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1 

The concept of a reflection in Euclidean space was generalized by Shephard 
[16]. A reflection in unitary space is a linear transformation of finite period 
with the property that all but one of its characteristic values are equal to 1. 
While reflections in Euclidean space must have period 2, a reflection in 
unitary space may have period m for any integer m > 1. A finite group 
generated by unitary reflections (called simply a reflection group throughout 
this paper) can be decomposed as a product of irreducible groups. Shephard 
and Todd [I81 classified the irreducible groups, as listed in Table I. In this 
paper the representations (finite-dimensional over the field of complex 
numbers) of the reflection groups are studied and the following theorem is 
proved. 

THEOREM 1. Let G be a rejection group and let F be the Jield generated 
over Q by the values of the characters of G. Then each representation of G is 
similar to an F-representation. 

In other words, it is shown that F is a splitting field for G. The approach 
to this theorem is by way of the Schur index. Clearly, it is sufficient to assume 
that G is an irreducible reflection group and to show that the Schur index 
m&) = 1 for each irreducible character x of G. In fact, it is shown that 
ma(x) = 1 except for the 24 characters listed in Theorem 2. The notation 
G, refers to the order of listing of groups in Table I. The notation Z, denotes 
a cyclic group of order m. 

THEOREM 2. If G is an irreducible reyection group and x is an irreducible 
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TABLE I 

The Irreducible Reflection Groups 

Symbol Dimension Order Splitting field 
Nontrivial 

division aigebras 

1. [3”-7 n 
2. G(m, P, 4 n 
3. ic I” 1 
4. 3[313 2 

5. 3k413 2 

6. 31612 2 

7. <3, 3, 21, 2 

8. 4[3374 2 

9. 4Wl2 2 

10. 4[413 2 

11. (4, 3, 2)x, 2 

12. GU2, 3) 2 

13. <4,3,2>, 2 

14. 3[g]2 2 

15. <4,3x 2?, 2 

16. 5[315 2 

17. 5lSW 
18. 51413 

19. (5, 3,2&l 
20. 3[5]3 

21. 3[10]2 

22. <5,3, 2>, 
23. [3, 51 
24. [1 1 1414 
25. 3[3]3[3]3 

26. 3[313[412 
21. [1 1 lq” 

28. [3,4 31 
29. [2 1 1-y 

30. [3* 3, 51 
31. 

32. 3[313[313[313 
33. [2 2 113 
34. 13 2 11% 
35. [32,2,1] 
36. [3WJ] 

37. [34,P,1] 

2 
2 

2 
2 

2 
2 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
5 
6 
6 
7 
8 

(n + l)! 
mn . n!/p 
m Q(4 

Q(-31’2) 42, a) 
Q(-3ii”) 42, 00) 
Q(-llln, -3x/2) 
Q(- 1112, -3’13 

Q(- llln) 4(3, a) 
Q(4 
fQJ;-w, -3112) 4(3, ~0) 

Es ) -3112) 
Q(-2iiz) 

Q(Q) 
Q( -2i/“, - 3112) 

Q(Q , - 3W) 

Q(4 4% ~1, 43, ~01, 
rw, 4 

Q(% , -1W) 

Q(% , - 39 4(2> ~1, A(3, mh 
J-x~, 00) 

Q(Q , -1w - 3’12) 
0(51/” -3ik) - > d(2, cc), A(3, ~1, 

w-h 4 
Q(5W, -11/s, -311”) 

Q(51’2, - li/%) 

Q(5T 
Q(-7”“) 
Q(-3i12) 42, ~1 
Q( - 3i13 42, ~1 
Q( - 3iiz, 5@) 

Q 
Q( - li/%) 

Q(5'T AC?, 3) 
Q( - lx/$) 
O(-3112) 
G( - 3113 

42, a), 45,601 

Q( - 31iz) 

Q 
2r” - 34 - 5 . 7 Q 
2’4 * 35 . 52 . 7 Q 
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character of G, then m&y) = 1 unless ma(x) = 2 and one of the following 
cases occur. 

(9 G = G4, G, , G, , or G,, and x is the faithful rational-valued 
character of SL(2,3) or SL(2,3) x 2, . 

(ii) G = Gs or G,, , and x is the faithful rational-valued character of 
the a’icyclic group of order 12. 

(iii) G = Grs , G,, , or G,, , and x is a faithful character of SL(2, 5). 
There are 2 rational-valued characters with degrees 4 and 6, and 2 characters 

with degree 2 and values that generate Q(W). 

(iv) G = GsO and x is the faithful rational-valued character of G with 
degree 48. 

(v) G = Gs2 and x is a faithful rational-valued character of Sp(4,3). 
There are 4 such characters, with degrees 20, 60, 64, and 80. 

The result stated in Theorem 1 generalizes what is known about the 

Euclidean reflection groups that are Weyl groups. The Weyl groups P&4,) 
are the symmetric groups Sym(n + 1). As is well known, Young [21] showed 
that each representation of Sym(n) is similar to a rational representation. 
It was later shown by a number of authors (see [I] for references) that each 
representation of an irreducible Weyl group is similar to a rational repre- 
sentation. 

2. THE SCHUR INDEX 

A number of propositions concerning the Schur index are listed in this 
section for easy reference later. Elementary properties of the Schur index 
can be found in [9+ Chap. II]. Throughout this paper “character” means an 
absolutely irreducible complex-valued character, unless reducible character 
or modular character is specified. If  x is a character of G and F is a field (of 

characteristic 0), then F(x) denotes the field generated over F by the values 
of x. I f  a field is not specified in reference to the Schur index, then the field 
is assumed to be Q. In the following, Q, denotes thep-adic completion of Q 
and (x, $) denotes the ordinary character inner product. 

