Homomorphisms between Solomon's Descent Algebras

F. Bergeron*
LACIM, Département de Mathématiques et Informatique, Unitersité du Québec à Montréal, . C. P. 8888, Succ. A, Mfontréal H3C 3PS, Canada

A. Garsia ${ }^{\dagger}$
Department of Mathematics, Unitersity of California at San Diego, La Jolla, California 92093

AND

C. Reutenauer*

LACIM, Département de Mathématiques et Informatique, Université du Québec à Montréal, C. P. 8888, Succ. A, Montréal, Québec, Canada H3C 3P8

Communicated by Walter Feit
Received September 25, 1990

In a previous paper (see A. Garsia and C. Reutenauer (Adv. in Math. 77, 1989, 189-262)), we have studied algebraic properties of the descent algebras Σ_{n}, and shown how these are related to the canonical decomposition of the free Lie algebra corresponding to a version of the Poincaré-Birkhoff-Witt theorem. In the present paper, we study homomorphisms between these algebras Σ_{n}. The existence of these homomorphisms was suggested by properties of some directed graphs that we constructed in the previous paper (reference above) describing the structure of the descent algebras. More precisely, examination of the graphs suggested the existence of homomorphisms $\Sigma_{n} \rightarrow \Sigma_{n-s}$ and $\Sigma_{n} \rightarrow \Sigma_{n+s}$. We were then able to construct, for any $s(0<s<n)$, a surjective homomorphism $\Delta_{s}: \Sigma_{n} \rightarrow \Sigma_{n-s}$ and an embedding $\Gamma_{s}: \Sigma_{n-s} \rightarrow \Sigma_{n}$, which reflects these observations. The homomorphisms Δ_{s} may also be defined as derivations of the free associative algebra $\mathbf{Q}\left\langle t_{1}, t_{2}, \ldots\right\rangle$ which sends t_{i} on t_{i-3}, if one identifies the basis element $D_{s s}$ of Σ_{n} with some word (coding S) on the alphabet $T=\left\{t_{1}, t_{2}, \ldots\right\}$. We show that this mapping is indeed a homomorphism, using the combinatorial description of the multiplication table of Σ_{n} given in the previous paper (reference above). O 1992 Academic Press, Inc.

[^0]
Introduction

In the algebra of the symmetric group $\mathbb{Q}\left[S_{n}\right]$, let us define the element

$$
D_{\subseteq S}=\sum_{\operatorname{Des}(\sigma) \subseteq S} \sigma
$$

where $\operatorname{Des}(\sigma)$ denotes the descent set of σ and $S \subseteq\{1, \ldots, n-1\}$. In [7], Solomon shows that the linear span Σ_{n} of these 2^{n-1} elements forms a subalgebra of $\mathbb{Q}\left[S_{n}\right]$. In fact, Solomon shows that this is the case for any finite Coxeter group.

In a previous paper [2], we have studied algebraic properties of Σ_{n}, and shown how these are related to the canonical decomposition of the free Lie algebra corresponding to a version of the Poincare-Birkhoff-Witt theorem. In particular, we were able to compute a complete family of orthogonal primitive indempotents E_{λ} of Σ_{n} (indexed by partitions of n). We also computed the dimensions of the quasi-ideals $E_{2} \Sigma_{n} E_{\mu}$.

In the present paper, we study homomorphisms between these algebras Σ_{n}. The existence of these homomorphisms was suggested by properties of the directed graphs (see [2]) describing the structure of these descent algebras. More precisely, examination of these graphs suggested the existence of homomorphisms $\Sigma_{n} \rightarrow \Sigma_{n-s}$ and $\Sigma_{n} \rightarrow \Sigma_{n+s}$ which send the idempotent E_{i} on to $E_{i \backslash s}$ (resp. $E_{\lambda u s}$). As we shall see, for any $s, 0 \leqslant s \leqslant n$, one can define a surjective homomorphism $\Delta_{s}: \Sigma_{n} \rightarrow \Sigma_{n-s}$ and an embedding $\Gamma_{s}: \Sigma_{n-s} \rightarrow \Sigma_{n}$, which reflects these observations. The homomorphisms Δ_{s} may also be defined as derivations of the free associative algebra $\mathbb{Q}\left\langle t_{1}, t_{2}, \ldots\right\rangle$ which sends t_{i} on t_{i-s}, if one identifies the basis element $D \subseteq s$ of Σ_{n} with some word (coding S) on the alphabet $T=\left\{t_{1}, t_{2}, \ldots\right\}$. We show that this mapping is indeed an homomorphism (Theorem 1.1), using the combinatorial description of the multiplication table of Σ_{n} given in [1].

In Theorem 2.1, we show that Δ_{s} has the expected behaviour with respect to the idempotents E_{i}. This is to say that $\Delta_{s}\left(E_{i}\right)=0$ if λ does not contain the part s, and $\Delta_{s}\left(E_{\lambda}\right)=E_{\text {j, }}$ if λ contains the part s. This follows from an argument involving noncommutative logarithms and exponentials, and using generating series for the $E_{;}$'s. We deduce from Theorem 2.1 the surjectivity of Δ_{s} (Corollary 2.2). We further give a direct description of Δ_{s} in terms of permutations in Theorem 2.3. For the simplest case $s=1, \Delta_{1}$ corresponds to erasing in each permutation (considered as a word) the digit n. For the general case, the Lie polynomials step in again, by acting as derivations on the shuffle algebra. In fact, Theorem 2.3 involves an operation introduced by Ree in [6].

In Section 3, we establish the existence of the embeddings $\Gamma_{s}: \Sigma_{n-s} \rightarrow \Sigma_{n}$ such that $\Delta_{s} \circ \Gamma_{s}=I d$, and with the expected behavior on the idempotents E_{i} (Theorem 3.1). Actually, the precise description of Γ_{s} makes use of another basis J_{P} of Σ_{n} introduced in [2].

In Section 4, we show that Δ_{s} corresponds to the derivation $s\left(\partial / \partial p_{s}\right)$ under the natural homomorphism from Σ_{n} onto the algebra Sym_{n} of homogeneous symmetric functions of degree n with inner product.

