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Abstract 

Machine Tool verification is an important issue for metrology. In recent years several efforts has being done in order to increase 
the methods reliabilities. However, geometrical verification on shop floor and big machines has not being explore as widely, 
leaving work possibilities open. This article presents a ball bar-based formulae determination method for the 21 MT 
geometrical errors taking into account the specific machine configuration, as well as its verification and validation. 
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1. Introduction 

Machine tool (MT) verification has traditionally being a very relevant problem to the general field of 
manufacturing engineering particularly to metrology, thus, many efforts have being done both for defining more 
efficient and precise new methods and for increasing the performance of the existing ones. During the last years 
some of these methods have achieved high reliability, as in Yagüe et al. (2009), thanks to the generalization of the 
advances on coordinate measuring machines (CMM). 

Classical three axes MT can be classify in four basic groups according to the movement and relative 
configuration of their axes, being these groups FXYZ, XFYZ, YXFZ and ZYXF where the position of letter F 
indicates the existing relationship between work piece, the tool and the axes of motion. Axes after F are associated 
to the movement of the tool while the ones before F are considered to be moving along with the work piece. 

For each of these four types of machine there is a basic mathematic model of the kinematic chain with which it 
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is possible to define of the X, Y and Z components of the actual displacement of the tool relative to the work piece 
that are summarized in Zhang et al. (1988) work. These models take into account the geometric errors associated to 
the different axes of the machine. For the cases with three linear axes, errors total twenty one; six on each axis (one 
positioning error, two straightness errors, and three angular errors) plus three due to mutual squareness between 
axes. 

It turns out obvious that in order to be able to apply these models correctly, having a precise previous estimation 
of the errors magnitude is essential, which can be achieve applying one of the existing MT verification methods 
procedure. However, nowadays these methods approach this problem from two perspectives clearly differentiated; 
the independent identification and measurement of each error contribution, as in the work of Hernandez and Trapet 
(2002), or the identification and measurement of the total volumetric error on each point of the machine’s working 
space. Thus, even though the final result may be the same (the compensation of the MT performance errors), the 
procedures, both for measurement and for calculation, and the physical significance of the obtained information are 
different. This can be particularly relevant depending on the specific error correction strategy used by the MT 
under study. 

This article will focus on the first of the alternatives, through a verification technique based on the utilization of 
a 1D ball array and a self centring probe. The generalization of the calculation procedure described by Hernandez 
and Trapet (2002) for a FXYZ type of machine applicable to any or the other types of machines will be presented, 
baring specifically the formulae associated to a MT type XFYZ. Lastly, the validation of the obtained results will 
be contrasted against the results from other classical measurement procedures. 

 
2. Generalization of the error calculation procedure. 
 

The type of a MT is defined by the movement and configuration of its axes, and according to this it can be 
classify into one of the following categories: FXYZ, XFYZ, YXFZ and ZYXF. For each type of machine there is a 
basic mathematic model of the kinematic chain with which is possible to define the X, Y and Z components of the 
actual displacement of the tool relative to the work piece. These models take the form of a vector that has the 
information about the tool (probe) tip actual movement related to the work piece expressed in terms of a coordinate 
system associated to it, as established in Zhang et al. (1988) work. The final displacement of the machine is the 
result of adding or subtracting certain errors to the nominal coordinates, depending of the type of machine under 
verification. See Formula (1). 

 
(1) 

 
The error vector  that can be seeing in Formula (2) represent the total error existing in certain point of the 

working volume of the machine which content is define from the equations the X, Y and Z components of the final 
displacement vector. 

 
(2) 

 
* Where  represent the translational errors (positioning and straightness errors),  represent the 

nominal positions coordinate,  is the matrix containing the rotational errors due to the motion axes 
of the MT in a nominal position, vector  represent the tool (probe) tip offset relative to the last 
displacement axis and matrix  assess the effect of the rotational errors on the offset introduced by 
the tool tip. 

 
The set of vectors and matrices of  are call “simplify method” because they are built after the elimination of 

every term of order two or superior resulting of the development of the basic mathematical model. They have the 
necessary information to define each error calculation formula. Besides, they reveal how the measurements have to 
be done on a certain machine configuration according to the position of the error inside the matrices and vectors. 

The method presented in this article is not conditioned by the type of machine though the specific formulae 
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generated for calculating the errors value will be different for each configuration. Experimental work has been 
done utilizing a XFYZ type machine as a subject of study. The examples shown in this section are in concordance. 
The errors inside the matrices of the “simplify method” are written using the nomenclature recommended in 
VDI/VDE 2617: 

 

                          
                                   

  

  

   

  
 

The basic procedure for the construction of the formulae is as follows: 
 

 Locate the error which formula is to be defined on either A and AP matrices or on the vector P of the Formula 
(2). 

 Get the implicit information from the position of the error in the matrix or vector and interpret. 
 Replace this information on the final displacement basic formula. Formula (1). 
 Clear the error term to obtain the desired formula. 

