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Abstract

This paper studies a Metropolis-Hastings (MH) algorithm of unknown parameters for a multinomial logit model. The MH algorithm

which is one of the Bayesian estimation requires prior and proposal distributions. A selection of the prior and proposal distributions

is an important issue of the Bayesian estimation. However, there is no a decisive approach for the determination of prior and

proposal distributions. A posterior distribution is obtained from two distributions. The MH algorithm generates samples from the

posterior distribution of the unknown parameters. Unless we give appropriate distributions, it leads to an inappropriate posterior

distribution. In this paper, we discuss differences in the behaviors of autocorrelation functions in a selection of the proposal

distributions.
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1. Introduction

For an estimation of a multinomial logit model, the likelihood estimation is widely used because the maximum

likelihood estimators of unknown parameters are consistent and asymptotically normal distributed and the uniqueness

of the optimal solution of the maximum likelihood estimation is ensured under weak conditions for the multinomial

logit model. On the other hand, the Bayesian estimation obtains distributions of the unknown parameters which

are treated with random variables. A concept of the Bayesian estimation is completely different from the one of the

likelihood estimation. Since the Bayesian estimation is based on flexible assumptions, it is widely used for estimations

of statistical models, not limited to the estimation of the multinomial logit model.

One of the representative methods of the Bayesian estimations are Markov chain Monte Carlo methods 1 such

as Gibbs sampling2, Metropolis method3, and Metropolis-Hastings (MH) method4. The Gibbs sampling cannot be
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directly applied to the estimation of the multinomial logit model because the posterior distribution for their unknown

parameters does not have a full conditional distribution. The MH algorithm is an effective method which approximates

to the posterior distribution, regardless of the forms of statistical models and prior distributions. In the Bayesian

estimation, we require two important distributions to generate a Markov chain: 1. A prior distribution, 2. A proposal
distribution. Using two distributions with observed data, we get a posterior distribution of unknown parameters. In

this paper, we discuss an appropriate selection of the proposal distribution on a MH algorithm for a multinomial logit

model. In section 2, we introduce briefly a MH algorithm and their diagnostics. In the next section, we give a case

study and proceed to a conclusion of this study.

2. Metropolis-Hastings algorithm

The following procedure is the Metropolis-Hastings algorithm (MH). There are a lot of literatures and books

relating to the MH algorithm (See E.g.5).

The Metropolis-Hastings algorithm� �
Given a current value θ(s),

1. Generate θ∗ from J(θ | θ(s), y);

2. Compute the acceptance ratio

r =
p(θ∗)p(y | θ∗)

p(θ(s))p(y | θ(s))
× J(θ(s) | θ∗, y)

J(θ∗ | θ(s), y)
;

3. Set θ(s+1) =

{
θ∗ if u < r
θ(s) otherwise

, where u is a sample from uniform distribution U(0, 1).

� �
In the above algorithm, J is a proposal distribution and P(y | θ) is a posterior distribution. The proposal distribution

generates candidates for the parameter values. Sometimes the value is rejected following a value of an acceptance

ratio r. Although a choice of the prior distribution is an important issue for the Basysian etimation, we mainly focus

on proposal distribution in this paper.

Assume that there are S samples of the Markov chain except those in the burn-in period. The following diagnostics

are used in this study.

1. Trace plot of the Markov chain

Check whether the chain illustrated along the time series moves stable without depending on an initial value.

2. The autocorrelation function (cf. E.g,5)

A sample autocorrelation function computes correlation among the values of the chain. The lag-t autocorrelation

function estimates the correlation between elements of the sequence that are t steps apart. The effective sample
size also helps to measure the autocorrelations of the chain.

3. Geweke’s diagnostic6

The approach which tests the difference between the means of the values in the early sequence A and in the

later sequence B. Based on6, we put the sample size pA and pB in two groups for pA = 0.1S and pB = 0.5S ,

respectively.

4. Gelman-Rubin’s diagnostic7

Gelman-Rubin’s diagnostic R̂ gets a look at variances of multiple chains starting from different values for each

of the parameters. It regards that the chain converges if the values of R̂ are all less than 1.1 or 1.2 in practice.

Although we used all the diagnostics in our simulation, the results of trace plot and Gelman-Rubin’s are not omitted

in this paper.
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3. Simulation studies

We conduct a simulation study for a Metropolis-Heistings (MH) algorithm. We use weather data at the Japan Me-

teorological Agency in Yokohama (From January first, 2009 to December 31th, 2011)8. Table 1 shows the variables

and their corresponding parameters. Note that the quantitative variables are normalized.

