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INTRODUCTION 

In the algebra of the symmetric group Q[S , ] ,  let us define the element 

O~_s= ~ a, 
Des(a) ~_ S 

where Des(a) denotes the descent set of a and S_~ {I .... , n - 1 } .  In [7], 
Solomon shows that the linear span 2.', of these 2 n-~ elements forms a 
subalgebra of Q[S,,]. In fact, Solomon shows that this is the case for any 
finite Coxeter group. 

In a previous paper [2], we have studied" algebraic properties of L" n, and 
shown how these are related to the canonical decomposition of the free Lie 
algebra corresponding to a version of the Poincar6-Birkhoff-Witt theorem. 
In particular, we were able to compute a complete family of orthogonal 
primitive indempotents E;. of 2.',, (indexed by partitions of n). We also 
computed the dimensions of the quasi-ideals E~.S,,E~. 

In the present paper, we study homomorphisms between these algebras 
Z',. The existence of these homomorphisms was suggested by properties of 
the directed graphs (see [2]) describing the structure of these descent 
algebras. More precisely, examination of these graphs suggested the 
existence of homomorphisms Z',,--*2,',,_~ and .L',--,Z',+~ which send the 
idempotent E~ on to E;.\s (resp. E~,_,s). As ,we shall see, for any s, 0~<s~<n, 
one can define a surjective homomorphism zJs: Z', --, Z ' ,_ ,  and an embedding 
F,:  Z',_s--* Z',,, which reflects these observations. The homomorphisms A, 
may als6 be defined as derivations of the free associative algebra 
Q(t~,  t2 .... ) which sends ti on t,._s, if one identifies the basis element D~_s 
of Z',, with some word (coding S) on the alphabet T =  {tl, t2, ...}. We show 
that this mapping is indeed an homomorphism (Theorem 1.1), using the 
combinatorial description of the multiplication table of Z'n given in [1]. 

In Theorem 2.1, we show that zt s has the expected behaviour with respect 
to the idempotents E~. This is to say that As(E~.)= 0 if 2 does not contain 
the part s, and As(E;.) = E;.xs if 2 contains the part s. This follows from an 
argument involving noncommutative logarithms and exponentials, and 
using generating series for the E;.'s. We deduce from Theorem 2.1 the sur- 
jectivity of A, (Corollary 2.2). We further give a direct description of As in 
terms of permutations in Theorem 2.3. For the simplest case s =  1, A~ 
corresponds to erasing in each permutation (considered as a word) the 
digit n. For the general case, the Lie polynomials step in again, by acting 
as derivations on the shuffle algebra. In fact, Theorem 2.3 involves an 
operation introduced by Ree in [6]. 

In Section 3, we establish the existence of the embeddings F~: Z',,_~ --, X,, 
such that As o F,---Id, and with the expected behavior on the idempotents 
E;. (Theorom3.1). Actually, the precise description of Fs makes use of 
another basis Je of Z'~ introduced in [2]. 
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In Section4, we show that A corresponds to the derivation s(O/c3p~) 

under the natural homomorphism from Z'. onto the algebra Sym,, of 
homogeneous symmetric functions of degree n with inner product. 

1, HOMOMORPItlSMS 

Let X~ denote the subspace of the symmetric group algebra Q [ S , ]  
spanned by the elements D = s, S _  { 1, ..., n - 1 }, ~'vhere D = s is the sum of 
all permutations a whose descent set 

D e s ( a ) =  {il l  ~<i~<n-  1, a ( i ) > 1 a ( i +  1)} 

is equal to S. It has been shown, first by Solomon [7],  that X~ is a sub- 
algebra of Q[S, ,] .  Clearly, X, admits as another basis the family D=_s,  

S ~ { 1 ..... n -- 1 }, defined by 

D~_s= ~ D-T 
T~_S  

(that is, D =_ s is the sum of permutations having a descent set c o n t a h z e d  in 
S). The multiplication table of X,, is easily described in term of this last 
basis (see Garsia and Remmel [ 1 ]). First, note that there is a natural bijec- 
tion between subsets S of { 1 ..... n -  1 } and compositions of n (a sequence 
of positive integers whose sum is n). For S = { s t < < . s 2 < ~  . . .  <<.sk}, one 
defines the composition p(  S )  = (s t  - So, s2 - s t  . . . . .  Sk + ~ -- Sk ) where So = 0 
and sk +~= n. From now on, D ~ s will be denoted by Bp~sr  