Corresponding to each character x of G with F = Q(x), there is a simple 
component A of the group a.lgebraFG such that x does not vanish everywhere 
on A. The algebra A is a matrix algebra over a division algebra D with center 
F. The index of D is ma(x). Furthermore, for each extension field P of F, 
the index of D OF E is m,(x). Since F is an algebraic number field, then the 
sum of the local invariants of D must be congruent to O(mod 1). In particular, 
if m&) = 2, then D must have invariant 4 at an even number of primes of 
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F and m&) = 2 for an even number of ‘$adic completions E of F. The 
division algebras corresponding to the characters listed. in Theorems 2 are 
determined in this paper. Although the following notation is not standard, 
it is useful for identifying these division algebras. Let d(p, 4) denote the 
quaternion division algebra with center Q and nonzero invariants 4 at the 
distinct rational primes p and 4. Let ~(oo, co) denote the quaternion division 
algebra with center Q(5r/s) and nonzero invariants 4 at the 2 infinite primes 
of Q(51/2). The division algebras that occur in correspondence to characters 
of the irreducible reflection groups are listed in Table I. 

In the following, x is a character of G. 

(2.1) (Brauer-Speiser theorem). If x is real-valued, then ma(x) < 2. 
In particular, if x(l) is odd, then ma(x) = 1. 

(2.2) Suppose + is a character of a subgroup H of G and Q(#) = Q(X). 
If (x, 4) is relatively prime to ma(x) and to mo(#, then m,(qb) = m,(x) for all 
fields F. 

(2.3) Ifp Y / G j for a finite prime?, then ma,(x) = 1. 

(2.4) (Witt [20]) m&)1 p - 1 if p is odd, and ma,(x) < 2 ifp = 2 or co. 

(2.5) If F is an algebraic number field, and 1 Q,F(x): Q&v)! is divisible 
by ma,(x) for all primes p, then m,(x) = 1. 

(2.6) (Berman [5]) Suppose that G is q-hypeselementary for a prime 4; 
i+e., that G contains a cyclic normal subgroup and the quotient group is a 
q-group. If # is an irreducible p-modular constituent of x for p # 4, then 

ma,(x) = ! Qdx> 4) : Q,(x)L 

The next two results are special cases of [3, Theorem 41. 

(2.7) If Q(x) = Q(-l”p), then ma,(x) = 1 if p f 1 (mod 4). 

(2.8) If Q(x) = Q(-3ri2), then ma,(x) = 1 if p + 1 (mod 3). 

The problem of determining Schur indices over the real field R was solved 
by Frobenius and Schur (see [lo, Sect. 31). They defined 

and proved the following two statements. 

(2.9) If x is not real valued, then V(X) = 0. If x is real-valued, then V(X) = 1 
if ma(x) = 1 and V(X) = -1 if ma(x) = 2. 

(2.10) If t is the number of involutions in G and x1 ,.., , xlz are all characters 
of G, then t 3 1 = CL, v&) ~~(1). 
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3. SOME LINEAR GROUPS 

To facilitate the case-by-case study of the irreducible reflection groups, 
this section is devoted to the calculation of Schur indices for some linear 
groups that occur as quotient groups of the reflection groups. 

The group SL(2,3) has one character with Schur index 2. This group has 
a center of order 2 and the central quotient group is Alt(4), so the nonfaithful 
characters have Schur index 1. Each of the faithful characters is an extension 
of the faithful character 4 of the quaternion Sylow 2-subgroup. The character 
4 is rational-valued and m&4) = 2. Two extensions of $ have values that 
generate Q(-31/2), so these characters have Schur index 1. The other exten- 
sion x is rational-valued so ma(x) = 2. The division algebra corresponding 
to x is A(2, cc). Furthermore, if F = Q(-l’/“), Q(-2”/“), or Q(-31/2), 
then m,(x) = m,(d) = 1. In particular, Q(-3ii2) is a splitting field for 
SL(2, 3). 

The characters of GL(2,3) can be rationally represented with 2 exceptions. 
The character x of SL(2,3) extends to a pair of characters 0, and 0, of GL(2,3) 
with Q(0,) = Q(-2l/7. Since m,(x) = 1 for F = Q(-2112), then 
ma(oi) = 1. Thus, each character of GL(2,3) has Schur index 1. 

The characters of SL(2,5) were known to Schur, and the Schur indices of 
these characters were probably also known to him. Janusz [12] has computed 
the Schur indices and division algebras for SL(2, q) for all q. The five non- 
faithful characters of SL(2, 5) are the characters of Alt(5), so each has Schur 
index 1. Each of the four faithful characters has Schur index 2. The characters 
with degrees 4 and 6 are rational-valued and correspond to the division 
algebras 4(3, co) and A(2, oo), respectively. The other two characters have 
degree 2 and their values generate the field Q(51/2). Each of these corresponds 
to the division algebra ~(co, co). Let F = Q(51i2, ~3, where t denotes a 
primitive nth root of unity for n = 3, 4, or 5. Since j QDF : Q, 1 = 2 for 
p = 2, 3, or co, then, by (2.5), m,(x) = 1 if x is one of the above mentioned 
characters with degree 4 or 6. Since Qm = R and RF = C, then m,(x) = 1 
if x is one of the characters of degree 2. Thus, F is a splitting field for SL(2, 5). 

The group SL*(2,5) consists of the elements of GL(2,5) with determinant 
-& 1 and it contains a central element of order 4. Each character of SL*(2, 5) 
is an extension of a character of SL(2,5). The nonfaithful characters clearly 
have Schur index 1. If x is a faithful character of SL*(2,5), then Q(x) = 
Q(-lr/“) or Q(-11i2, 5ri2). If F = Q(x) and 4 is the character of SL(2, 5) 
that extends to x, then w+($) = 1 by the last paragraph. Hence, ma(x) = 1. 
Thus, each character of SL*(2, 5) has Schur index 1. 