1. Homomorphisms

Let Σ_{n} denote the subspace of the symmetric group algebra $\mathbb{Q}\left[S_{n}\right]$ spanned by the elements $D_{=s}, S \subseteq\{1, \ldots, n-1\}$, where $D_{=s}$ is the sum of all permutations σ whose descent set

$$
\operatorname{Des}(\sigma)=\{i \mid 1 \leqslant i \leqslant n-1, \sigma(i) \geqslant \sigma(i+1)\}
$$

is equal to S. It has been shown, first by Solomon [7], that Σ_{n} is a subalgebra of $\mathbb{Q}\left[S_{n}\right]$. Clearly, Σ_{n} admits as another basis the family $D_{\leq s}$, $S \subseteq\{1, \ldots, n-1\}$, defined by

$$
D_{\subseteq S}=\sum_{T \subseteq S} D_{=T}
$$

(that is, $D_{\subseteq s}$ is the sum of permutations having a descent set contained in S). The multiplication table of Σ_{n} is easily described in term of this last basis (see Garsia and Remmel [1]). First, note that there is a natural bijection between subsets S of $\{1, \ldots, n-1\}$ and compositions of n (a sequence of positive integers whose sum is n). For $S=\left\{s_{1} \leqslant s_{2} \leqslant \cdots \leqslant s_{k}\right\}$, one defines the composition $p(S)=\left(s_{1}-s_{0}, s_{2}-s_{1}, \ldots, s_{k+1}-s_{k}\right)$ where $s_{0}=0$ and $s_{k+1}=n$. From now on, $D_{\varsigma s}$ will be denoted by $B_{p(S)}$.

Let us call the pseudo-composition of n any sequence v of nonnegative integers whose sum is n. To each pseudo-composition v, one naturally associates the composition $p(v)$ of n obtained by omitting the zeros. Now, to each matrix

$$
M=\left(n_{i j}\right)_{1 \leqslant i \leqslant k, 1 \leqslant j \leqslant 1}
$$

with entries in \mathbb{N}, there corresponds naturally the pscudo-composition

$$
w(M)=\left(n_{11}, n_{21}, \ldots, n_{k 1}, n_{12}, n_{22}, \ldots, n_{k 2}, \ldots, n_{k 1}\right)
$$

obtained by reading the entries of M starting from the upper left corner, down the first column, then the second, etc. Similarly, one defines the row sum (resp. column sum) of M as the pseudo-composition

$$
\begin{aligned}
r(M)= & \left(n_{11}+n_{12}+\cdots+n_{1 l}, n_{21}+n_{22}\right. \\
& \left.+\cdots+n_{2 l}, \cdots, n_{k 1}+n_{k 2}+\cdots+n_{k l}\right)
\end{aligned}
$$

$$
\begin{aligned}
c(M)= & \left(n_{11}+n_{21}+\cdots+n_{k 1}, n_{12}+n_{22}\right. \\
& \left.+\cdots+n_{k 2}, \ldots, n_{1 l}+n_{2 l}+\cdots+n_{k l}\right) .
\end{aligned}
$$

Then, for two compositions p and q of n, one has

$$
\begin{equation*}
B_{p} B_{q}=\sum_{M} B_{p(w(M))}, \tag{1.1}
\end{equation*}
$$

where the sum is extended to all matrices (with entrics in \mathbb{N}) whose row sum is p and column sum is q (see [1]).

Example 1. For $p=22$ and $q=31$ the possible matrices are $M=\left(\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right)$ or $M=\left(\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right)$. Hence $B_{22} B_{31}=B_{121}+B_{211}$.

We now define for each $s, 1 \leqslant s \leqslant n$, a linear mapping $\Delta_{s}: \Sigma_{n} \rightarrow \Sigma_{n-s}$. For each composition $p=p_{1} p_{2} \cdots p_{k}$ of n and each part $p_{i} \geqslant s$, define the pseudo-composition u_{i} by replacing p_{i} in p by $p_{i}-s$. Then define

$$
\begin{equation*}
\Delta_{s}\left(B_{p}\right)=\sum_{p_{i} \geqslant s} B_{p\left(\mu_{i}\right)} \tag{1.2}
\end{equation*}
$$

Example 2. $\quad \Delta_{2}\left(B_{213}\right)=B_{13}+B_{211}$.
1.1. Theorem. The mapping Δ_{s} is an algebra homomorphism $\Sigma_{n} \rightarrow \Sigma_{n-s}$.

Proof. We have to show that $\Delta_{s}\left(B_{p} B_{q}\right)=\Delta_{s}\left(B_{p}\right) \Delta_{s}\left(B_{q}\right)$. Now, we have Eq. (1.2), and similarly

$$
\begin{equation*}
\Delta_{s}\left(B_{q}\right)=\sum_{q_{j} \geqslant s} B_{p\left(v_{j}\right)} \tag{1.3}
\end{equation*}
$$

where v_{j} is obtained from q by replacing q_{j} by $q_{j}-s$. Note that Eq. (1.1) admits the following easy generalization: for any two pseudo-compositions u and v, one has

$$
\begin{equation*}
B_{p(u)} B_{p(v)}=\sum_{M} D_{p(n \cdot(A))} \tag{1.4}
\end{equation*}
$$

where the sum is extended to all matrices M having row sum u and column sum v. Equations (1.1), (1.2), and (1.3) imply that

$$
\begin{equation*}
\Delta_{s}\left(B_{p}\right) \Delta_{s}\left(B_{q}\right)=\sum_{p_{i}, q_{j} \geqslant s} \sum_{M_{i}} B_{p\left(w\left(M f_{j}\right)\right)}, \tag{1.5}
\end{equation*}
$$

where the second sum is extended to all matrices whose row sum is u_{i} and column sum is v_{j}. On the other hand, we have by Eq. (1.1)

$$
\begin{align*}
\Delta_{s}\left(B_{p} B_{q}\right) & =\Delta_{s}\left(\sum_{M i} B_{p(w(M))}\right) \\
& =\sum_{M} \sum_{m_{i j} \geqslant s} B_{p\left(w\left(M_{i}\right)\right)}, \tag{1.6}
\end{align*}
$$

where the sum extends to all matrices $M=\left(m_{i j}\right)$ with row sum p and column sum q, and where $M_{i j}$ is obtained by replacing in M the entry $m_{i j}$ by $m_{i j}-s$. Note that $M_{i j}$ has row sum u_{i} and column sum v_{j}, which shows that the sum (1.6) is contained in the sum (1.5). Conversely, if $M_{i j}$ has row sum u_{i} and column sum v_{j}, then by adding s to its $i j$-entry, one obtains a matrix of row sum p and column sum q, which shows that the reverse inclusion also holds. This concludes the proof.

