem 1 in detail, since it seems that there are many constructions of such graphs, and it is not
that important to know whether our construction produces one more class. The negative Latin square
type is more interesting.

4.1. Equivalence of partial difference sets

Two graphs G1 = (V 1, E1), G2 = (V 2, E2) are said to be isomorphic if there exists a bijection σ
which maps V 1 to V 2, and E1 to E2 such that for each pair of (P , e) ∈ V 1 × E1, we have σ(P ) ∈ σ(e)
if and only if P ∈ e.

Let D1, D2 be two partial difference sets in a group G . The partial difference sets D1, D2 are said
to be CI-equivalent if there exists an automorphism φ ∈ Aut(G) such that φ(D1) = D2 g for some g ∈ G .
The sets D1, D2 are said to be SRG-equivalent if the corresponding Cayley graphs are isomorphic, i.e.,
Cay(G, D1) ∼= Cay(G, D2). It is clear that CI-equivalence implies SRG-equivalence. The converse is not
true: there are examples [14] of PDSs which are SRG-equivalent but not CI-equivalent. We first show
that the partial difference sets D1 and D2 constructed from Theorem 1 are CI-equivalent, at least if
they are monomial:

Proposition 3. Let f : F32m → F3 defined by f (x) := Tr(αxd) be a weakly regular ternary bent function,
where (d,32m − 1) = 2. Let ξ be a primitive element of F32m . Define Di := {x ∈ F32m | f (x) = i}, 1 � i � 2.

Then D1 = ξ
32m−1

4 D2 , hence D1 and D2 are CI-equivalent.

Proof. Since (d,32m − 1) = 2 and ξ
32m−1

4 = −1, we have (ξ
32m−1

4 )d = −1. For an arbitrary x ∈ D2,

we have Tr((ξ
32m−1

4 x)d) = Tr(−xd) = −2 = 1, which implies ξ
32m−1

4 D2 ⊆ D1. By Theorem 1, we know

|D1| = |D2|, hence ξ
32m−1

4 D2 = D1. �
The above proposition shows that the partial difference sets D1 and D2 which can be constructed

from weakly ternary monomial bent functions according to Theorem 1 are isomorphic.
The following proposition discusses the equivalent issue for the SRGs constructed from weakly

regular ternary bent functions f : Fp2m → Fp of the form f (x) = Tr(αxd), where (d, p2m − 1) = 2 and
α ∈ Fp2m .

Proposition 4. Let xd be a function over F := Fp2m with (d, p2m − 1) = 2, where p is an odd prime. Let

S := {α ∈ F∗ | Tr(αxd) is bent}, and define, for each α ∈ S, fα(x) := Tr(αxd). Let Dα,i = {x ∈ F | fα(x) = i}
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for 0 � i � p − 1. If α,β ∈ S are both nonzero squares or both non-squares in F, then there exists some λ ∈ F
such that Dα,i = λDβ,i for all 0 � i � p − 1.

Proof. First assume that α,β ∈ S are two nonzero squares. We only show that Dα,i = λDβ,i for λ ∈ F∗ .
Let α−1β = η2. From (d, p2m − 1) = 2, we have d = 2d′ for some d′ coprime with p2m − 1. Thus
there exists some λ ∈ F such that λd′ = η which implies λd = η2 = α−1β . Thus, for each x ∈ Dβ,i ,
Tr(α(λx)d) = Tr(βxd) = i which implies λx ∈ Dα,i . It follows that Dα,i ⊆ λDβ,i . It is clear that |Dα,i | =
|Dβ,i | since, using the same argument, there exists some λ′ ∈ F such that Dβ,i ⊆ λ′Dα,i . Therefore we
have Dα,i = λDβ,i . The case α,β ∈ S are both non-squares can be dealt with similarly. �
Corollary 4. Let xd be a function over F := F32m with (d,32m − 1) = 2. Let S := {α ∈ F∗ | Tr(αxd) is weakly
regular bent}, and define, for each α ∈ S, fα(x) := Tr(αxd). Let Dα,i = {x ∈ F | fα(x) = i} for 1 � i � 2, and
Dα,0 = {x ∈ F∗ | fα(x) = 0}. If α,β ∈ S are both nonzero squares or both non-squares in F, then the PDSs
Dα,i , Dβ,i are CI-equivalent, and thus the SRGs generated by Dα,i , Dβ,i are isomorphic.

Note that by [7], we know that (d, p2m − 1) = 2 if xd is planar over Fp2m , and for the monomial
bent functions in Table 1 in Section 2.3.

4.2. Known constructions of SRGs with parameters (14)

One may check the known constructions with the parameters (14) via the online database [2], and
two-weight codes via the online database [4]. We note that any projective two-weight code can be
used to construct a PDS, hence a strongly regular graph, so we also looked at the known constructions
of projective two-weight codes in order to check whether our examples are new.