The group PSp(4,3) is the unique simple group of order 25920. The 
characters of PSp(4, 3) were given by Frame [ll]. This group is isomorphic 
to the commutator subgroup Gf of the Weyl group W(E,). Since G+ has index 



SCHUR INDICES AND SPLITTING FIELDS 323 

2 in W(E,), then, each character of I&‘(,?&) either remains irreducible or 
decomposes into 2 distinct characters when restricted to G+. Since each 
character of IV&) can be rationally represented [l], then each character of 
Gi- has Schur index 1. 

The group Sp(4, 3) is the twofold central extension of PSp(4,3). The 
character tables for Sp(4, q), q odd, were given by Srinivasan [19]. The 
characters for S&4,3) are given in Table II, and the notation used coincides 
with that used by Srinivasan. Ten characters are not listed explicitly in the 
table; these are the complex conjugates of characters that are listed. The 18 
conjugacy classes that are not represented in the table can be obtained from 
listed classes by taking inverses or by multiplying by the central involution z. 
Since the characters of PSp(4,3) h ave Schur index 1, there are nine characters 
to consider. Five characters have values that generate the field Q(-31/2)a 
Since j Sp(4,3)1 = 2’ . 3* . 5, then each of these characters has Schur index 
1 by (2.3) and (2.8). The remaining four characters are xi’), ~a, f1 , and fl’. 
These are rational-valued. By the Frobenius-Schur formula (2.10) for 
counting involutions, these four characters have no real splitting fields. 
Wence, each of these characters has Schur index 2. 

Let 

/l 1 0 o\ 
0100 

x=oo11 in ! I SP(4,3). 

0 0 0 1 

Then, x belongs to the class A,, , its centralizer has order 23 * 33, and its 
normalizer has order 24 . 33. The Sylow 2-subgroup S of N(<x)) is semi- 
dihedral and S, = S n C(X) is dihedral. One can take S = (a, b> and S, = 
{us, b), where 

0 -1 0 -1 a= 
-1 01 0 

and 

Then, a2 = (9 3, b2 = 1, and bab = us. Let H = <3c)S. Then, H has a 
faithful rational-valued character # of degree 4 formed by inducing a faithful 
character of <x) S,, . The character $ vanishes outside of <x, u4>. Further- 
more, $(x) = Z&X-~) = -2, $(a”) = -4, and #(A} = #(x-ra4) = 2. By 
the Frobenius-Schur formula (2.9), # has no real splitting field. Thus, 
ma($) = 2. Since 1 H 1 = 24 . 3 and mn(#) = 2, then mr($) = 2 for F = Qz 
or Qa . H is 2-hyperelementary, and an irreducible 3-modular constituent 
01 of + is a faithful ordinary character of S with degree 2. Thus, Q(a) = 
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Q(-2*/“), since S is semidihedral. Hence, by (2.6), m,$j) = 1 Qa(-21/2) : 
Qs j = 1. Therefore, ma,(llr> = 2. Computations show that (xsH , #)w = 13, 
(c&, & = 3, and K,, #jH = 11. Hence, by (2.21, 4.x2) = M&) = 
mF(el’) = mF(#) for all fields F. In particular, since j Q,(-3iiZ) : Q, 1 = 2 
for p = 2 or co, then, by (2.5), each of these characters has Schur index 1 
over Q(-3l/a). Furthermore, the division algebra corresponding to each of 
these characters is the ordinary quaternion algebra A(2, CO). 

Now, let y be an element of order 5 in S’(4,3). Then, j C(y) 1 = 10 and 
/ N(( y>)/ = 40. Thus, N = N(( y)) h as a faithful rational-valued character 
/3 af degree 4 that is induced from a faithful linear character of C(y) = 
( y, x). Clearly, p(y+) = - 1 and p(y”x) = 1 for i = 1 7..., 4. Let x = x:“‘~ 
Computations show that (xN , /3)N = 13. Thus, m&3) = m,(x) for all fields 
F. In particular, p has no real splitting field. Thus, by the Frobenius-Schur 
formula (2.9), N must have a cyclic Sylow 2-subgroup .T. An irreducible 5- 
modular constituent p of p is a faithfui ordinary character of T, so Q(p) = 
Q(E~). Since N is 2-hyperelementary, then, by (2.6), ma,(x) = m&) = 
I Qs(+J: Qs I = 2. Th e corresponding division algebra is A(5, co). Further- 
more, since j Q,( -3lj2) : Q, j = 2 forp = 5 or GO, then x has Schur index 1 
over Q(-3l/7. Hence, Q(-Yi2) is a splitting field for Sp(4, 3). 

4. REFLECTION GROUPS 

The first three entries in Shephard and Todd’s list of irreducible reflection 
groups represent three infinite families of groups. The first family consists 
of :the symmetric groups. The third consists of the cyclic groups; all characters 
here are linear. The other family consists of the groups G(m, p, n). This class 
of:groups includes the Weyl groups IV(&) and IV(&), and also the dihedral 
groups. In this section, it is shown that each character of the groups G(m, p, n) 
has Schur index 1. The remaining 34 irreducible reflection groups are treated 
in successive sections. 

Let m and n be integers > 1 and letp j nz, wherep is not necessarily prime. 
Let (ul ,..., u,} be a basis for unitary n-space U and let E = E, be a primitive 
772th root of unity. Let 

B = ((bl ,..., b,) : 1 < & < m} 

and let 

A = ((a, ,..., a,)~B:a~+...+a,~O(modp)). 

For a E A and c E Sym(n), define the transformation T,,, on U by T&q) = 
E%,&) . The group G = G(m,p, n) consists of all such T,,, and has order 
PP * n![p. The subgroup (Ta,1 : a E A) can be identified with A. The subgroup 
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Vl,C : o E Sym(n)) z Sym(n) and is denoted by S. A typical element of S is 

denoted simply by (T. Clearly, G = AS, with A Q G and A n S = (1). 
For a E A and b E B, let a 0 b = & sib, . The linear characters of A are of 
the form & , where &,(a) = @. Obviously, h, = X,8 if and only if a o b 2 
a o b’ (mod m) for all a E A. The following proposition and corollary are 
essential in showing that each character of G has Schur index 1. In 
the corollary, wr means wreath product. 