Let us call the p s e u d o - c o m p o s i t i o n  of n any sequence v of nonnegative 
integers whose sum is n. To each pseudo-composition v, one naturally 
associates the composition p ( v )  of n obtained by omitting the zeros. Now, 
to each matrix 

M =  (n~j) l ~ i ~ k . l  ~ j ~ l  

with entries in I~, there corresponds naturally the pseudo-composition 

w(?,t) = (n~t, n2, ..... n ~ ,  n~2, n22 .... , nk2 ..... nk3 

obtained by reading the entries of 3at starting from the upper left corner, 
down the first column, then the second, etc. Similarly, one defines the r o w  

sum (resp. c o h m m  sum) of ?,t as the pseudo-composition 

r(Al) = ( n .  + hi2 + --- + n~t, n2~ + n22 

+ "'" + n 2 t , . . . ,  nk~ + n k 2 +  "'" +nk~)  
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s "4"1121 dr "'" dr l l k l ,  1112"[-1122 

dr . - -  drn,~:2 . . . . .  n l l d r n 2 l d r  . . .  d rnk l  ). 

Then, for two compositions p and q of n, one has 

BpBq = ~ Br(.(,~t) ), (1.1) 
M 

where the sum is extended to all matrices (.with entries in ~1) whose row 
sum is p and column sum is q (see [1]) .  

EXAMPLE 1. For p =  22 and q = 31 the possible matrices are M =  (~ ~) 
or M =  (~ o). Hence B22B31 =B121+B211. 

We now define for each s, 1 ~<s~<n, a linear mapping A , i 2 7 , ~ 2 7 , _ , .  
For each composition P=P,P2 ""Pk of n and each part p~>~s, define the 
pseudo-composition u~ by replacing p,. in p by p,--s .  Then define 

B:c.,). (1.2) 
pi>~ x 

EXAMPLE 2. A2(B213) : BI3 dr B211. 

1.1. TttEOREM. The mapphzg A, is an algebra homomorphism 27, --* 27,_,. 

Proof. We have to show that A,(BpBq)=,d,(Bp)A,(Bq). Now, we have 
Eq. (1.2), and similarly 

E (1.3) 
q j ~  " 

where vs. is obtained from q by replacing qj by q j - s .  Note that Eq. (1.1) 
admits the following easy generalization: for any two pseudo-compositions 
tt and v, one has 

Br(~) Bp(o) = ~ Drt.tM,,  (1.4) 
M 

where the sum is extended to all matrices M having row sum u and column 
sum v. Equations (1.1), (1.2), and (1.3) imply that 

Y'. B,c,,c.,, , ,  (1.5) 
p t , q j ~  x ,~I 9 
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where the second sum is extended to all matrices whose row sum is u i and 
column sum is vj. On the other hand, we have by Eq. (1.1) 

As(B, Bq)= As (~ Bp,,,(M,,) 

= Z  E BpC-(M~), (1.6) 
M mq>l s 

where the sum extends to all matrices M =  0n;y) with row sum p and 
column sum q, and where M o. is obtained by replacing in M the entry m 0 
by m u - s .  Note that M U has row sum u~ and column sum D, which shows 
that the sum (1.6) is contained in the sum (1.5). Conversely, if M o. has row 
sum u i and column sum o~, then by adding s to its/j-entry, one obtains a 
matrix of row sum p and column sum q, which shows that the reverse 
inclusion also holds. This concludes the proof. II 

2. DERIVATIONS 

Let T =  {t,,  t2 .... } be an infinite alphabet and T* the free monoid it 
generates. There is a natural linear isomorphism 6 from the free associative 
algebra Q ( T )  onto Z '=  ~ ) , ~ o Z ' ,  defined by 

6(tp, t m . . .  tp~)=Bp, 

where P = P ~ P 2 " ' ' P k  is a composition of n. Now, the homomorphism 
A , : Z ' , , ~ Z ' , _ ,  of the previous section clearly defines a linear mapping 
2"~Z ' ,  which we also denote by A s (if n < s ,  As(Z',,)=0 ). We shall now 
introduce a derivation D, on Q ( T )  such that 6oA,=D,o(5.  This deriva- 
tion of the algebra Q ( T )  is defined by 

f t~_,, if i > s ;  

D , ( t i ) = ' ~  l,  if i = s ;  

0, if i < s .  