Table 1. Variables corresponding to their parameters.

variable parameter quantitative

Weather in the next morning (sunny, cloudy, rainy) Y – –

Atmospheric pressure X1 β1 Yes

Maximum temperature X2 β2 Yes

Hours of sunshine X3 β3 Yes

Whether rainy or not in the today afternoon X4 β4 No

Constant (sunny) – β5 No

Constant (cloudy) – β6 No

Suppose that the statistical model with these data (X1, . . . , X4) = (x1n, . . . , x4n) (n = 1, . . . , 1095) is the multinomial

logit model as follows:

P(Yn = i) =
ezin∑3

j=1 ez jn
(n = 1, . . . , 1095), (1)

where z1n = β1x1n + β2x2n + β5, z2n = β3x3n + β6, z3n = β4x4n. In (1), the values 1,2, and 3 of Yn correspond to “sunny”,

“cloudy”, and “rainy”, respectively. We estimate the unknown coefficient parameters β1, . . . , β6. These parameters are

noted as a vector of the parameters β = (β1, . . . , β6)T. We describe the settings to run the MH algorithm as follows.

Based on a random walk chain algorithm, a proposal value β∗ given a current value β(s) in s-th iteration is generated

as follows:

β∗ = β(s) + ε, ε ∼ N(0,Σ), Σ = diag(δ1
2, . . . , δ6

2), (2)

where 0 is the 6-dimensional vector. In this paper, we proceed with our estimation using the covariance matrix without

the covariances as in (2). The MH algorithm consisting of S = 55, 000 iterations with the initial value β(0) = 0 is

conducted. To discuss the differences in proposal distributions, we suppose on ahead that the noninformative prior
distribution is

β ∼ N(0, 1000000I), (3)

where I is the identity matrix. The samples of the chain in the first 5, 000 iterations are discarded as those in the

burn-in period and samples in the remaining 50, 000 iterations are used for the estimation.

We seek an appropriate covariance matrix Σ of the random walk chain algorithm in Section 3.1 and 3.2 under

the noninformative prior (3). We treat isotropic and anisotropic covariance matrices in Section 3.1 and Section 3.2,

respectively. This simulation study is performed to compare the behaviors of the isotropic covariance matrix and the

anisotropic covariance matrix.

3.1. Determination of the appropriate isotropic covariance matrix

We find an appropriate covariance matrix Σ in (2) when it is restricted to be an isotropic covariance matrix (ho-

moscedasticity). The isotropic covariance matrix is proportional to the identity matrix

Σ = δ2I. (4)
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Namely, we assume that δ21 = · · · = δ26 in (2). We simulate with the following three different variances δ2 in (4) :

1. δ2 = 0.12, 2. δ2 = 0.0032, 3. δ2 = 0.00012.

In fact, although some variances were applied to the MH algorithm in our simulation, we pick up only three cases.

In this simulation, we use the noninformative prior distribution (3) for a prior distribution p(β) to find an appropriate

covariance matrix without depending on the prior distribution.

Table 2. Comparison with the posterior means (std. deviation).

β1 β2 β3 β4 β5 β6

δ2 = 0.0032 −0.2858 −0.4395 −0.3077 2.7403 1.9782 1.8432

(0.0701) (0.0695) (0.0670) (0.1902) (0.1359) (0.1364)

δ2 = 0.00012 −0.2858 −0.4395 −0.3077 2.7403 1.9782 1.8432

(0.0730) (0.0765) (0.0674) (0.1822) (0.1195) (0.1176)

δ2 = 0.12 −0.2847 −0.4367 −0.3076 2.7157 1.9513 1.8189

(0.0606) (0.0724) (0.0675) (0.1931) (0.1530) (0.1515)

Three different proposal variances are evaluated with multiple convergence diagnostics. We see in Table 2 that the

posterior means and its standard deviations in three different variances δ2 are nearly equal. We cannot observe at first

glance the differences among the three cases in the simulation from the view point of the posterior means. In that

sense, the MH algorithm enables us to obtain the estimates of the unknown parameters without depending on a choice

of the proposal distribution. However, the choice of the proposal distribution depends on the convergence of the chain.

Moreover, the purpose of the Bayesian estimation is to get a posterior distribution without dependency on a proposal

distribution, not a point estimation. Figure 1 shows the values of the autocorrelation functions. Here, we pick up only

the result relating to β1.
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Fig. 1. The values of the autocorrelation functions in β1.