PROPOSITION. Suppose that H = RC where R 4 H, R n C = (I), 
and that R = D, x ‘.. x D,. Suppose that the factors Di are permuted by 
the elements of C in a manner such that if x E C and x-lD,x = Di , then 
x E C(DJ. Let F be a Jield of characteristic 0. For each Di , let ,!$ be a character 
of Di such that ,& can be aflorded by an F-representation. Suppose that p = 
/31 1.. ps is invariant in H. Then, there exists a character 4 of H that extends p 
and that can be afforded by an F-representation. 

Proof. Since p is invariant in H, then, for x E H, x-lD,x = Dj implies 
that pi” = ,& . 

Let e, be a primitive idempotent of FD, such that FD,e, is a minimal left 
ideal affording ,Br . For each Di that is C-conjugate to D, , let ei = x-le,x for 
some x E C such that Di = x-lD,x. The hypothesis guarantees that ei does 
not depend on the choice of x; if x, y  E C and x-lD,x = y-lDly, 
then xy-Y-l E C(D,), so x-rerx = y-iqy. Repeat this process for each C-orbit 
of {Dl ,..., DJ, selecting one idempotent for each orbit and using it to deter- 
mine others. The result of this process is a system of primitive idempotents 
e, ,..., e, such that FDiei is a minimal left ideal of FDi affording pi for each i 
and such that if x E C and x-lD,x = Dj , then x-leix = e, . Let e0 = e, *. . e, . 
Then, FRe, is a minimal left ideal of FR affording p and x-reOx = e, for 

all x E C. 

setf = WI G I)ILc x. Then, f  is an idempotent in FC such that FCf = 
Ff. Set e = e,f = fe, . Then, FHe = FRCe,f = FReOFCf = FRe$f = 
FReOf. Hence, dim, FHe < dim, FRe, . 

Let q4 be the (possibly reducible) character of H afforded by FHe. Since 
FHe,, affords pH and FHe _C FHe,, , then $ _C pH . Since p( 1) = dim, FRe, > 
dim, FHe = 4(l), then p(l) = d(l). H ence, + extends p and 4 is irreducible. 

COROLLARY. Each character of Sym(r) wr Sym(Z) can be afforded by a 
rational representation. 

Proof. Let M = Sym(r) wr Sym(Z) and let N be the normal subgroup of 
M that is a direct product Nr x **. x Nz of 1 copies of Sym(r). Let $ be a 
character of M and let p be an irreducible constituent of Q&. Let t be a 
character of the inertial group I(p) such that p 2 fN and fM = #. Since 
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Sym(Z) permutes the Ni , then I(p) = IL x .a* x .l, , where 1< z Sym(r) wr 
Sym(ZJ and Zr + *** + It = 1. Let R, = & n iV, so that R, is the direct 
product of li copies of Sym(r). Then, N = R:, x -1. x Rt and p = pr *I* pt , 
where pi is a character of Ri . Furthermore, Ii = R,C, , where Ci z Sym(Z& 
& n Ci = (l), and Cj permutes the copies of Sym(r) lying in R, in 
the manner described in the proposition. The hypotheses of the proposition 
are satisfied, so pc can be extended to a rationally represented character & 
of Ii. Let + =#al*.-(fit. Th en, (b extends p and 5 = $01 for some 
character ol of I(p)lN. Since I(p)/Nr Sym(Z,) x ..’ x Sym(&), then CY 
can be rationally represented. Hence, 5 and 4 = EM can be affordered by 
rational representations. 

Now, let x be a character of G = G(m, p, n) and let h = A, be a fixed linear 
character of A with h C xa . Let I = .f((x) and let lo = I n S. Then, I = AI, 
and 

IO = (5 E S : albl + I.. + anbn = a,b,(,) + *.. + a,b,(,t(mod m) for all a E A). 

Let X = {I,..., n>. Define the equivalence relation “w” on X by i-j if 
and only if bi = bj. Let Xr ,..., X, be the equivalence classes. By taking 
a = (..., 0, 1, 0 ,..., 0, m - 1, 0 ,... ), it is clear that when o EI;) , then 6, = 6,. 
if and only if bVo) = 15,tj) . Hence, I0 permutes the sets X1 ,..., X, . Let 
Y = (X, t . . . . X,} and let Yr ,..., Y* be the orbits under action of& . If o E S, 
then c ~1s if and only if a permutes the X$‘s and fixes the Yj’s setwise. For 
each j, let ~74~ = {o ~1s : u fixes Yj setwise and fixes all elements of X not 
involved in Yj). All Xi lying in Yi have a common size rj and M5 is naturally 
isomorphic to Sym(ri) wr Sym(Zi>, w h ere li is the length of the orbit Y, . 
Furthermore, I0 = Mr x ... x Mt. In particular, by the corollary, each 
character of & can be rationally represented. 

Let 8 be the character of I such that X _C 6, and @ = x. Since X is a linear 
character and I(A) is a semidirect product AI,, then X can be extended to a 
character # of 1 by #(a?) = X(a) f or a E A, -v E IO . Thus, the character 0 of 
I is of the form +,J, where 17 is a character of l,, . Let E = Q(h) = Q(O) and 
let F = Q(x), Then x12 Z’e’, wh ere T ranges over Gal (E/F). By Mackey 
decomposition :of (P), = x1 , there exists x E G such that 

But for a E A, f?(u) = h(a) q(l), so X7 = AZ. Thus, if y E I, 

&r4m-~ = (qx” = (&w’)T = op-‘)T = A. 