It is convenient to write to=  1, and t , .=0 when i < 0 .  So we can now write 
D , ( t i )  = t i _ , .  

In [2] ,  we have defined special elements e;. of O ( T ) ,  for each partition 
2, and shown.that the elements E: =6(e~) are mutually orthogonal idem- 
potents decomposing 1 and generating a complement of the radical of 2",, 
(see 12, Theorems 3.3, 3.1, and 1.1]). We shall establish now the effect of 
the homomorphisms A, on these idempotents. To this end we make use of 
the isomorphism 6, and work with Ds over • ( T ) .  The following formulas 
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(see [2, Theorem 3.3]) define the e~.'s. Let y, x~, x2, x3 .... be commuting 
variables, which also commute with the t,.'s: Then one sets 

(recall that t o = I) and 

e , y " = l o g  (~"  tt),; ) (2.1) 
n~ 1 i~>0 

~ e~X~=exp ( j~  el-xJ) ~1 (2.2) 

where X a =x~'x~ 2.. .x~', if 2 = 1~2 ~2.. .n ~. 

2.1. TttEOREM. The image of Ea under zt~ is 0 if s is not a part of 2. I f  
s is a part of 2, let ).\s denote the partition obtahzed b), deleting one part s 
in 2; then A,(E~)= E~.\~. 

Proof. Recall that in a topological algebra with a derivation a F--,a', if 
a commutes with a', then one has the usual formulas log(a) '=  a'a -t and 
exp(a)' = a' exp(a) (log and exp are defined by the usual series). Of course, 
there are some convergence hypotheses {which in our case are trivial). 
Extend D, to the variables y, xl, x2,.x3 .... by D~(),)=D,(xz)= 
D,(x2) . . . . .  0. Note that 

D ' (  ~ot 'Y')= ~ D'(t') Yi= ~ t'-~)"=Y" ~ i~O i~O I~O 

hence ~ t~) ,~ and its D~-derivative commute. Thus we obtain by (2.1) 

E D,(e,) )," = D, t,y' t,)" -- y'. 

This shows that 

f l ,  if n = s  (2.3) 
D,(e,,) = 0, otherwise. 

Similarly, D,(~i;~j  e j x j ) = ~ j ~ j  D~(ei) x)= x, commutes with ~.ejxj; it 
follows i'rom {2.2) that 
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= x, exp ~ l . e P c J  ) 

= x s ( ~ e ) . X ) ) .  

Hence we deduce 

= ,~0, if s is not a part of ). 
D,(el) (2.4) 

" [ e~ \ , ,  i f  s is a par t  o f  2. 

I Translating with ~i equations (2.3) and (2.4), we obtain the theorem. 

2.2. COROLLARY. The mapph~gs A s and D, are surjective. 

Proof. It is enough to show that D, is surjective. Now, D,(en)= 1 if 
n = s ;  and is 0 otherwise. Moreover, the e,,'s freely generate the algebra 
Q ( T>, since 

e l = l  I , 

i 2 
e 2 . = 1 2 - - - ~ l l ~  

e3 t 3 _  I l l  I I 3 = 12- -  21211 '1- 3 l i t  

which are triangular algebraic relations between the e,,'s and the t,,'s. We 
show that each product of the form 

X = Xo e~lxl  ik �9 . . e s X k ,  (*)  

where k 1> 1 and where each .vj is a product of ei's distinct from e,, is in the 
image of D,. In view of the above observation, this will imply the corollary. 
We prove the claim by induction on i= i2  + .. .  + i~. Observe that x is 
equal to 

) IX 1 Ds xoel, '+ ""e',kxk y, 

where either k = 1 and y = 0 hence x is in Im(D,), or k >/2 and y is a linear 
combination of terms of the form ( , )  with a smaller i; in the latter case, we 
know by induction that y ~ lm(D,), hence x e Im(Ds). II 

We have described As by its effect on the basis Bp. Recall that Z',, is a 
subalgebra of QI-S,,]. So, it is natural to ask for a description ofA s directly 
in terms of permutations. We shall now show that this is possible. As in 
[2], we shall see that the free Lie algebra plays a crucial role. 
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Let A be the finite alphabet { 1, 2 ..... n} and consider each permut'ation 
as a word on A. Thus Q [ S , ]  is a subspace of the free associative algebra 
Q(-A ). In particular, X,, is a subspace of Q ( A  ). For any word u in the free 
monoid A*, define a linear mapping 