According to the kind of error, there are certain changes in the procedure to be performed. 
 
2.1. Angular errors 
 

First of all, the formulae for pitch (XRZ, YRZ and ZRY) and yaw (XRY, YRX and ZRX) errors are define. 
Matrix  has to be observed in order to locate the error, the error being on this matrix will mean that the use of an 
offset is not necessary, otherwise it is. The position of the error in the matrix indicates how the measurements 
should be made, such that if, when defining the XRZ error formula, the error is on the {X,b} position of matrix  
(see Formula 2), the formula ought to be defined using two measure series oriented parallel to X axis separated by 
a distance in Y direction. The series will be named X1 and X2. The translational and positioning errors remain 
constant during the measurement, thus vector is not involved in the substitution of the data in the formula. 
Replacing this information in the formula for  results in the following for each measurement series: 
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* Where (X) and (Y) represent the affected coordinate of each measure point   of series  and ; 
 and  are each measured point of the utilized series; and  and  are the 

nominal measures (without error)of each measured point. 
 

Turning these two formulae into equals and clearing the error, the X axis Pitch error calculation formula that is 
show in Formula (3) can be obtained. Performing the same procedure, the X axis Yaw error calculation formula in 
Formula (4) can be obtained. 
 

 
(3) 

 
(4) 

  
Formulae for the Pitch and Yaw errors of the remaining axes are define following the same procedure. 

 
2.2. Positioning errors 
 

Positioning errors formulae are define taking into consideration the information obtained from section 2.1. Is 
necessary to consider that the XTX, YTY or ZTZ errors formulae will be defined using the measure series parallel 
to their respective axis, thus the importance of knowing how they were measure. Positioning errors are contained 
in vector  and the position of the error in it will indicate from which row of the matrix the information to define 
the formula will be take. 

Squareness and Straightness errors do not affect the measurements but the Pitch and Yaw error do, hence they 
ought to be corrected. These errors are looked for on either  or  matrix as for the case requires it. The position 
of the error in the matrix will indicate the affected coordinate. When defining the formula for XTX error, the errors 
to be corrected have to be looked for only in the matrix  on its X row, because the involved series have been 
measured without offset and XTX is on the X row of vector . 

The obtained information is replaced in the final displacement basic formula , and clearing the error results 
in: 

 
 

 
* Where (X), (Y) and (Z) represent the affected coordinate of each measure point   of the series while 

 is each measured point of the used series and  is the nominal measures of each 
measured point. 

 
This formula must be extended to all measure series involved, with what the Formula (5) can be obtained. In 

this case the terms are equal for every measure series because X1, X2 and X3 were measured in the same way. 
 

 
(5) 

 
In the cases with series measured using an offset oriented on different axes, the formula must be define for each 

series and then the terms unified adding one to the other and dividing the result equally. 
 
2.3. Roll errors 
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These errors are evaluated from the deviations of straightness between the measure series parallel to the axes, 

divided by the distance between them. In order to determent the real value of the Roll error with the measure 
series, is necessary to eliminate from them certain errors previously calculated that are affecting the orientation of 
the measures. The way the involved measure series were measured indicates the matrix in which to look for the 
errors to be corrected. 

The error of which formula is defined will be found on either  or  matrix of the Formula (2). The errors that 
accompany it along the row will be the ones to be corrected, and the column they are positioned in will indicate on 
which axis. 

This correction is to remove the effect that the involved errors can cause to the final measures, in order to 
calculate the absolute Roll error. It is made by replacing the information obtained from the formula , considering 
that the corrected coordinate is to be subtracted from the final coordinate and then cleared. The corrected 
coordinates for the XRX error are: 
 

 
 

 
 

* Because the measure series have the same Y nominal coordinate, and: 
 

 
 

 
* Because the measure series have the same Z nominal coordinate. 

 
With these coordinates corrected the formula for calculating the XTX error can be define. It will be the addition 

of the quotients of the differences of the corrected coordinates and the distances between the measured series, all 
divided by two. This can be seen in the Formula (6). 
 

 
 

(6) 
 
2.4. Straightness errors 
 

The straightness errors are in the vector P and they are calculated directly from the measure series, correcting 
the roll error that affect the measurements by multiplying itself with the distances of the measure series to its 
reference axis, in addition to other errors that, even not corresponding to the axis of study, affect the 
measurements. The position of the evaluating error in the vector  will indicate in which row of the matrix  the 
errors to correct should be look for. If the measure series involved were measured using an offset, the errors should 
be look for in the matrix  also. The coordinate to consider shall correspond with the column they are positioned 
in. The obtained information ought to be replaced in the basic formula of , evaluating the errors that not 
correspond to the axis of subject for them to be able to be corrected.  