Thus, x E N(I). II ence, 0~ = 8”. Therefore, if J = (x E G : 0~ is algebraically 
conjugate to f3>, then I 4 J and Q(@) = F. Hence, ma(x) -2 ma(P). 
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Obviously, J = AJ,, , where 1, Q Jo _C S. Since 7 is rational-valued, then 
J,, -C1(7). Since I,, = MI x ..* x Mt, then 17 = qr m*. qt for characters 
7i of &Ii . Each element of J0 must permute the &Ii’s and the qi’s, and hence, 
must permute the Xi’s and Yj’s. Put an ordering on the elements of each X, 
and each Yj . Let ur E Jo such that Us’&& = Mj . Then, there exists 
oa E Mj such that crzul : Yi -+ Yj preserves the ordering and asur : Xi< -+ X+ 
preserves the ordering. Let T = {c E Jo : o preserves the orderings of the 
Yj’s and the Xi’s}. Then, IO A T = (1) and the argument above shows that 

T contains enough elements so that Jo = iT,T. Furthermore, the conditions 
of the proposition are satisfied so that 71 can be extended to a character 4 of 
Jo that can be rationally represented. Since J = IT, then, for 

t(x) = E 6(a-1xu) = ug $h(cT’xu) 7&r-1xu) = oz 7j+r-1xu) = 7jJyx). 

Hence, (6J), = ?p. Therefore, (V, +J)J = ((15~)~~ , $)J, = ($0, 4) = 1. 
Since+ can be rationally represented, then ~~(8”) = 1. Therefore, ma(x) = 1 
for all characters x of G(m,p, n). 

5. TWO-DIMENSIONAL GROUPS 

There are 19 two-dimensional irreducible reflection groups other than the 
groups that belong to the infinite families mentioned in the preceding section. 
The Schur indices of these groups are studied in this section. The generators 
and relations given by Shephard and Todd make it very easy to identify the 
two-dimensional groups with other known groups. The collineation groups 

of these groups are the tetrahedral, octahedral, and icosahedral groups. 
The two-dimensional reflection groups related to the tetrahedral group 

Ah (4) are G4 , G6 , G6, and G, . The group G4 is isomorphic to SL(2,3), the 
binary tetrahedral group. As observed in Section 3, this group has one 
rational-valued character with Schur index 2. The group Gs is isomorphic 
to SL(2,3) x 2s , so this group also has one character with Schur index 2. 
Each of these two groups has splitting field Q(-3112), the field generated by 
the values of the characters. The group G6 is an extension of SL(2,3) by a 
central element of order 4 whose square is the central involution a of SL(2,3). 
The quotient group G,/(z) is isomorphic to Alt(4) X, 2, , so the nonfaithful 
characters of G6 have Schur index 1. Each faithful character is an extension 
of a character of SL(2, 3) and has -11i2 in the field generated by its values. 
Since all characters of SL(2,3) h ave Schur index 1 over Q(-11i2), then all 
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characters of Ga have Schur index 1. Since G7 is isomorphic to G, x Z,, 
then each character of G, has Schur index 1. 

The groups Gs through GX5 have collineation groups isomorphic to the 
octahedral group Sym(4). The group Gs has center of order 4 and its Sylow 
2-subgroups are nonabelian with no elements of order 8. There is a normal 
subgroup of G, whose quotient group is dicyclic of order 12. The dicyclic 
group has four nonfaithful characters with Schur index 1. The faithful 
character x of the dicyclic group is rational valued with degree 2. By the 
Frobenius-Schur formula (2.9), x has no real splitting field. Furthermore, 
its 3-modular character is the faithful ordinary character of a cyclic group of 
order 4, so IV&&) = 2 by (2.6). Hence, mom) = 2 and the corresponding 
divisian algebra is 4(3, CO). Each of the remaining characters of G, has values 
that generate Q(- lip), so by (2.3) and (2.7), each of these has Schur index 1. 
Since j Q,(-11i2): Q, [ = 2 for p = 3 or co, then, by (2.5), m,(x) = 1 
if F = Q(- 11”). Hence, Q(- 11j2) is a splitting field for G8 . 

The group Gs is an extension of Ga by a central element of order 8 whose 
square z is in G, . Since G,/(x) is isomorphic to Sym (4) x Z2 , then the 
characters with kernel containing x can be rationally represented. Each of the 
remaining characters has values that generate a field containing -1112 and 
is an extension of a character of Ga . Since the characters of G, have Schur 
index 1 over Q(--1”‘“) then all characters of Ga have Schur index 1. The 
groups G,, and G,, are isomorphic to Gs x Za and GO, x Z, , respectively. 
Hence, G,, has one character with Schur index 2 while each character of G,, 
has Schur index 1. 

The group G,, is isomorphic to GL(2,3). As noted in Section 3, each 
character of this group has Schur index 1. The group G13 is an extension of 
GL(2,3) by a central element whose square is in GL(2,3). Thus, each 
character of GIa is an extension of a character of GL(2,3) and has Schur 
index 1. The groups G14 and G,, are isomorphic to G,, x Za and G, x Za , 
respectively, so each character has Schur index 1. 

The remaining two-dimensional groups have collineation groups that are 
isomorphic to the icosahedral group Alt(5). The binary icosahedral group is 
SL(2,5). The groups Gra , G,, , and G2,, are isomorphic to SL(2,5) x Z, , 
SL(2,S) x Zr, , and SL(2,5) x Za , respectively. Hence, as noted in Sec- 
tion 3, each of these groups has four rational-valued characters with Schur 
index 2. Since each of these characters has Schur index 1 over Q(-3@) and 
over Q(E& then Theorem 1 holds for these groups. The groups Gn, G,, , 
6, > and Ga, are isomorphic to SL*(2,5) x 2, , SL*(2,5) x Z,, , 
&C&(2,5) x 2, , and &C&(2,5), respectively. By the results, of Section 3, 
each’ character of these groups has Schur index 1. This completes the treat- 
ment of the two-dimensional irreducible reflection groups. 
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6. SOME HIGHER-DIMENSIONAL GROUPS 

The remaining groups, with four exceptions, are treated in this section. 
The other four groups are discussed in the following sections. 