2. Derivations

Let $T=\left\{t_{1}, t_{2}, \ldots\right\}$ be an infinite alphabet and T^{*} the free monoid it generates. There is a natural linear isomorphism δ from the free associative algebra $\mathbb{Q}\langle T\rangle$ onto $\Sigma=\oplus_{n \geqslant 0} \Sigma_{n}$ defined by

$$
\delta\left(t_{p_{1}} t_{p_{2}} \cdots t_{p_{k}}\right)=B_{p}
$$

where $p=p_{1} p_{2} \cdots p_{k}$ is a composition of n. Now, the homomorphism $\Delta_{s}: \Sigma_{n} \rightarrow \Sigma_{n-s}$ of the previous section clearly defines a linear mapping $\Sigma \rightarrow \Sigma$, which we also denote by Δ_{s} (if $n<s, \Delta_{s}\left(\Sigma_{n}\right)=0$). We shall now introduce a derivation D_{s} on $\mathbb{Q}\langle T\rangle$ such that $\delta \circ \Delta_{s}=D_{s} \circ \delta$. This derivation of the algebra $\mathbb{Q}\langle T\rangle$ is defined by

$$
D_{s}\left(t_{i}\right)= \begin{cases}t_{i-s}, & \text { if } \quad i>s \\ 1, & \text { if } \quad i=s \\ 0, & \text { if } \quad i<s\end{cases}
$$

It is convenient to write $t_{0}=1$, and $t_{i}=0$ when $i<0$. So we can now write $D_{s}\left(t_{i}\right)=t_{i-s}$.

In [2], we have defined special elements $e_{;}$of $\mathbb{Q}\langle T\rangle$, for each partition i., and shown that the elements $E_{i}=\delta\left(e_{i}\right)$ are mutually orthogonal idempotents decomposing 1 and generating a complement of the radical of Σ_{n} (see [2, Theorems 3.3, 3.1, and 1.1]). We shall establish now the effect of the homomorphisms A_{s} on these idempotents. To this end we make use of the isomorphism δ, and work with D_{s} over $\mathbb{Q}\langle T\rangle$. The following formulas
(see [2, Theorem 3.3]) define the e_{2} 's. Let $y, x_{1}, x_{2}, x_{3}, \ldots$ be commuting variables, which also commute with the t_{i} 's: Then one sets

$$
\begin{equation*}
\sum_{n \geqslant 1} e_{n} y^{n}=\log \left(\sum_{i \geqslant 0} t_{i} y^{i}\right) \tag{2.1}
\end{equation*}
$$

(recall that $t_{0}=1$) and

$$
\begin{equation*}
\sum_{\lambda} e_{\lambda} X^{\lambda}=\exp \left(\sum_{j \geq 1} e_{f} x_{j}\right) \tag{2.2}
\end{equation*}
$$

where $X^{\lambda}=x_{1}^{x_{1}} x_{2}^{x_{2}} \cdots x_{n}^{x_{n}}$, if $\lambda=1^{x_{1}} 2^{x_{2}} \cdots n^{x_{n}}$.
2.1. Theorem. The image of E_{2} under Δ_{s} is 0 if s is not a part of λ. If s is a part of λ, let $\lambda \backslash$ denote the partition obtained by deleting one part s in λ; then $\Delta_{s}\left(E_{\lambda}\right)=E_{\lambda \backslash s}$.

Proof. Recall that in a topological algebra with a derivation $a \mapsto a^{\prime}$, if a commutes with a^{\prime}, then one has the usual formulas $\log (a)^{\prime}=a^{\prime} a^{-1}$ and $\exp (a)^{\prime}=a^{\prime} \exp (a)(\log$ and \exp are defined by the usual series). Of course, there are some convergence hypotheses (which in our case are trivial). Extend D_{s} to the variables $y, x_{1}, x_{2}, x_{3}, \ldots$ by $D_{s}(y)=D_{s}\left(x_{1}\right)=$ $D_{s}\left(x_{2}\right)=\cdots=0$. Note that

$$
\dot{D}_{s}\left(\sum_{i \geqslant 0} t_{i} y^{i}\right)=\sum_{i \geqslant 0} D_{s}\left(t_{i}\right) y^{i}=\sum_{i \geqslant 0} t_{i-s} y^{i}=y^{s} \sum_{i \geqslant 0} t_{i} y^{i},
$$

hence $\sum t_{i} y^{i}$ and its D_{s}-derivative commute. Thus we obtain by (2.1)

$$
\sum_{n \geqslant 1} D_{s}\left(e_{n}\right) y^{n}=D_{s}\left(\sum t_{i} y^{i}\right)\left(\sum t_{i} y^{\prime}\right)^{-1}=y^{s}
$$

This shows that

$$
D_{s}\left(e_{n}\right)= \begin{cases}1, & \text { if } n=s \tag{2.3}\\ 0, & \text { otherwise }\end{cases}
$$

Similarly, $D_{s}\left(\sum_{i \geqslant 1} e_{j} x_{j}\right)=\sum_{j \geqslant 1} D_{s}\left(e_{j}\right) x_{j}=x_{s}$ commutes with $\sum e_{j} x_{j}$; it follows from (2.2) that

$$
\begin{aligned}
\sum D_{s}\left(e_{i}\right) X^{j} & =D_{s}\left(\sum_{i} e_{i} X^{j}\right) \\
& =D_{s}\left(\sum_{j \geqslant 1} e_{j} x_{j}\right) \exp \left(\sum_{j \geqslant 1} e_{j} x_{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =x_{s} \exp \left(\sum_{j \geqslant 1} e_{j} x_{j}\right) \\
& =x_{s}\left(\sum_{\lambda} e_{\lambda} X^{\lambda}\right)
\end{aligned}
$$

Hence we deduce

$$
D_{s}\left(e_{\lambda}\right)= \begin{cases}0, & \text { if } s \text { is not a part of } \lambda \tag{2.4}\\ e_{\lambda \backslash s}, & \text { if } s \text { is a part of } \lambda .\end{cases}
$$

Translating with δ equations (2.3) and (2.4), we obtain the theorem.
2.2. Corollary. The mappings Δ_{s} and D_{s} are surjective.

Proof. It is enough to show that D_{s} is surjective. Now, $D_{s}\left(e_{n}\right)=1$ if $n=s$; and is 0 otherwise. Moreover, the e_{n} 's freely generate the algebra $\mathbb{Q}\langle T\rangle$, since

$$
\begin{aligned}
e_{1} & =t_{1} \\
e_{2} & =t_{2}-\frac{1}{2} t_{1}^{2} \\
e_{3} & =t_{3}-\frac{1}{2} t_{1} t_{2}-\frac{1}{2} t_{2} t_{1}+\frac{1}{3} t_{1}^{3} \\
& \vdots
\end{aligned}
$$

which are triangular algebraic relations between the e_{n} 's and the t_{n} 's. We show that each product of the form

$$
\begin{equation*}
x=x_{0} e_{s}^{i_{1}} x_{1} \cdots e_{s}^{i_{k}} x_{k} \tag{*}
\end{equation*}
$$

where $k \geqslant 1$ and where each x_{j} is a product of e_{i} 's distinct from e_{s}, is in the image of D_{s}. In view of the above observation, this will imply the corollary. We prove the claim by induction on $i=i_{2}+\cdots+i_{k}$. Observe that x is equal to

$$
D_{s}\left(\frac{1}{i_{1}+1} x_{0} e_{s}^{i_{1}+1} x_{1} \cdots e_{s}^{i_{k}} x_{k}\right)-y
$$

where either $k=1$ and $y=0$ hence x is in $\operatorname{Im}\left(D_{s}\right)$, or $k \geqslant 2$ and y is a linear combination of terms of the form (*) with a smaller i; in the latter case, we know by induction that $y \in \operatorname{Im}\left(D_{s}\right)$, hence $x \in \operatorname{Im}\left(D_{s}\right)$.