~,,: Q<A)--, Q(A)  

by the formula 

xy, 
w = X u ) "  " 

if w is a word in A*. This is to say that n,, erases occurences of u in the 
words. Actually, we shall extend linearly rc to all of Q ( A  ) as 

rc R = ~ ( R ,  u )  ~ . ,  

where R is in Q ( A  ), and (R, u )  is the coefficient of u in R. We also define 
a linear mapping p: Q ( A )  --* Q ( A )  (first introduced by Ree [6 ] )  recur- 
sively by the formula p(e)= 0, where ~ denotes the empty word, p(a )=  a if 
a e A ,  and p ( a u b ) = p ( a u ) b - p ( u b ) a ,  for any word u and letters a, b in A. 

2 . 3 .  THEOREM. For 1 <~ s <~ n, let w s be 'the word  (n - s + 1 ) . . .  n h~ A*  

Then for  any P in X , ,  one has 

A, (P)  -- rip(,. )(P). 

EXAMPLE 3. (1) S= 1. Then p (w l )=n ,  hence zll(P ) is obtained by 
erasing the digit n in each permutation appearing in P. 

(2) s = 2 .  Then p ( w 2 ) = ( n - l ) n - n ( n - 1 ) ,  hence ,42(P)is the sum 
of the permutations obtained by erasing in each permutation appearing in 
P the factor ( n -  l) n (if it appears), minus the sum of those obtained by 
erasing the factor n ( n -  l). Thus 

Az(B31 ) = ,42(1234 + 1243 + 1342 + 2341 ) 

= 12-- 12+ 12+21 = 12+21 

9 1 1  �9 

(3) s = 3 .  Then 

p(w3) = p((n - 2)(,1 - 1 )) n - p((n - 1 ) n)(n - 2) 

= ( n  - 2 ) ( n  - 1 )  n - ( n  - 1 ) ( n  - 2 )  n 

- ( n  - 1 ) n ( n  - 2 )  + n ( n  - 1 ) 0 1  - 2 ) ,  
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and one has to erase all these words when they appear in a permutation, 
with the sign according to its sign in p(w3). 

Let us recall the definition of the following left action of Q ( A  ) on itself. 
For words w and it, set wit-  1 : 0 when w = vu, and wu- t = 0 when u is not 
a right factor of w. We denote wu-  ~ = u -< w. Then u < w extends bilinearly 
to a left action of r  ) on itself by the formula 

P < a Q =  ~ ( P , u ) < Q , w ) u < w  
u, w E A *  

= ~ < P , u > ( a , w )  v, 

where (P ,  u )  is (as above) the coefficient of u in P. 
Recall that we consider each permutation in S,, to be a word on A. We 

define for a permutation w, its dual ~ w to be the inverse (in S,,) of w; this 
mapping is then linearly extended to Q[S,,] .  We shall further need the 
following normalization mapping. For  a word w on A, of length k and 
without repeated letter, define N(w) to be the following permutation: 
suppose w = i~ i 2 . . .  ik and let ~ be the unique increasing mapping 

, :  . . . . .  {1 ,  2, . . . , # } .  

Then N(w) = Z(ir) z( i2)""  z(ik). For  example, N(7831) = 3421. Then N is 
also extended linearly to the linear span of words with no repeated letter. 

2.4. LEMMA. For s, 1 4.% s <~ n, let ~ be a permutation in S$. Define the 
word u = 01 - s + ct(1 ) ) . . .  (n - s + a(s) ). Then for  any permutation w bz S , ,  
one has 

n--$  
17~,(W) = ~ N { ( ~ w ) [ ( j + ~ - l ( l ) ) " ' ( j + o t - ~ ( S ) ) ] - l } .  

j=O 
(2.5) 

The lemma and its proof are rather technical, so we shall first illustrate 
it with an example. Set ct as the permutation 231~S~. Then for n = 7 ,  
we have u=675 .  Let w=2367514. Then l r r , , (w)= ,[2314=3124. Now, 
J, w =  6127534, and 1ct=312, so the words ( j + c t - l ( 1 ) ) . . . ( j + c t - l ( s ) )  of 
the right-hand side of (2.5) are 312, 423, 534, 645, and 756. Only one of 
these, i.e., 534; is a right factor of J. w, so that the right-hand side of (2.5) 
is N(6127) = 3124. 