The group Gz3 is the Euclidean reflection group [3, 57. It is isomorphic to 
Alt(5) x 2, , so each character has Schur index 1. The group Gz4 is denoted 
by [ll I*]* in the notation of Coxeter [8], who showed that it is isomorphic to 

PSL(2,7) x 2,. Janusz [12] showed that each character of PSL(2,7) has 
Schur index 1, so the same is true of G24. The groups G,, and Gz6 are dis- 
cussed in the next section. 

The group G2, has center of order 6 and its collineation group is isomorphic 
to Alt(6). It contains a subgroup H that is identified by Shephard and Todd 
as the group (3,3 / 4,5) of Coxeter [6], also denoted by (3, 4, 5; 3). The 
group H of order 1080 was studied by Miller [14]. Miller showed that H 
has a center of order 3 and contains no subgroup of order 360. Hence, H must 
be a nonsplit central extension of Alt(6). The universal central extension & 

of Alt(6) has order 6 * 360 and His a homomorphic image. Clearly 

Schur [15] first gave the characters of 2, . There are 17 characters of H, 
including the seven characters of Alt(6). Th ere are six faithful characters of H 
whose values generate Q(-31i2), so each of these has Schur index 1 by (2.3) 
and (2.8). Each of the remaining four characters has degree 3 and its values 
generate Q(-31/2, 5lp). Since m&j x(l), then, by (2.3) and (2.4), each of 
these characters has Schur index 1. 

The group G,, is the Weyl group W(Fd), also denoted by [3, 4, 31. Kondo 
[13] showed that all characters of W(F,) can be rationally represented. The 
group G,, is discussed in Section 8. 

The group G = Gss is the Euclidean reflection group [3, 3, 51. This group 
has exactly one character with Schur index 2, as shown by Benson and Grove 
[4]. The commutator subgroup G+ is the even subgroup and G+ is isomorphic 

to the central product SL(2, 5) * SL(2,5). Hence, the characters of G+ are 
central products of characters of SL(2,5). Let 01 and p be the characters of 
SL(2, 5) with n!(l) = 4, ,f3( 1) = 6, and m&a) = m&) = 2. Then, x = 
(a * P)G is a rational-valued character with degree 48 and ma(x) = 2. The 
corresponding division algebra is 4(2, 3). Since j Q,(51i2) : Q, / = 2 for 
p = 2 or 3, then m,(x) = 1 forF = Q(51/2) by (2.5). Thus, Q(5r/2), the field 
generated by the characters of G, is a splitting field for G. 

The group Gsi is treated in Section 9. 
The group G = Gs2 has a center of order 2 and its collineation group is 

isomorphic to PSp(4,3), the simple group of order 25920. Since Sp(4, 3) is 
the universal central extension of PSp(4, 3), then G is isomorphic to either 
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PSp(4,3) x 2, or Sp(4,3) x 2, . Since G is a four-dimensional reflection 
group, then it has a character of degree 4. Since PSp{4,3) does not have a 
character of degree 4, then the first case is impossible. Thus, 

GsSp(4,3) x 2,. 

By the results of Section 3, G has exactly four characters with Schur index 2. 
Furthermore, the field Q(-3r/e) generated by the values of the characters of 
G is a splitting field for G. 

The group Gss is [211]” in the notation of Coxeter [8]. Coxeter showed that 

Gsa G PSp(4,3) x 2, , so each character of Ga3 has Schur index I. The group 
GM was considered by the author [2]; each character has Schur index 1. The 
groups Gab, Gas, and Gs, are the Weyl groups IV(&), IV@‘,), and @‘(Es), 
respectively. It was shown by the author [l] that each character can be 
afforded by a rational representation. 

7. THE HESSIAN GROUP 

The group G = G,, has a center of order 3 and its collineation group G 
is the Hessian group of order 216. The generators for G given by Shephard 
and Todd are reflections Y, , rs , and rs of order 3. 

where w is a primitive cube root of unity. The center is generated by x = 
(~~r;%s)* = wl. The subgroup N generated by x, c = (rr~~)~(~sra)~, and 
Y~Y;~ is normal and elementary abelian of order 27. The subgroup T generated 
by a = ylr2 and c-4srac is quaternion of order 8 and is a SyIow 2-subgroup 
of G. This subgroup is normalized by r1 and H = T(r,) g SL(2,3). Further- 
more, H n N = (1) so G/N s H c SL(2, 3). It is easy to check, that 
C,(#) = {a). Since Z(H) = <a2>, then Nd(T) = (a) and NdT) = 
N x <x>. Thus, G contains nine Sylow 2-subgroups and the intersection 
of any two is trivial. 

Coxeter [7] gave a transitive permutation representation of degree 9 for 
the Hessian group. A permutation representation of G can be constructed 
using the mappings r, -+ (456)(798), r2 -+ (249)(375), and rs -+ (123)(465). 
The kernel of this permutation representation is (z} and the collimation 

group G can be identified with the resulting permutation group. In this 
representation, the subgroup H is mapped isomorphically onto a one-point 
stabilizer. The elements of T fix precisely one point, while < f&es ‘three 

481/38/z-6 
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points. Thus, rr is contained in the normalizer of precisely three Sylow 
2-subgroups of G. Also, G contains exactly 160 elements fixing a point. Since 
F = (168)(249)(357) and G is transitive, then ? has at least eight conjugates. 
Since C E N and N is a normal subgroup of G of order 9, then c has exactly 
eight conjugates. The elements C; and r~;’ each have order 3, fix no points, 
and are not conjugate to Z, since they do not lie in N. They are not conjugate 
to each other since r1 and rll are not conjugate in GIN. Furthermore, a Sylow 
3-subgroup of G is nonabelian of order 27 and its center is contained in N, 
so ~fr and ?ryl each have centralizers of order 9 and lie in classes of size 24. 
Thus, G has 10 conjugacy classes represented by i, &, 2, fl, yyl, flz2, 
fla-s, F, or, and ~r7-l. G has se ven nonfaithful characters that are characters of -- 
G/N G G/N s SL(2,3). The permutation representation affords the 
reducible character 1 + 0, where B is a faithful rational-valued character 
of G with degree 8. The two remaining characters of G are 0X and its complex 
conjugate, where h is a nonprincipal linear character of G/N. 