We have described Δ_{s} by its effect on the basis B_{p}. Recall that Σ_{n} is a subalgebra of $\mathbb{Q}\left[S_{n}\right]$. So, it is natural to ask for a description of Δ_{s} directly in terms of permutations. We shall now show that this is possible. As in [2], we shall see that the free Lie algebra plays a crucial role.

Let A be the finite alphabet $\{1,2, \ldots, n\}$ and consider each permutation as a word on A. Thus $\mathbb{Q}\left[S_{n}\right]$ is a subspace of the free associative algebra $\mathbb{Q}\langle A\rangle$. In particular, Σ_{n} is a subspace of $\mathbb{Q}\langle A\rangle$. For any word u in the free monoid A^{*}, define a linear mapping

$$
\pi_{u}: \mathbb{Q}\langle A\rangle \rightarrow \mathbb{Q}\langle A\rangle
$$

by the formula

$$
\pi_{u}\left(w^{\prime}\right)=\sum_{w=x u y} x y,
$$

if w is a word in A^{*}. This is to say that π_{u} erases occurences of u in the words. Actually, we shall extend linearly π to all of $\mathbb{Q}\langle A\rangle$ as

$$
\pi_{R}=\sum_{u}\langle R, u\rangle \pi_{u}
$$

where R is in $\mathbb{Q}\langle A\rangle$, and $\langle R, u\rangle$ is the coefficient of u in R. We also define a linear mapping $\rho: \mathbb{Q}\langle A\rangle \rightarrow \mathbb{Q}\langle A\rangle$ (first introduced by Ree [6]) recursively by the formula $\rho(\varepsilon)=0$, where ε denotes the empty word, $\rho(a)=a$ if $a \in A$, and $\rho(a u b)=\rho(a u) b-\rho(u b) a$, for any word u and letters a, b in A.
2.3. Theorem. For $1 \leqslant s \leqslant n$, let w_{s} be 'the word $(n-s+1) \cdots n$ in A^{*}. Then for any P in Σ_{n}, one has

$$
\Delta_{s}(P)=\pi_{\rho\left(w_{j}\right)}(P)
$$

Example 3. (1) $s=1$. Then $\rho\left(w_{1}\right)=n$, hence $\Delta_{1}(P)$ is obtained by erasing the digit n in each permutation appearing in P.
(2) $s=2$. Then $\rho\left(w_{2}\right)=(n-1) n-n(n-1)$, hence $\Delta_{2}(P)$ is the sum of the permutations obtained by erasing in each permutation appearing in P the factor ($n-1$) n (if it appears), minus the sum of those obtained by erasing the factor $n(n-1)$. Thus

$$
\begin{aligned}
\Delta_{2}\left(B_{31}\right) & =\Delta_{2}(1234+1243+1342+2341) \\
& =12-12+12+21=12+21 \\
& =B_{11} .
\end{aligned}
$$

(3) $s=3$. Then

$$
\begin{aligned}
\rho\left(w_{3}\right)= & \rho((n-2)(n-1)) n-\rho((n-1) n)(n-2) \\
= & (n-2)(n-1) n-(n-1)(n-2) n \\
& -(n-1) n(n-2)+n(n-1)(n-2)
\end{aligned}
$$

and one has to erase all these words when they appear in a permutation, with the sign according to its sign in $\rho\left(w_{3}\right)$.

Let us recall the definition of the following left action of $\mathbb{Q}\langle A\rangle$ on itself. For words w and u, set $w u^{-1}=v$ when $w=v u$, and $w u^{-1}=0$ when u is not a right factor of w. We denote $w u^{-1}=u \triangleleft w$. Then $u \sqsupset w$ extends bilinearly to a left action of $\mathbb{Q}\langle A\rangle$ on itself by the formula

$$
\begin{aligned}
P \triangleleft Q & =\sum_{u, w \in A^{*}}\langle P, u\rangle\langle Q, w\rangle u \triangleleft w \\
& =\sum_{w=u v}\langle P, u\rangle\langle Q, w\rangle v,
\end{aligned}
$$

where $\langle P, u\rangle$ is (as above) the coefficient of u in P.
Recall that we consider each permutation in S_{n} to be a word on A. We define for a permutation w, its dual $\downarrow w$ to be the inverse (in S_{n}) of w; this mapping is then linearly extended to $\mathbb{Q}\left[S_{n}\right]$. We shall further need the following normalization mapping. For a word w on A, of length k and without repeated letter, define $N(w)$ to be the following permutation: suppose $w=i_{1} i_{2} \cdots i_{k}$ and let τ be the unique increasing mapping

$$
\tau:\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \rightarrow\{1,2, \ldots, k\} .
$$

Then $N(w)=\tau\left(i_{\mathfrak{r}}\right) \tau\left(i_{2}\right) \cdots \tau\left(i_{k}\right)$. For example, $N(7831)=3421$. Then N is also extended linearly to the linear span of words with no repeated letter.
2.4. Lemma. For $s, 1 \leqslant s \leqslant n$, let a be a permutation in S_{s}. Define the word $u=(n-s+\alpha(1)) \cdots(n-s+\alpha(s))$. Then for any permutation w in S_{n}, one has

$$
\begin{equation*}
\downarrow \pi_{u}(w)=\sum_{j=0}^{n-s} N\left\{(\downarrow w)\left[\left(j+\alpha^{-1}(1)\right) \cdots\left(j+\alpha^{-1}(s)\right)\right]^{-1}\right\} . \tag{2.5}
\end{equation*}
$$

The lemma and its proof are rather technical, so we shall first illustrate it with an example. Set α as the permutation $231 \in S_{3}$. Then for $n=7$, we have $u=675$. Let $w=2367514$. Then $\downarrow \pi_{u}(w)=\downarrow 2314=3124$. Now, $\downarrow w=6127534$, and $\downarrow \alpha=312$, so the words $\left(j+\alpha^{-1}(1)\right) \cdots\left(j+\alpha^{-1}(s)\right)$ of the right-hand side of (2.5) are 312, 423,534, 645, and 756. Only one of these, i.e., 534, is a right factor of $\downarrow w$, so that the right-hand side of (2.5) is $N(6127)=3124$.