Proo f  Suppose rr,,(w) :# 0, then w = x u y .  L e t j  be the length of x, thus 
O<,%j~n- s .  Hence the permutation w sends j + t  onto n - s + ~ ( t )  for 

481/150/2-17 
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1 <~t<~s. We deduce from this that ,I.w has the right factor a~a2...as 
(a~eA) with 

a , = j  + t c ~ n - s  + r = n - s  +ct ( t )o  t=ct-I(r). 

And finally ala2 - . . a , =  ( j + ~ - I ( l ) ) - - -  ( . /+~-l (s)) .  
Thus the right hand side of (2.5) is equal to N(v) with J. w = t,a I a2 .-- as. 

Since {a,, a2 ..... as} = { j +  l , j + 2  ..... j + s } ,  the permutation N(v)~S ,_ ,  
is obtained by replacing in v each digit d>_.j (or equivalently >_-j+s) by 
d - s .  Hence N(v) sends each i onto ~.w(i) when lw(i)<~j, and onto 
I w ( i ) - s  otherwise. We conclude that l N(v) is the permutation which 
sends a l l k ~ { l , 2  .... , j }  onto w ( k ) , a n d a l l k e { j + l , j + 2  ..... n - s }  onto 
w(k + s). In other words, J, N(v) = x y =  n,,(w). 

Suppose now that the right-hand side of (2.5) is not zero. Then for 
some unique j e { 0 , . . . , n - s } ,  the word ,Lw admits the right factor 
( j + c t - ~ ( l ) ) . . . ( j + c t - ~ ( s ) ) .  This implies that w has the factor 
( n  - s + ct(l ))--- (n - s + ct(s)), which further implies that n,  (w) 4: 0, which 
concludes the proof. | 

We have already come across particular instances of the scalar product 
( P , Q )  on Q ( A )  for which A* is an orthonormai basis. Now, 
define a linear mapping 2 : Q ( A ) ~ Q ( A )  by 2(ala2a3.. .a,)= 
[ . - -  l i a r ,  a2], a3] ..... a , ]  (this is the Lie bracketing from left to right; and 
we implicitly suppose that the a,.'s are in A). Then it has been shown in [6]  
(see also [4, Example 5.3.2]) that 2 is the adjoint o f p  for the above scalar 
product. 

2.5. LEMMA. There exist rational hltegers O= (ct ~ Ss) such that 

p(ws)= Z O,[(n-s+ct (1 ) ) . . . (n - s+ct ( s ) ) ] ,  (2.6) 
=~Ss 

where w s is as in Theorem 2.3. Moreover, for ato, j>~O, one has 

) . [ ( j+  l ) . - - ( j + s ) ] =  ~ O,[ ( j+~- ' (1 ) ) . . . ( j+c t - t ( s ) ) ] .  (2.7) 
~ S j  

Proof It is clear, by definition ofp ,  that p(12-- . s )  is a linear combina- 
tion of permutations in Ss; hence for some 0= ~ Q,, 

p ( 1 2 . . . s ) =  ~,, 0=ct. 
m~Ss 

Denoting by.,P, x the result of the right action by position of x ~ Q[Ss ]  on 
P c  Q ( A  ) (P homogeneous of degree s), we have p(w) = w-p(12- . . s ) ,  for 
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any word of length s. Now, it is clear that the adjoint of w~--* w-c~ is 
w ~  w. ~-1. Thus we obtain that 

;.(12...s)= Z 0,~-'. 
E S s  

Hence 
p(w~) = ['(n-- s + 1 ). . .n ']  .p(12-.-s) 

= ~ 0 ~ [ ( n - s +  l ) . . . n ] - ~  

= ~ O=[(n-s- t-ot( l )) . . . (n-s+~(s)) ' l  
= c S s  

and similarly 

).((j+ l ) . . . ( j + s ) ) =  [ ( j +  l ) - - . ( j+s ) ] -2 (12- - - s )  