The natural three-dimensional unitary representation of G given by 
Shephard and Todd affords a faithful character C#J of G that vanishes on no 
elements of H. Thus, if x E H, then the elements X, XZ, and X+ are mutually 
nonconjugate. Hence, for each x E H, the classes containing X, XX, and xz-r 
each contain the same number of elements as the class of Zin G. This accounts 
for 21 conjugacy classes. The character 9 vanishes on each of the elements 
c, err , and cr;‘. It is shown below that all faithful characters of G vanish on 
these three elements. Thus, for example, c is conjugate to cx and c.&, and 
the class of c contains 24 elements. In particular, it follows that there are 24 
conjugacy classes. 

More faithful characters can be formed by multiplying 4 by each of the 
characters of G/N and by taking complex conjugates. This yields 14 faithful 
characters of G, of degrees 3, 6, and 9. The sum of the squares of the degrees 
of all 24 characters equals ( G (, so these are all the characters of G. In partic- 
ular, all faithful characters vanish on c, err , and m;‘. 

The character table is given in Table III. For each pair of complex- 
conjugate characters, only one is listed in the table. Also, for the, three classes 
containing x, XX, and xz-r for each x E H, only one class is listed. 

Since G/N g S’L(2,3), then G has a rational-valued character x with Schur 
index 2. Each of the other characters of G with kernel N has Schur index 1. 
The rational-valued character B occurs with multiplicity 1 in a permutation 
character of degree 9, so ma(B) = 1. Each of the remaining characters has 
values that generate Q(-31/z). Since j G 1 = 23 * 34, then, by (2.3) and (2.8), 
each of these characters has Schur index 1. Furthermore, since m,(x) = 1 
for F = Q(-3r12), then Q(-3r/“) is a splitting field for G. 

The group G26 is unique among the higher-dimensional reflection groups 
in that it contains reflections of order 2 and order 3. As indicated by Shephard 
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and Todd, Gs5 is contained in Gas as a subgroup of index 2. Since G2s contains 
an element of order 2 in its center, then Gas s Ga5 x 2, . Each of the 2 
characters of Gas induced from the character x of Gs5 is rational-valued and 
has Schur index 2. Each of the other characters has Schur index 1 and 
Q(-3rj2) is a splitting field for G26 . 

8. THE GROUP [2 1 114 

The group G = G,, is denoted by [2 1 114 in the notation of Coxeter [8]. 
Shephard and Todd gave the following four generators. 

0 1 0 0 
1 0 0 0 

y3= i 

0 0 1 0 
0 0 0 1 i 

1000 
0 1 0 0 

r4= t ! 0 0 1 0 - 
0 0 0 1 

The central element is z = (Y~Y~Y~~,)~ = iir, where i = - 11i2. The commu- 
tator subgroup is the even subgroup G+ and has index 2 in G. If  a = r,r, , 
then the normal subgroup N generated by a2 and z has order 64 and 
G/N g Sym(5). Th is isomorphism can be realized by using the mappings 

rl -+ u2h -+ (23) , y3 -+ (45), and r, -+ (34). The subgroup H = (rr , ye , r3}, 
is a reflection subgroup isomorphic to G(2, 1, 3) (otherwise known as [3,4]), 
and H x (z> is the centralizer of a reflection. Furthermore, N,(H) = 

H x (z) and H has 40 conjugates corresponding to the 40 reflections. The 
subgroup K = (r2 , ra , 4 Y > is a reflection subgroup isomorphic to G(4,4,3) 

([1 1 114 in the notation of Coxeter [S]). This subgroup has normalizer 
K x <a) and has 20 conjugates in G. 

The conjugacy classes of G can be obtained by using information about the 
classes of G/N, H, and K with techniques similar to those used in [2] for the 
group G34. The details are omitted, but the 37 conjugacy classes are given in 
Table IV. Representatives are listed for one conjugacy class corresponding 
to each of the 12 classes of G/N. Representatives of the other 25 classes can be 
obtained by multiplying the given representatives by a, a-l, or z2 where 
appropriate. In the table, the even classes are listed first. 

The character table for G is summarized in Table V. In addition to the 18 
characters listed, there are five complex conjugates and 14 other characters 
of the form $,& . The characters can be derived as follows. Let +15 be the 
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TABLE IV 

Conjugacy Classes of GZs a 

Representative Order Class Size Centralizer 

I 
II 

III 

IV 
V 

VI 

VII 

XII 
XIII 
XIV 

XV 

XVI 

Even classes 

(41 

(2) 
(2) 
(4) 

(1) 

(4) 

(4) 

Odd classes 

(4) 

(2) 
(4) 

(2) 
(4) 

1 

30 

120 

60 

480 

320 

384 

40 26 . 3 

240 2j 

240 26 

480 24 

320 23 * 3 

29 * 3 * 5 

28 

26 

27 

2& 

23 . 3 

29 . 5 

character of the natural four-dimensional representation given by Shephard 
and Todd. Let 01, ~1~ , and p denote the reducible characters induced from the 
principal characters of K x (x), K x (z2>, and H, respectively. The 
characters q$ , . . . , $5 are characters of Sym(s). The remaining characters of the 
collineation group e are given by the following equations 