Proof. Suppose $\pi_{u}(w) \neq 0$, then $w=x u y$. Let j be the length of x, thus $0 \leqslant j \leqslant n-s$. Hence the permutation w sends $j+t$ onto $n-s+\alpha(t)$ for
$1 \leqslant t \leqslant s$. We deduce from this that $\downarrow u$ has the right factor $a_{1} a_{2} \cdots a_{s}$ $\left(a_{i} \in A\right)$ with

$$
a_{r}=j+t \Leftrightarrow n-s+r=n-s+\alpha(t) \Leftrightarrow t=\alpha^{-1}(r) .
$$

And finally $a_{1} a_{2} \cdots a_{s}=\left(j+\alpha^{-1}(1)\right) \cdots\left(j+\alpha^{-1}(s)\right)$.
Thus the right hand side of (2.5) is equal to $N(v)$ with $\downarrow w=v a_{1} a_{2} \cdots a_{s}$. Since $\left\{a_{1}, a_{2}, \ldots, a_{s}\right\}=\{j+1, j+2, \ldots, j+s\}$, the permutation $N(v) \in S_{n-s}$ is obtained by replacing in v each digit $d \geqslant j$ (or equivalently $\geqslant j+s$) by $d-s$. Hence $N(v)$ sends cach i onto $\downarrow w(i)$ when $\downarrow w(i) \leqslant j$, and onto $\downarrow w(i)-s$ otherwise. We conclude that $\downarrow N(v)$ is the permutation which sends all $k \in\{1,2, \ldots, j\}$ onto $w(k)$, and all $k \in\{j+1, j+2, \ldots, n-s\}$ onto $w(k+s)$. In other words, $\downarrow N(v)=x y=\pi_{u}(w)$.

Suppose now that the right-hand side of (2.5) is not zero. Then for some unique $j \in\{0, \ldots, n-s\}$, the word $\downarrow w$ admits the right factor $\left(j+\alpha^{-1}(1)\right) \cdots\left(j+\alpha^{-1}(s)\right)$. This implies that w has the factor $(n-s+\alpha(1)) \cdots\left(n-s+\alpha(s)\right.$), which further implies that $\pi_{u}(w) \neq 0$, which concludes the proof.

We have already come across particular instances of the scalar product $\langle P, Q\rangle$ on $\mathbb{Q}\langle A\rangle$ for which A^{*} is an orthonormal basis. Now, define a linear mapping $\lambda: \mathbb{Q}\langle A\rangle \rightarrow \mathbb{Q}\langle A\rangle$ by $\lambda\left(a_{1} a_{2} a_{3} \cdots a_{n}\right)=$ $\left[\cdots\left[\left[a_{1}, a_{2}\right], a_{3}\right], \ldots, a_{n}\right]$ (this is the Lie bracketing from left to right; and we implicitly suppose that the a_{i} 's are in A). Then it has been shown in [6] (see also [4, Example 5.3.2]) that λ is the adjoint of ρ for the above scalar product.
2.5. Lemma. There exist rational integers $0_{z}\left(\alpha \in S_{s}\right)$ such that

$$
\begin{equation*}
\rho\left(w_{s}\right)=\sum_{z \in S_{s}} \theta_{x}[(n-s+\alpha(1)) \cdots(n-s+\alpha(s))] \tag{2.6}
\end{equation*}
$$

Where W_{s} is as in Theorem 2.3. Moreover, for any $j \geqslant 0$, one has

$$
\begin{equation*}
\lambda[(j+1) \cdots(j+s)]=\sum_{x \in S_{s}} 0_{x}\left[\left(j+\alpha^{-1}(1)\right) \cdots\left(j+\alpha^{-1}(s)\right)\right] . \tag{2.7}
\end{equation*}
$$

Proof. It is clear, by definition of ρ, that $\rho(12 \cdots s)$ is a linear combination of permutations in S_{s}; hence for some $\theta_{x} \in \mathbb{Q}_{s}$,

$$
\rho(12 \cdots s)=\sum_{x \in S_{s}} \theta_{x} \alpha
$$

Denoting by $P \cdot x$ the result of the right action by position of $x \in \mathbb{Q}\left[S_{s}\right]$ on $P \in \mathbb{Q}\langle A\rangle(P$ homogeneous of degree $s)$, we have $\rho(w)=w \cdot \rho(12 \cdots s)$, for
any word of length s. Now, it is clear that the adjoint of $w \mapsto w \cdot \alpha$ is $w \mapsto w \cdot \alpha^{-1}$. Thus we obtain that

$$
\lambda(12 \cdots s)=\sum_{x \in S_{s}} 0_{x} \alpha^{-1}
$$

Hence

$$
\begin{aligned}
\rho\left(w_{s}\right) & =[(n-s+1) \cdots n] \cdot \rho(12 \cdots s) \\
& =\sum_{x} \theta_{x}[(n-s+1) \cdots n] \cdot \alpha \\
& =\sum_{x \in S_{s}} \theta_{x}[(n-s+\alpha(1)) \cdots(n-s+\alpha(s))]
\end{aligned}
$$

and similarly

$$
\begin{aligned}
\lambda((j+1) \cdots(j+s)) & =[(j+1) \cdots(j+s)] \cdot \lambda(12 \cdots s) \\
& =\sum_{x} 0_{x}[(j+1) \cdots(j+s)] \cdot \alpha^{-1} \\
& =\sum_{x \in S_{s}} 0_{x}\left[\left(j+\alpha^{-1}(1)\right) \cdots\left(j+\alpha^{-1}(s)\right)\right] .
\end{aligned}
$$

This concludes the proof.
Proof of Theorem 2.3. Recall that $\sigma \mapsto \sigma^{-1}$ defines an anti-isomorphism of the algebra $\mathbb{Q}\left[S_{n}\right]$. We denote $\downarrow \Sigma_{n}$ the image of Σ_{n} under this antiisomorphism, and $\downarrow \Lambda_{s}$ the algebra homomorphism $\downarrow \Sigma_{n} \rightarrow \downarrow \Sigma_{n-s}$ induced by Δ_{s}, that is, $\downarrow \Delta_{s}\left(\downarrow B_{q}\right)=\downarrow\left(\Delta_{s}\left(B_{p}\right)\right)$. A fundamental remark (see [1, 2]) is that $\downarrow B_{p}$ has a very special form, using the shuffle product u in $\mathbb{Q}\langle A\rangle$. For a composition $p=p_{1} p_{2} \cdots p_{k}$ of n, define the factorization of the word $12 \cdots n=E_{1} E_{2} \cdots E_{k}$ to be the only factorization such that for all i 's, length $\left(E_{i}\right)=p_{i}$. Then

$$
\begin{equation*}
\downarrow B_{p}=E_{1} \backsim E_{2} \backsim \cdots \backsim E_{k} \tag{2.8}
\end{equation*}
$$