Result 7. (See [3].) Let k = 2m and Q be a non-degenerate quadratic form on Fq with q odd, and
let D = {v ∈ Fk

q | Tr(Q(v)) is a nonzero square}. Then the Cayley graph generated by D in (Fk
q,+) is a

(q2m,qm−1(qm +ε), 1
2 q2m−2(q −1), 1

2 q2m−2(q −1)−εqm−1)-SRG. There are quadratic forms which give
graphs with ε = 1 (hence the graphs are of negative Latin square type) and those which give graphs
with ε = −1 (Latin square type).

The graphs are called affine polar graphs. They can be also constructed using projective two-weight
codes. It is easy to check that these affine polar graphs can be constructed from quadratic bent func-
tions. Both Latin square and negative Latin square types occur. To the best of our knowledge, this
result and the paper [21] give the only two known infinite families of negative Latin square type
SRGs with parameters (14).

When m = 2, we found only two non-isomorphic examples of SRGs with parameters (14) and
ε = 1 in the literature: These are the affine polar graphs (which includes an example in [17]) as well
as a sporadic example in [11]. The latter example due to Helleseth and Hamada was sporadic. As
we will show below, it can be also constructed from the Coulter–Matthews bent functions, hence it
is now, using Theorem 1, a member of an infinite family. For the two examples, the 3-rank of the
adjacency matrices, and the orders of the automorphism groups of the SRGs are (19,116 640) (affine
polar graphs) and (19,5832) (Helleseth–Hamada).

When m = 3, we found only three SRGs of negative Latin square type with parameters (14) in the
literature: The affine polar graphs, graphs which can be constructed by a projective two weight code
due to Chen [5], and graphs constructed by Polhill in [21, Example 2]. The 3-rank of the adjacency
matrices, and the orders of the automorphism groups of the SRGs are (35,210 · 312 · 5 · 7) (affine polar
graph), (106,2 · 36 · 7) (Chen) and (59,24 · 39) (Polhill). Note that [21, Example 1] can also produce
the SRG with these parameter, but it is isomorphic to the affine graph.

When m � 4, to our best knowledge the only known constructions of SRGs with parameters (14)
is the quadratic one, i.e. the graphs are affine polar, and Polhill’s construction, see [21, Corollary 5.1].
The 3-rank of the adjacency matrices, and the orders of automorphism groups of the Polhill’s SRGs
are (54,212 · 320 · 5 · 7 · 13 · 41) and the graph is the affine polar graph, and (90,26 · 315 · 5).
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For the Latin square type partial difference sets with parameters (32m,32m−1 − 3m−1,32m−2,

32m−2 − 3m−1), there are many constructions, including the affine polar graphs [6, p. 855]. They
can be also constructed from projective two-weight codes, for which there are many different con-
structions, see [3,18]. Here we do not compare all known Latin square type SRGs with the SRGs of our
new construction, since there are so many examples. We think that our construction is much more
interesting in the negative Latin square type.

4.3. Known constructions of SRGs with parameter (15)

We introduce two families of SRGs with parameter (15).

Result 8. (See [3].) Let ( , ) be a non-singular Hermitian form on V := Fm
q2 , and let D = {v ∈ V , v �= 0 |

(v, v) = 0}. Then the Cayley graph generated by D is a (q2m, (qm − ε)(qm−1 + ε), (q − 2) + q(qm−1 −
ε)(qm−2 + ε),q2m−2 + εqm−1)-SRG, where ε = (−1)m .

One may check that for q = 3 and odd l, Result 8 produces SRGs with parameter (15). The graphs
constructed in Result 8 are called RT3 in [3].

Result 9. (See [3].) Let k = 2m and Q be a non-degenerate quadratic form on Fq with q odd, and
let D = {v ∈ Fk

q, v �= 0 | Tr(Q(v)) = 0}. Then the Cayley graph generated by D in (Fk
q,+) is a

(q2m, (qm − ε)(qm−1 + ε), (q − 2) + q(qm−1 − ε)(qm−2 + ε),q2m−2 + εqm−1)-SRG, where ε = (−1)m+1.

The graphs constructed using Result 9 are also called, as in Result 9, affine polar graphs. One may
check that for q = 3 and even m in Result 9, SRGs with parameter (15) arise.

By [18, Theorem 8.1], we know that SRGs with parameter (15) can also be constructed by using
projective two-weight codes.

When m = 2, the parameters are (81,20,1,6), and this SRG is unique, see [6].
When m = 3, besides the strongly regular graph RT3 constructed above, (729,224,61,72)-SRGs

can be also constructed from projective two-weight codes. Since our construction using Theorem 1
does not give rise to new SRGs in this case (checked by MAGMA), we do not list the other construc-
tions here.

When m = 4, to our knowledge, the known constructions of (6561,2132,673,702)-SRGs are the
affine polar graph and Polhill’s construction, see [21, Examples 1, 2]. The 3-rank and the order of the
automorphism groups of Polhill’s constructions are (6561,213 · 320 · 5 · 7 · 13 · 41) (and the graph is
the affine polar graph), and (6561,27 · 315 · 5). Using the Coulter–Matthews bent functions, we obtain
another graph.