The characters #9 and +lO are obtained by applying Schur’s method of par- 
titioning Kronecker powers of characters to &, as in [2]. Thus, 
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for all g E G. Then 

337 

There remains two characters of G/(z?), each of degree 6 since the sum of the 
squares of the degrees of all characters must equal the order of the group. 
By the orthogonality relations, at least one of these must not vanish on the 
odd element b (see Table IV), so these two remaining characters are associates: 
+r, and +i4& . Their values are obtained by use of the orthogonal&y relations. 
The faithful characters in the list are $i5 , +r6 = &#~a, &, = &&, and 

h3 = +15+5 - 
The only characters that are not rational-valued are 4s , #15 ,...) &s . The 

characters $I ,..., & of Sym(5) are known to have Schur index 1. Since & 
and $, have odd degrees, then each has Schur index 1 by (2.1). The characters 
&a and & occur in the permutation character 01~ with multiplicity 1, so each 
of these has Schur index 1. Thus, #&, and #r& are afforded by rational 
representations, so the above equations show that $s and 4b1s have Schur index 
1. Calculations show that (&,&&J = 1, so mo(#r& = 1. For the last 
rational-valued character, &s = #r.++a, so mo($& = 1. Since &s is afforded 
by a Q(-li/2)-representation and each of the remaining characters has values 
that generate Q( - 11j2), then the above equations show that each of these has 
Schur index 1. Hence, each character of G,, has Schur index 1. 

9. THE FINAL, CASE 

The group G = Gal has center of order 4 and contains G,, as a subgroup of 
index 6. This group is a four-dimensional reflection group that cannot be 
generated by four reflections. The generators given by Shephard [l’?] are the 
reflections r, , ys, Y, , and r, of the subgroup G,, together with 

10 00 
01 00 

r5= i 0 0 -1 0 1 a 

00 01 

The subgroup N of Gas is also normal in G and G/iV is isomorphic to Sym(6). 
This isomorphism can be realized by mapping rg --+ (1.6) and extending the 
map from G, onto Sym(5). The subgroup M = (~a , ra , y4 , r5) is a reflection 
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group isomorphic to G(4, 2, 3). The normalizer of M is lW x (a}, and 
l%! x (a} is the centralizer of a reflection in G. There are 60 conjugates of 
M corresponding to the 60 reflections. 

The conjugacy classes of G can be obtained in a manner similar to that 
mentioned in the previous section and details are omitted. The classes are 
listed in Table VI. The numbering of the classes is consistent with the 
numbering of the classes of the subgroup G,, as they are listed in Table IV. 

The character table for G is summarized in Table VII, with the same 
conventions as used in Table V. The characters can be derived as follows. 
Let 8,, be the character of the natural four-dimensional representation of G 
given by Shephard [17]. Let p be the reducible character induced from the 

TABLE VI 

Conjugacy Classes of GS1 

Order Class size Centralizer 

I 

II 

III 

IV 

V 

VI 

VII 

VIII 

IX 

X 

XI 

XII 

XIII 

XIV 

xv 

XVI 

XVII 

XVIII 

XIX 

xx 

XXI 

Even classes 

(4) 

(2) 
(2) 
(4) 

(1) 

(4) 

(4) 

(4) 

(2) 
(4) 

(1) 

Odd classes 

(4) 

(1) 

(4) 

(1) 

(4) 

(4) 

(2) 
(1) 

(4) 

(2) 

1 1 210 . 3a . 5 

2 30 29 * 3 

2 360 27 

4 180 28 

8 1440 25 

3 640 23 * 32 

5 2304 25 + 5 

3 160 25 * 32 

6 960 24 * 3 

8 720 26 

8 2880 24 

2 60 28 * 3 

4 720 26 

8 720 26 

4 2880 24 

6 1920 23 . 3 

12 960 24 . 3 

24 1920 23 . 3 

4 360 27 

4 30 29 . 3 

8 240 26 . 3 
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principal character of M x (z). The characters 0, ,..., 0, are characters of 
Sym(6)). The remaining characters of the collineation group G are given by 
the following equations. 

4 = e2,eZl - 4 , 
es = p - e, - e, - 8, - 8, , 

4, = e,e, - 4 , 
ell = es4 - ese2 - ho , 
e,, = e,e, - es - es - eloe2 . 

The characters f3,s and Or, are found by partitioning O& . Thus, 

4sk) = 9(e21k)2 - e2dg2h 

4.dg~ = e24g)2 + edg2h 

for all g E G. The remaining characters are given by the following equations. 

The characters 0, ,..., 0,s , 017 , 8,s , and 0,s are rational-valued. The 
characters t9, ,... , 0, of Sym(6) are known to have Schur index 1. Since 6s , 
Or, , Or, , and 0,s have odd degrees, then each of these has Schur index 1 by 
(2.1). The character 0, occurs with multiplicity 1 in the permutation character 
p, so it has Schur index 1. A different technique must be applied to the three 
remaining rational-valued characters since they are derived from characters 
that are not rational-valued. When these three characters are restricted to the 
subgroup S = Gs, , the following decompositions occur. 

(4,b = ho + h + dzo , 

P& = 911+ #I1462 > 

(e2oh = $12 + $14 + (fd2 - 
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Since OU and 8,s can be afforded by rational representations, then, by (2.1) 
and (2.2), each of the three characters has Schur index 1. Each of the 
remaining characters has values that generate Q(- 11f2). Since On is afforded 
by the Q(--l/s)-representation given by Shephard, then the de&ring equa- 
tions show that each of the remaining characters has Schur index 1. Hence, 
each character of Gar has Schur index 1. 

This completes the proof of Theorems 1 and 2. 
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