It follows from Eqs. (2.5) and (2.6) that

$$
\begin{aligned}
\downarrow \pi_{\rho\left(n_{j}\right)}\left(B_{p}\right)= & \downarrow \sum_{x \in S_{s}} \theta_{x} \pi_{(n-s+x(1)) \cdots(n-s+x(s))}\left(B_{p}\right) \\
= & \sum_{i \in S_{s}} \theta_{x} \sum_{j=0}^{n-s} N\left(\left(\downarrow B_{p}\right)\left[\left(j+\alpha^{-1}(1)\right) \cdots\left(j+\alpha^{-1}(s)\right)\right]^{-1}\right) \\
= & \sum_{j=0}^{n-s} N\left(\left(\sum _ { x \in S _ { s } } \theta _ { x } \left[\left(j+\alpha^{-1}(1)\right)\right.\right.\right. \\
& \left.\left.\left.\cdots\left(j+\alpha^{-1}(s)\right)\right]\right) \triangleleft\left(\downarrow B_{p}\right)\right) .
\end{aligned}
$$

Using Eq. (2.7), we obtain

$$
\downarrow \pi_{\rho\left(w_{s}\right)}\left(B_{p}\right)=\sum_{j=0}^{n-s} N\left(\lambda((j+1) \cdots(j+s)) \triangleleft\left(\downarrow B_{p}\right)\right) .
$$

Now it is well known that the mapping $\omega_{R}: \mathbb{Q}\langle A\rangle \rightarrow \mathbb{Q}\langle A\rangle$ defined as $\omega_{R}(a)=a \triangleleft R$, is a derivation for the shuffle product. Moreover, $(P \triangleleft Q) \triangleleft R=P \triangleleft(Q \triangleleft R)$, hence $R \mapsto \omega_{R}$ is an algebra homomorphism. Since the Lie bracket of two derivations is also a derivation, it follows that $R \mapsto P \triangleleft R$ is a derivation for the shuffle of any Lie polynomial (element of the free Lie algebra generated by A) P, and in particular for $P=\lambda((j+1) \cdots(j+s))$. Hence by (2.8)

$$
\begin{aligned}
\downarrow \pi_{p\left(w_{s}\right)}\left(B_{p}\right)= & \sum_{j=0}^{n-s} N(\lambda((j+1) \cdots(j+s)) \\
& \left.\triangleleft\left(E_{1} \omega E_{2} \backsim \cdots w E_{k}\right)\right) \\
= & \sum_{j=0}^{n-s} N\left(\sum_{i=1}^{k} E_{1} \backsim \cdots \backsim E_{i-1} \backsim(\lambda((j+1)\right. \\
& \left.\left.\cdots(j+s)) \triangleleft E_{i}\right) \backsim \cdots w E_{k}\right) .
\end{aligned}
$$

Observe that $\lambda((j+1) \cdots(j+s))$ is the sum of $(j+1) \cdots(j+s)$ and of \pm permutations of this word. Moreover, E_{i} is an increasing word, thus

$$
\begin{aligned}
\lambda((j+1) \cdots(j+s)) \triangleleft E_{i} & =[(j+1) \cdots(j+s)] \triangleleft E_{i} \\
& =E_{i}[(j+1) \cdots(j+s)]^{-1} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\downarrow \pi_{\rho\left(w_{s}\right)}\left(B_{p}\right)= & \sum_{i=1}^{k} N\left(\sum_{j=0}^{n-s} E_{1} w \cdots w E_{i-1}\right. \\
& \left.\omega E_{l}[(j+1) \cdots(j+s)]^{-1} \backsim \cdots w E_{k}\right) .
\end{aligned}
$$

In the second sum of the right-hand side of this last formula, at most one term is nonzero. Let $q_{i}=p_{1}+\cdots+p_{i}$, then $E_{i}=\left(q_{i-1}+1\right) \cdots\left(q_{i-1}+p_{i}\right)$; then this term is $\left(q_{i-1}+1\right) \cdots\left(q_{i-1}+p_{i}-s\right)$ (which is 0 if $\left.s \geqslant p_{t}\right)$. We conclude that

$$
\begin{aligned}
\downarrow \pi_{\rho\left(w_{j}\right)}\left(B_{P}\right)= & \sum_{i=1}^{k} N\left(\sum_{j=0}^{n-s} E_{1} \omega \cdots w E_{i-1}\right. \\
& \left.\omega\left[\left(q_{i-1}+1\right) \cdots\left(q_{i-1}+p_{i}-s\right)\right] \omega \cdots w E_{k}\right) .
\end{aligned}
$$

Now, it is easy to see that $N(\cdots)$ is equal to $E_{1} \backsim \cdots \backsim E_{i-1} W$ $E_{i}^{\prime} \mathcal{W} E_{i+1}^{\prime} W \cdots \omega E_{k}^{\prime}$ where $12 \cdots n-s=E_{1} \cdots E_{i-1} E_{i}^{\prime} E_{i+1}^{\prime} \cdots E_{k}^{\prime}$ is the factorization of $12 \cdots(n-s)$ in words having respective lengths $p_{1}, \ldots, p_{t-1}, p_{i}-s, p_{i+1}, \ldots, p_{k}$. In other words, the shuffle in question is precisely $\downarrow B_{p\left(u_{i}\right)}$ where u_{l} is obtained by replacing p_{i} by $p_{i}-s$ in p. Finally,

$$
\begin{aligned}
\downarrow \pi_{\rho\left(w_{i}\right)}\left(B_{p}\right) & =\sum_{p_{i} \geqslant s} \downarrow B_{p\left(u_{i}\right)} \\
& =\downarrow\left(\sum_{p_{i} \geqslant s} B_{p\left(u_{i}\right)}\right)=\downarrow\left(\mathcal{U}_{s}\left(B_{p}\right)\right)
\end{aligned}
$$

which proves the theorem.

3. Embeddings

We establish now that the surjective homomorphism A_{s} has a right inverse. More precisely, we show the existence of injective homomorphisms $\Gamma_{s}: \Sigma_{n} \rightarrow \Sigma_{n+s}$ such that $\Delta_{s} \circ \Gamma_{s}=I d$.
First of all, we recall a fundamental result of [2], in a slightly different language. Recall that two words u and v in T^{*} are said to be conjugate if for some words x and y one has $u=x y$ and $v=y x$. This is an equivalence relation, and an equivalence class is called a circular word. A word is primitive if it is not a nontrivial power of another word. Conjugation preserves primitivity, so we may speak of primitive circular words. Given a multiset of primitive circular words M on T, the shape $\lambda(M)$ is the partition $1^{x_{1}} 2^{x_{2}} \cdots n^{x_{n}}$ if M has α_{i} occurrences of the letter t_{i}. The type $\tau(M)$ of M is $\left(\left|C_{1}\right|,\left|C_{2}\right|, \ldots,\left|C_{k}\right|\right)$ if $M=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ (as a multiset) and $\left|C_{i}\right|$ is the weight of the circular word C_{i}, which is $i_{1}+i_{2}+\cdots+i_{p}$ if $w=t_{i_{1}} t_{i_{2}} \cdots t_{i_{p}}$ is a word in the equivalence class C_{i}. For example, the shape of the multiset M in Fig. 1 is 3322211 and its type is 6422 .