4.4. Computational results for the SRGs of our construction

Proposition 3 and Corollary 4 show that we may construct at most two different families of SRG’s
with parameters (12) from monomial bent functions. In the case of quadratic functions, this potential
is realized: Both Latin square and negative Latin square type SRGs are constructed. In the Coulter–
Matthews case, we obtain for small values of m both types of graphs, but we cannot prove this in
general. The Dillon examples seem to produce only Latin square type graphs, but, again, we have no
proof, yet.

In Tables 2–4, we list some properties of the SRGs constructed from the monomial bent functions
listed in Table 1 in Section 2. In the first column, we list the bent function, the second column
contains the parameters of the SRG’s G , the group Aut(G) is the full automorphism group of the
graph G , and M denotes an adjacency matrix of G , to be considered over F3. The abbreviation n.L.
(resp. L.) means that the SRG is of negative Latin square (resp. Latin square) type. As mentioned above,
we did not care which isomorphism type of graph we obtain in the Latin square case. In Tables 2–4,
the mark ♦ means that the SRG is constructed by D0 \ {0} in Theorem 1.

In Table 4, we have two C–M planar functions over F38 , which are x14, x122. Using MAGMA, we
checked that the graphs corresponding to them are isomorphic.
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Table 2

Bent functions in F34 (v,k, λ,μ) Type Rank of M |Aut(G)| Note

Quadratic (81,30,9,12) n.L. 19 116 640 Affine polar
Quadratic (81,24,9,6) L. 19 93 312
Quadratic ♦ (81,20,1,6) n.L. 81 233 280 Affine polar
Quadratic ♦ (81,32,13,12) L. 81 186 624
C–M (81,30,9,12) n.L. 19 5832 ∼= Helleseth–Hamada
C–M (81,24,9,6) L. 19 23 328
C–M ♦ (81,20,1,6) n.L. 81 233 280 ∼= Affine polar
C–M ♦ (81,32,13,12) L. 81 186 624
Dillon (81,24,9,6) L. 19 23 328
Dillon ♦ (81,32,13,12) L. 81 5184

Table 3

Bent functions in F36 (v,k, λ,μ) Type Rank of M |Aut(G)| Note

Quadratic (729,252,81,90) n.L. 35 210 · 312 · 5 · 7 Affine polar
Quadratic (729,234,81,72) L. 35 29 · 312 · 5 · 13
Quadratic ♦ (729,224,61,72) n.L. 729 211 · 312 · 5 · 7 ∼= RT3
Quadratic ♦ (729,260,97,90) L. 729 210 · 312 · 5 · 13
C–M (729,252,81,90) n.L. 92 22 · 37 New
C–M (729,234,81,72) L. 92 22 · 37

C–M ♦ (729,224,61,72) n.L. 729 211 · 312 · 5 · 7 ∼= RT3
C–M ♦ (729,260,97,90) L. 729 210 · 312 · 5 · 13
Dillon (729,234,81,72) L. 100 22 · 36 · 13
Dillon ♦ (729,260,97,90) L. 729 23 · 36 · 13
H–K (729,252,81,90) n.L. 98 22 · 37 · 7 New
H–K ♦ (729,224,61,72) n.L. 729 211 · 312 · 5 · 7 ∼= RT3

Table 4

Bent functions in F38 (v,k, λ,μ) Type Rank of M |Aut(G)| Note

Quadratic (6561,2214,729,756) n.L. 54 212 · 320 · 5 · 7 · 13 · 41 Affine polar
Quadratic (6561,2160,729,702) L. 54 215 · 320 · 52 · 7 · 13
Quadratic ♦ (6561,2132,673,702) n.L. 6561 213 · 320 · 5 · 7 · 13 · 41 Affine polar
Quadratic ♦ (6561,2240,781,756) L. 6561 216 · 320 · 52 · 7 · 13
C–M (6561,2214,729,756) n.L. 457 24 · 38 New
C–M (6561,2160,729,702) L. 457 24 · 38

C–M ♦ (6561,2132,673,702) n.L. 6561 25 · 38 New
C–M ♦ (6561,2240,781,756) L. 6561 25 · 38

Dillon (6561,2160,729,702) L. 498 25 · 38 · 5
Dillon ♦ (6561,2240,781,756) L. 6561 26 · 38 · 5

By Proposition 3, we know that p-ary bent functions are equivalent to the (pn, p, pn, pn−1)-RDS in
G × H relative to H , where G is elementary abelian group of order pn . There are many constructions
of the RDSs, see [19] for instance. Using MAGMA, we found no RDS constructed from [19, Theo-
rems 2.1, 2.2] which is weakly regular. However, we suggest to look at more non-monomial RDSs to
see whether some of them are weakly regular.

Let G be the strongly regular graph constructed from (weakly) regular 3-ary bent function f
by Theorem 1. Based on Table 4, we conjecture that the strongly regular graphs are pairwise non-
isomorphic when f are quadratic, Coulter–Matthews and H–K bent functions. Moreover, we conjec-
ture that the Coulter–Matthews bent functions can be used to construct two infinite families of SRGs,
one of Latin square and one of negative Latin square type.
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