Analyzing the simplify matrices to define the formula for the straightness error of the X axis in Z direction, and 
performing the corresponding operation, the following is obtained: 
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This formula must be extended to all the measure series involved in the error calculation, which in this case are 

X1 and X3 because they are separated on Z direction. Both terms are equal because X1 and X3 were measure the 
same way, resulting on the Formula (7): 

 

 
(7) 

 
The formula for the straightness error in Z direction is defined in the same way and can be seen in the Formula 

(8), where the involved measure series are X1 and X2 because they are separated in Y direction. 
 

 
(8) 

 
In the case of series measured using an offset oriented on different axes, the formula must be define for each 

series and then unify the terms adding one to the other and dividing the result equally. 
 

Literature offers several methods for calculating the squareness error, like the ones described in Zhang et al. 
(1988), Aguado et al. (2012), Kruth et al. (2003) and Chen et al. (2001). However, the presented method considers 
them to be included the straightness errors. 
 
3. Experimental Procedure 
 

Once the formulae for calculating the geometric errors have been define, they must be proved. A test based on 
the 1D ball array method is performed utilizing a self centring probe as probing system. The obtained measures are 
introduced in the formulae and the results are validated by contrasting them with the ones obtained from a test 
performed with traditional techniques. 
 
3.1. One dimensional ball array and self centring probe test 
 

The ball array is placed in a predetermined number of orientations where the position of each sphere of the test 
artifact is measured by the probing system. The deviations of the measured position value from the targeted 
(nominal) position of the machine will be used for the calculation of the MT errors by performing the pertinent 
operations when applying the previously define mathematical formulae. 

The probing system must be placed on the right position according to the orientation of the test artifact. Fig. 1 
shows the different ways to position the probing system according to the axis of travel of the measurement. 
 

 
 

Fig. 1. Measuring positions of self centring probe. 
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The test artifact is placed in the machine in eight orientations where ten measure series are measured. Fig. 2. 
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Fig. 2. Orientations of the 1D ball array. 
 
3.2. Traditional techniques test 
 

A straightedge is placed on the machine table, attaching on top of it the fix mirror of an interferometry system 
along with an electronic level. The interferometer and two linear displacement sensors are attached to the machine 
spindle. 

The measuring systems are placed all at once as can be seen in Fig. 3, this way the measure values of the 
interferometer, the linear displacement sensor and the electronic level are taken at the same space- time, thereby a 
reasonable comparison of techniques can be done. Using this setup the machine shall perform sets of movements 
emulating the orientations and sphere positions of the test artifact on section 3.1. See Fig. 4. 

 

 
Fig. 3. Measuring systems placed simultaneously. 

 
Fig. 4. Measuring at three positions. Emulating orientations 1D ball array. 
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4. Results 
 

The geometric error of a milling machine were calculated by mean of the formulae which definition process is 
presented on this article, fulfilling them with the measure position values obtained from the test described in 3.1. 
The results have being validated by contrasting them with the ones obtained from a test performed with traditional 
techniques described in 3.2. 

The graphical comparisons of the angular errors of X axis are show in Fig. 5, Yaw on the left side (a) and Pitch 
on the right (b). Each curve represents the error calculated with a different measuring technique. Given the errors 
magnitude, deviations between techniques are considered to have little significance.  

 
 

(a)  

6,00

4,00

2,00

0,00

2,00

4,00

6,00

8,00

0 100 200 300 400 500 600

Er
ro
r
(A
rc
Se
co
nd

)

XRY

L.I. LDS E. Level SCP
 (b)  

6,00

5,00

4,00

3,00

2,00

1,00

0,00

1,00

0 100 200 300 400 500 600

Er
ro
r(
A
rc

Se
co
nd

)

XRZ

L.I. LDS SCP
 

 
Fig. 5. Comparison of the angular errors of X axis. (a) Yaw, (b) Pitch. 

 
The comparison of the obtained results of the calculation of the Roll error with two measuring systems can be 

seen in Fig. 6. Both curves show the error value in a range of ±1 arc second.  
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Fig. 6. Comparison of the X axis Roll error. 
 
The results of the Positioning error in Fig. 7 show a decreasing tend and a similar behavior in practically the 

entire measuring range, however, is interesting how the curve representing the interferometer shows greater values 
than the self centrig probe. These differences are attributable to a cosine error in relation to the axis of movement 
of the machine. The deviation between the two errors amounts to about 8 microns, equivalent to an error of 0.3 
grades. 
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Fig. 7. Comparison of the X axis Positioning error. 
 
Straightness errors in Y (a) and Z (b) direction obtained from each of the measuring techniques are shown in 

Fig. 8. The error trend is similar in all methods compared. 
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Fig. 8. Comparison of the straightness errors of X axis. (a) Y direction, (b) Z direction. 

 
5. Conclusions 
 

The general procedure for the definition of the formulae to calculate the geometric errors of MH with three 
linear axes have been carefully explained presenting the case of a machine type XFYZ. Furthermore, the validity 
thereof has been demonstrated by experimental tests, with results similar to those offered by traditional techniques. 
The similarities between these results suggest that the calculation method is correct and valid for implementation. 
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