Figure 1

Recall the orthogonal idempotents E_{λ} (with 2 a partition of n) of sum 1 in Σ_{n} that were defined in Section 2. The following result is proved in [2, Theorem 5.4]: for two partitions λ. and μ of n, the dimension of the subspace $E_{\lambda} \Sigma_{n} E_{\mu}$ of Σ_{n} is equal to the number of multisets of primitive circular words of shape λ and type μ.

Actually, the latter result is a consequence of a more precise one. In [2], a basis $\left(J_{p}\right)_{p}$ of Σ_{n}, indexed by compositions of n, is defined. There is a weight preserving bijection between compositions and multisets of primitive circular words: to each composition p, considered as word on $1,2,3, \ldots$, one associates the unique decreasing factorization of p in Lyndon words. Moreover Lyndon words are naturally in bijection with primitive circular words. Define the shape and type of p to be the corresponding shape and type of this multiset of primitive circular words. It is shown in [2, Theorem 5.4] that the J_{p} 's, with p of shape λ and type μ, form a basis of $E_{\lambda} \Sigma_{n} E_{\mu}$.
The bijection above induces, through the mapping $M \mapsto M \cup\{s\}$, defined on multisets of primitive circular words (this mapping adds to M the circular word formed of the single letter s), a mapping $p \mapsto p \cup\{s\}$ on compositions. For any composition p, with associated multiset M, denote by $\alpha_{s}(p)$ the mulliplicity of s in M (or equivalently, the number of times the word s appears in the Lyndon decomposition of p).
3.1. Theorem. Let n and s be fixed. Define $E=\sum_{s \in \lambda} E_{i}$ in Σ_{n+s}, where the sum is extended to all partitions λ of $n+s$ having the part s. Then $E \Sigma_{n+s} E$ is a subalgebra Σ_{n}^{\prime} of Σ_{n+s} with neutral element E and the restriction $\Delta_{s} \mid \Sigma_{n}^{\prime}$ is an isomorphism $\Sigma_{n}^{\prime} \rightarrow \Sigma_{n}$ sending each idempotent $E_{\lambda}(s \in \mathcal{\lambda}$) onto $E_{\lambda \backslash s}$. In particular, the inverse of $\Delta_{s} \mid \Sigma_{n}^{\prime}$ defines an embedding $\Gamma_{s}: \Sigma_{n} \rightarrow \Sigma_{n+s}$ such that $\Delta_{s} \circ \Gamma_{s}=I d$. This embedding is also defined by

$$
\begin{equation*}
\Gamma_{s}\left(J_{p}\right)=J_{p \cup s} \tag{3.1}
\end{equation*}
$$

for any composition p of n.
Proof. Since the E_{∂}^{\prime} are orthogonal idempotents, E is clearly an idempotent and $\Sigma_{n}^{\prime}=E \Sigma_{n} E$ is a subalgebra having E as neutral element. By Theorem 2.1, we have

$$
\Delta_{s}(E)=\sum_{|\lambda|=n} E_{i}=1 \quad\left(\text { in } \Sigma_{n}\right)
$$

so that $\Lambda_{s}\left(\Sigma_{n}^{\prime}\right)=\Delta_{s}\left(E \Sigma_{n+s} E\right)=\Lambda_{s}\left(\Sigma_{n+s}\right)=\Sigma_{n}$ (by Corollary 2.2). So $\Delta_{s} \mid \Sigma_{n}^{\prime}$ is a surjective homomorphism $\Sigma_{n}^{\prime} \rightarrow \Sigma_{n}$ and we have only to establish that $\operatorname{dim} \Sigma_{n}^{\prime}=\operatorname{dim} \Sigma_{n}$. But this is a consequence of the result of [2] mentioned above. Indeed, $M \mapsto M \cup\{s\}$ defines a bijection between
multisets of total weight n and multisets of total weight $n+s$ which have s as one of their circular words. Moreover, since the E_{λ} 's are orthogonal, we have the direct sum decompositions

$$
\Sigma_{n}=\underset{|x|=|\mu|=n}{\oplus} E_{\lambda} \Sigma_{n} E_{\mu}
$$

and

$$
\Sigma_{n}^{\prime}=\bigoplus_{|\lambda|=|\mu|=n} E_{\lambda \cup s} \Sigma_{n} E_{\mu \cup S:}
$$

To show Eq. (3.1), we only need to show that ($*) \Delta_{s}\left(J_{p \cup\{s\}}\right)=J_{p}$, because $J_{p \cup\{s\}}$ is in Σ_{n}^{\prime}. Indeed, by what we have just said, Σ_{n}^{\prime} is a complement of $\operatorname{ker} \Delta_{s}$ in Σ_{n}, so that for any x in Σ_{n}, there is a unique y in Σ_{n+s} with $\Delta_{s}(y)=x$, and this y is precisely $\Gamma_{s}(x)$.
In order to prove (*), we first recall some results of [2]. The morphism $t_{i} \mapsto e_{i}$ defines a weight preserving automorphism of the algebra $Q\langle T\rangle$ (see the proof of Corollary 2.2). Now, take any composition p of n, considered as a word in the letters e_{1}, e_{2}, \ldots (this is to say that $p=p_{1} p_{2} \cdots p_{k}$ is coded as $e_{p_{1}} e_{p_{2}} \cdots e_{p_{k}}$), then decompose it as a decreasing product of Lyndon words $p=L_{1} \cdots L_{m}$ and define

$$
K_{p}=\frac{1}{\tau(p)!}\left(b\left[L_{1}\right], \ldots, b\left[L_{m}\right]\right)
$$

where

$$
\left(P_{1}, \ldots, P_{m}\right)=\frac{1}{m!} \sum_{\sigma \in S_{m}} P_{\sigma(1)} \cdots P_{\sigma(m)},
$$

where $b[L]$ is the Lie polynomial in the variables e_{i} corresponding to the Lyndon word L, where $\tau(p)=1^{x_{1}} 2^{x_{2}} \cdots n^{x_{n}}$ is the type of p, and finally where

$$
\tau(p)!=\alpha_{1}!\alpha_{2}!\cdots \alpha_{n}!.
$$

Then $J_{p}=\delta\left(K_{p}\right)$, for the morphism $\delta: \mathbb{Q}\langle T\rangle \rightarrow \oplus \Sigma_{n}$ defined in Section 2.
Observe that (P_{1}, \ldots, P_{m}) does not depend on the order of the P_{i} 's, and that