= Z  0, l-(j+ l) . . .  (j + s)l .~- '  
2 

= ~ O~[(j+c~- '(1)) '"( j+ct-I(s))] .  
:~ e Ss 

This concludes the proof. II 

Proof of Theorem 2.3. Recall that a ~-* a -  1 defines an anti-isomorphism 
of the algebra Q[S,,]. We denote IZ',, the image of Z',, under this anti- 
isomorphism, and 1 A, the algebra homomorphism 1Z, ~ 1 Z',_, induced 
by zt,, that is, 1A,( l Bq)= 1 (A,(Bp)). A fundamental remark (see [1, 2]) 
is that IBp has a very special form, using the shuffle product t.x.) in 
Q(A) .  For a composition p =  P l P z ' " P k  of n, define the factorization of 
the word 12---n =EIE2 .. .Ek to be the only factorization such that for all 
i's, length(E~)= p~. Then 

I Bp= Ei t.aJ E2t..u ... ~.x-J Ek. (2.8) 

It follows from Eqs. (2.5) and (2.6) that 

np~,,)(Bp)= ~ Y" O~n~,_,+.,,. ~,_,+,,,(Bp) 
= e S s  

n - - $  

= ~ O, Z N( ( IB , ) [ ( j+~- ' ( 1 ) ) - . . ( j+0~- l ( s ) ) ]  -!)  
,;es~ j = o  

(( =j-~o N ,~s,2 0, [ ( J+  ~-1(1)) 

""(j'bot-I(s))])<(IOp)). 
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Using Eq. (2.7), we obtain 

n - - $  

naO,.~(Bp) = ~ N(2((j+ 1 ) - - - ( j + s ) )  <3 ( ~ Bp)). 
j = o  

Now it is well known that the mapping coR:Q(A)- - - ,Q(A)  defined 
as ogR(a)=a.~R, is a derivation for the shuffle product. Moreover, 
(P <~ Q) <J R = P -< (Q -< R), hence R ~ co R is an algebra homomorphism. 
Since the Lie bracket of two derivations is also a derivation, it follows that 
R ~ P - <  R is a derivation for tile shuffle of any Lie polynomial (element 
of the free Lie algebra generated by A) P, and in particular for 
P = 2 ( ( j +  I ) - . .  ( j +  s)). Hence by (2.8) 

n--$  

,~ npo,.)(Bp) = ~.. N().((j+ 1) . . .  ( j+s))  
j = O  

<~(EI ~.J Ez~.X_) ... ~m E~)) 

= ,-., N E~ ~x.)-.- t_x_)E,_~ Lx.)(2((j+ I) 
j = O  i 1 

�9 "(J '+S)) '<Ei)Lm "'" ~ J E k ) .  

Observe that 2 ( ( j + l ) . . . ( j + s ) )  is the sum of 0 " + l ) - . - ( j + s )  and of 
_ permutations of this word. Moreover, Ei is an increasing word, thus 

Hence 

2((j+ l ) . . . ( j +  s))<~E,= [ ( j +  1 ) . - - ( j + s ) ]  <JE, 

= E , [ ( j +  1)--. (j + s)]  -1. 

i = I  j 

l ) . . . ( j + s ) ] - l ~ J  .-- t-x-) Ek) .  t-xJ E I [ ( j +  

In the second sum of the right-hand side of this last formula, at most one 
term is nonzero. Let q ; = p t  + "'" +P; ,  then E i = ( q i _ l  + l ) - . . (q i_~  +P~); 
then this term is (q~-t + 1 ) - . - ( q i - i  + Pi - S )  (which is 0 if s~> PA. We 
conclude that 

I n, , , , ,~(Bp) = N E,  ~ . . .  ~ E~_ 
I - - I  j 

, + 1 ) . . .  (q~_, + p i - s ) ]  vxa --. v.m Ek]. [(q,- 
/ 
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Now, it is easy to see that N( - - - )  is equal to E i ~ - - - ~ E ~ _ ~ t - J  
E~ u,.J E'~ + , u o  . . .  t_xJ E'k where 1 2 . . . n - s = E l . - - E i _ l E ~ E ' l + l - - - E ' ~  is 
the factorization of 1 2 . . . ( n - s )  in words having respective lengths 
p~ ..... p~_~, p ~ - s ,  Pi+~,' . ' ,Pk" In other words, the shuffle in question is 
precisely J. Bp(~,~ where u~ is obtained by replacing p,. by p ~ -  s in p. Finally, 

p i  >i $ 

p N s  i 

which proves the theorem. I 

3. EMBEDDINGS 

We establish now that the surjective homomorphism A, has a right 
inverse. More precisely, we show the existence of injective homomorphisms 
Fs: X , - - ,  X , + ,  such that A,o F , =  ld. 

First of all, we recall a fundamental result of [2] ,  in a slightly different 
language. Recall that two words u and v in T* are said to be conjugate if 
for some words x and y one has u = xy and v = yx. This is an equivalence 
relation, and an equivalence class is called a circular word. A word is 
prhnitive if it is" not a nontrivial power of another word. Conjugation 
preserves primitivity, so we may speak of prhnitive circular words. Given a 
multiset of primitive circular words 3t' on T, the shape 2(M) is the partition 
1~2 ~2-..n =" if 3 t  has ~ occurrences of the letter t~. The type x ( M )  of M is 
(IC~l, IC~l ..... ICkl) if M =  {C~, C2 ..... Ck} (as a muitiset) and IC,l is the 
weight of the circular word C~, which is i~ + i 2 + . . .  + i v if w = tit ti2.. ,  t~p is 
a word in the equivalence class C~. For  example, the shape of the multiset 
M in Fig. 1 is 3322211 and its type is 6422. 

FIGURE I 
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Recall the orthogonal idempotents Ea (with 2 a partition of n) of sum I 
in X,, that were defined in Section 2. The following result is proved in 12, 
Theorem 5.4J: for two partitions ). and it of  n, the dimension of  the subspace 
EaX~E~ of  X~ is equal to the number o f  multisets of  prhnitive circular words 
of  shape 2 and OTe It. 

Actually, the latter result is a consequence of a more precise one. In [2], 
a basis (Jv)v of X,,, indexed by compositions of n, is defined. There 
is a weight preserving bijection between compositions and multisets of 
primitive circular words: to each composition p, considered as word on 
1, 2, 3 ..... one associates the unique decreasihg factorization ofp  in Lyndon 
words. Moreover Lyndon words are naturally in bijection with primitive 
circular words. Define the shape and type of p to be the corresponding 
shape and type of this multiset of primitive circular words. It is shown in 
I-2, Theorem 5.4] that the Jr's, with p of shape 2 and type F, form a basis 
of EaX~E,,. 

The bijection above induces, through the mapping M ~ M u { s } ,  
defined on multisets of primitive circular words (this mapping adds to M 
the circular word formed of the single letter s), a mapping p ~  p u  {s} on 
compositions. For any composition p, with associated multiset M, denote 
by ~ (p) the muhiplicity of s in 3t (or equivalently, the number of times the 
word s appears in the Lyndon decompositign of p). 

3.1. THEOREM. Let n and s be fixed. Define E = ~., ~ ~ E~. in X ,  + ~, where 
the sum is extemted to all partitions 2 of  n + s having the part s. Then 
EX,  + ~ E is a subalgebra X" o f  X n + ~ with neutral element E and the restric- 
tion As IX" is an isomorphism X'~ ~ X~ sending each idempotent E). (se  2) 
onto Ea\ ~. hi particular, the int, erse of  A,  IX'~ defines an embedding 
F,: X ,  ~ X~+ , such that zJ,o F, = ld. This embedding is also defined by 

C ( J p ) =  Jpu, (3.1) 

for al O, composition p of  n. 

Proof. Since the E" are orthogonal idempotents, E is clearly an 
idempotent and X'~=ES~E is a subalgebra having E as neutral element. 
By Theorem 2.1, we have 

A,(E)= ~ E~=I (inZ.) 
121 = n  

so that ,3s(X' , )=A,(EXn+,E)=,4,( ,F,~+s)=X n (by Corollary2.2). So 
As IX" is a surjective homomorphism X'~- ,Xn and we have only to 
establish tha 3 dim X'n = dim X~. But this is a consequence of the result of 
[2] mentioned above. Indeed, M~--~Mu {s} defines a bijection between 
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multisets of total weight n and multisets of total weight n + s which have 
s as one of their circular words. Moreover,. since the Ex's are orthogonal, 
we have the direct sum decompositions 

and 

X. = ~ E~. X. El, 
I).1 = I,ul = n 

To show Eq. (3.1), we only need to show that ( . )  ds(Jr,~ is)) = Jp, because 
Jpu Is) is in X',,. Indeed, by what we have just said, Z", is a complement of 
kerA s in Z',,, so that for any x in Z',,, there is a unique .v in Z',,+, with 
As(y) = x, and this y is precisely F,(x). 