$$
\left(1, P_{2}, \ldots, P_{m}\right)=\left(P_{2}, \ldots, P_{m}\right)
$$

Observe also that $\tau(p \cup\{s\})!=\left(a_{s}+1\right) \tau(p)!$, and that $a_{s}+1$ is the number of times the Lyndon word e_{s} appears in the decreasing factorization of $p \cup\{s\}$. Moreover, $D_{s}\left(e_{s}\right)=1$ and $D_{s}(b[L])=0$ when $L \neq e_{s}$: indeed,
cither $b[L]=e_{i}$ with $i \neq s$ hence $D_{s}(b[L])=0(c f$. Theorem 2.1)), or $b[L]=\left[b\left[L^{\prime}\right], b\left[L^{\prime \prime}\right]\right]$ and in that case one obtains

$$
D_{s}(b[L])=\left[D_{s}\left(b\left[L^{\prime}\right]\right), b\left[L^{\prime \prime}\right]\right]+\left[b\left[L^{\prime}\right], D_{s}\left(b\left[L^{\prime \prime}\right]\right)\right]=0
$$

by induction (because $D_{s}\left(b\left[L^{\prime}\right]\right)=0$ or 1 , and similarly for $D_{s}\left(b\left[L^{\prime \prime}\right]\right)$). Note that

$$
D_{s}\left(P_{0}, \ldots, P_{m}\right)=\sum_{j=0}^{m}\left(P_{0}, \ldots, P_{j-1}, D_{s}\left(P_{j}\right), P_{j+1}, \ldots, P_{m}\right)
$$

so that

$$
\begin{aligned}
D_{s}\left(K_{p \cup\{s\}}\right)= & \frac{1}{\tau(p \cup\{s\})!} D_{s}\left(e_{s}, b\left[L_{1}\right], \ldots, b\left[L_{m}\right]\right) \\
= & \frac{1}{\tau(p)!} \frac{1}{\alpha_{s}+1}\left\{\left(1, b\left[L_{1}\right], \ldots, b\left[L_{m}\right]\right)\right. \\
& +\sum_{j=1}^{m}\left(e_{s}, b\left[L_{1}\right], \ldots, b\left[L_{j-1}\right], D_{s}\left(b\left[L_{j}\right]\right)\right. \\
& \left.\left.b\left[L_{j+1}\right], \ldots, b\left[L_{m}\right]\right)\right\}
\end{aligned}
$$

But $D_{s}\left(b\left[L_{j}\right]\right)=0$ unless $L_{j}=e_{s}$ in which case it is 1 , and as the latter case occurs for α_{s} values of j, we obtain

$$
\begin{aligned}
D_{s}\left(K_{p \cup\{s\}}\right) & =\frac{1}{\tau(p)!}\left(b\left[L_{1}\right], \ldots, b\left[L_{m}\right]\right) \\
& =K_{p}
\end{aligned}
$$

Thus finally

$$
\begin{aligned}
\Delta_{s}\left(J_{p \cup\{s\}}\right) & =\Delta_{s} \circ \delta\left(K_{p \cup\{s\}}\right) \\
& =\delta \circ D_{s}\left(K_{p \cup\{s\}}\right) \\
& =\delta\left(K_{p}\right)=J_{p}
\end{aligned}
$$

which ends the proof.

4. Symmetric Functions

Define a linear mapping $\Phi: \Sigma=\oplus_{n \geqslant 0} \Sigma_{n} \rightarrow$ Sym, the algebra of symmetric functions, by setting

$$
\Phi\left(B_{p}\right)=h_{p_{1}} \cdots h_{p_{k}}
$$

where the h's are the usual homogeneous symmetric functions (see [5]). It is shown implicitly in [7] and directly in [2] that Φ restricted to Σ_{n} is a surjective algebra homomorphism from Σ_{n} onto Sym_{n}, the algebra of homogeneous symmetric functions of degree n with inner product. Moreover, $\Phi\left(E_{\lambda}\right)=z_{\lambda}^{-1} p_{\lambda}$ where the p_{λ} are the power symmetric functions, and $z_{\lambda}=1^{x_{1}} 2^{x_{2}} \cdots n^{\alpha_{n}} \alpha_{1}!\alpha_{2}!\cdots \alpha_{n}$! when $\lambda=1^{x_{1}} 2^{x_{2}} \cdots n^{\alpha_{n}}$.

Now define $\delta_{s}: S y m \rightarrow$ Sym to be the derivation which sends each h_{n} onto h_{n-s}; this is possible because Sym is freely generated by the h_{n} 's. Then it is clear by Eq. (1.2) that $\Phi \circ \Delta_{s}=\delta_{s} \circ \Phi$. Morcover, by the inner multiplication table of the homogeneous symmetric functions (see [3, Lemma 2.9.16]), δ_{s} restricted to Sym_{n+s} is an algebra homomorphism $\mathrm{Sym}_{n+s} \rightarrow \mathrm{Sym}_{n}$ for the inner product. By a previous formula and Theorem 2.1, we conclude that

$$
\begin{aligned}
\delta_{s}\left(p_{n}\right) & =n \delta_{s} \circ \Phi\left(E_{n}\right) \\
& =n \Phi \circ \Delta_{s}\left(E_{n}\right) \\
& =\left\{\begin{array}{lll}
0 & \text { if } & n \neq s \\
s & \text { if } & n=s .
\end{array}\right.
\end{aligned}
$$

Hence δ_{s} is the derivation of Sym which sends each p_{n} onto 0 , except p_{s} which is sent onto s (cf. [5, Example I.5.3]).

Note added in proof. The embeddings of Sect. 3 exist only if $s=1$ or 2.

References

1. A. Garsia and J. Remmel, Shuffles of permutations and the Kronecker product, Graphs Combin. (1985), 217-263.
2. A. Garsia and C. Reutenauer, A decomposition of Solomon's descent algebra, Ade. in Math. 77 (1989), 189-262.
3. G. D. James and A. Kerber, "Representation Theory of the Symmetric Group," Addison-Wesley, Reading, MA, 1981.
4. M. Lothaire, "Combinatorics on Words," Addison-Wesley, Reading, MA, 1983.
5. I. G. Macdonald, "Symmetric Functions and Hall Polynomials," Oxford Mathematical Monographs, Oxford Univ. Press, London/New York, 1979.
6. R. Rex, Lie elements and an algebra associated with shuffles, Ann. of Math. 68 (1958), 210-219.
7. L. H. Solomon, A Mackey formula in the group ring of a finite coxeter group, J. Algebra 41 (1976), 255-264.

[^0]: * With partial supporífrom NSERC-Canada and FCAR-Québec.
 ${ }^{1}$ With partial support from the NSF.