In order to prove (.) ,  we first recall some results of [2].  The morphism 
t~v-. e~ defines a weight preserving automorphism of the algebra Q< T> (see 
the proof of Corollary 2.2). Now, take any composition p of n, considered 
as a word in the letters el ,  e2 .... (this is to say that p = p, P2"'" Pk is coded 
as %,%2""er,), then decompose it as a decreasing product of Lyndon 
words p = L , . . .  Lm and define 

1 
Kp= z(p)! ( b [ L , ]  ..... b [L , . ] )  

where 

1 
(Pl  ... . .  P~)  =t-~Zl" o ~s-  Po(t) "" " Po(m), 

where bELl is the Lie polynomial in the variables e~ corresponding to the 
Lyndon word L, where r ( p ) =  l~'2~'.--n "n is the type of p, and finally 
where 

" t ' ( p )  ! = Ctl ! i X 2 ! - . -  0~n !. 

Then Je=(5(Kp), for the morphism (5: Q<T> ~ O Z',, defined in Section 2. 
Observe that (PI ..... P,,)  does not depend on the order of the Pi's, and 

that 

(1, P2 ..... P,,,) = (P2 .... , P,,,). 

Observe also that , ( p w  {s} ) !=  (as+ 1) ~(p)!, and that a s+  1 is the num- 
ber of times the Lyndon word es appears in the decreasing factorization of 
pu{s} .  Moreover, D , ( e , ) = l  and Ds(bEL])=O when L#e , :  indeed, 
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either b[L]=e i with i # s  hence Ds(b[L])=O (cf. Theorem2.1))', or 
b[L] = [ b [ L ' ] ,  b[L"]] and in that case one obtains 

D,(b[L])= [D,(b[L']), b[L"3] + [b [L ' ] ,  O,(b[L"])] = 0  

by induction (because D,(b[L'])=O or I, and similarly for D,(b[L"])). 
Note that 

D.(Po ..... P,.) = ~ (Po ..... Pj_,, D.(Pj), Pj+I .... , Pro) 
j~O 

so that 
1 

D,(K%,., { s } ) = r ( p u  {s})[ D3(es' b [L , ]  ..... b[Lm] ) 

-~ (p ) !  cq+ I (1, b [L l ]  ..... b [L. , ] )  

+ ~ (e,, b[L,] ..... bELj_l], D,(bELj]), 
.i-1 

b[Lj+ ,] ..... b[L,,,])}. 

But D,(b[Lj]) = 0  unless Lj=es in which case it is 1, and as the latter case 
occurs for ~3 values of j, we obtain 

1 
D,(K~,., {~}) = ~ (bI-L l ] ..... b[L,,,]) 

x: 

Thus finally 
4.(s,.. ~.~) = z1.o 6(K,.. ~.~) 

= 6 o D.(Kp._. {.}) 

=6(K.)=S, 

which ends the proof. ] 

4. SYMMETRIC FUNCTIONS 

Define a linear mapping q~: Z '=  ~),,~os Sym, the algebra of sym- 
metric functions, by setting 

~(Bp) = hp, . . .  hp~, 
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where the h's are the usual homogeneous symmetric functions (see I-5]). It 
is shown implicitly in [7]  and directly in 1-2] that ,/~ restricted to X,, is a 
surjective algebra homomorphism from Xn onto Sym,,, the algebra of 
homogeneous symmetric functions of degree n with inner product. 
Moreover, @(Ea) = z j- i Pa where the Pa are the power symmetric functions, 
and za = 1~12 ~2.. "n~ncq ! ct2! �9 when 2 =  1~12 ~2-- -n ~n. 

Now define 6s: Sym--* Sym to be the derivation which sends each h,, 
onto h,,_s; this is possible because Sym is freely generated by the h,,'s. 
Then it is clear by Eq. (1.2) that @oAs=6sor Moreover, by the inner 
multiplication table of the homogeneous symmetric functions (see I-3, 
Lemma2.9.16]), tS, restricted to Sym,+ s is an algebra homomorphism 
Sym,,+s~Sym,,  for the inner product. By a previous formula and 
Theorem 2.1, we conclude that 

6s(p,,) = 11~ o ~(E,,) 

= n , l ~  o As(E.) 

= { 0  if n~-s 

if n = s .  

Hence 6, is the derivation of Sym which sends each p,, onto 0, except Ps 
which is sent Onto s (cf. 1-5, Example 1.5.3]). 

Note added ht proof. The embeddings of Sect. 3 exist only if s = 1 or 2. 
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