Obviously, the behaviors of the autocorrelation functions are different. The high values of the autocorrelation

functions mean that the values in the chain are dependent. It is an unwelcome fact, since we want to get independent

samples from the chain. Although the MH algorithm intrinsically yields a dependency chain, it is desirable to get

the more independent chain. In that sense, the middle variance is the most appropriate in the view point of the

autocorrelation functions. The chain given in the large variance δ2 = 0.12 has high autocorrelations, which implies

that the chain does not accept for a new proposal value. Hence the chain goes sideways for a long period. Similarly,

the chain given in the small proposal variance δ2 = 0.00012 has also high autocorrelations. The small variance with

δ2 = 0.00012 means that β∗ is very close to β(s). It leads to the high correlation between the present value and the

proposal value. The following table shows the acceptance ratios of the each variance.

In the middle variance δ2 = 0.0032, β∗ is accepted as the value of β(s+1) for 38 % of the iterations. It lies in

an appropriate range of a MH algorithm. The Geweke’s diagnostics are shown Table 4 below. Some Geweke’s
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Table 3. Acceptance rate in δ2 = 0.12, δ2 = 0.0032, and δ2 = 0.00012.

δ2 = 0.12 δ2 = 0.0032 δ2 = 0.00012

Percentage of the acceptance 0.2% 38% 86%

diagnostics are not calculated in the small variance. Under the significance level for α = 0.05, the null hypothesis of

that there is no difference between the mean in the early sequence and in the later sequence is rejected. In the small

and the large variances, the chains do not converge from the view point of Geweke’s diagnostic.

Table 4. Geweke’s diagnostics

β1 β2 β3 β4 β5 β6

δ2 = 0.00012 −3.2654 −2.7750 −2.3006 − − 3.2986

δ2 = 0.0032 −1.2334 −0.7610 −0.3377 −0.8853 −0.9211 −1.1105

δ2 = 0.12 3.2910 3.7490 1.8180 −0.8100 1.8380 3.9800

From the above discussion, we may conclude that the appropriate variance is δ2 = 0.003 and the autocorrelation

functions of the parameter β1 is appropriate. However, the autocorrelation functions of the other parameters are not

good (See Figure 2). This fact is discussed in the next subsection.
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Fig. 2. Plots of the autocorrelation functions when p(β) is the noninformative prior distribution and Σ is isotropic.

3.2. Isotropic matrix

In Section 3.1, we found the appropriate isotropic covariance matrix. However, we never conclude that this

isotropic covariance matrix leads to an effective estimation for all the parameters when the covariance matrix is

restricted to be isotropic. Obviously the autocorrelations with respect to β4, β5, and β6 take high values in comparison

with the results of β1, β2 and β3 (See Figure 2). We note that β4, β5, and β6 correspond to the parameters with the
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qualitative variables. However, the acceptance ratio of the chain is in the acceptable range. Hence we use δ1
2, . . . , δ6

2

so that the covariance matrix (2) is not restricted to be isotropic in this section to get the chains with low autocorrela-

tions. The matrix is called an anisotropic covariance matrix (heteroscedasticity). Meanwhile, suppose that anisotropic

variances δ1
2, . . . , δ6

2 are given by

δ1
2 = δ2

2 = δ3
2 = 0.0032, δ4

2 = δ5
2 = δ6

2 = 0.032. (5)

We compare the chains of the anisotropic with those of the isotropic covariance matrix using the MH algorithm. We

omit here a discussion of the process to obtain (5). Suppose that the noninformative prior distribution (3) is used

for the prior distribution p(β) for similar reasons in the case of the isotropic matrix. Given the above settings, the

simulated results are shown in Figure 3.
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Fig. 3. Plots of the autocorrelation functions when p(β) is the noninformative prior distribution and Σ is anisotropic.

Clearly, the chains β4, β5, and β6 with the anisotropic matrix take the lower autocorrelations than those in the case

of the isotropic one (Compare Figure 2 with Figure 3). Although we have the results of the balanced estimation,

β1, β2, and β3 have higher autocorrelations than the results of being restricted to be isotropic. The anisotropic matrix

enables us to obtain the lower autocorrelations for some specific parameters. However, we loose the effectiveness of

the chains for the specific parameters β1, β2, and β3. Although the use of the proposal distribution with an anisotropic

covariance matrix yields a balanced estimation, it does not always lead to an estimation with lower autocorrelations

for all the parameters.

3.3. Further discussion (informative prior)

Until the previous subsections, we applied the noninformative prior distribution (3) to get an appropriate proposal

distribution without depending on the influence of the prior distribution. Hence we apply a informative prior instead

of the the noninformative prior distribution (3) for the further discussion. Here we assume that “informative” is

β ∼ N(0, 10I).

We proceed with our estimation using the informative prior distribution.

Figure 4 shows the results of the autocorrelation functions under the informative prior with the isotropic covariance

matrix. It is similar to the result under the noninformative prior with the isotropic matrix (Compare with Figure 2).
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Fig. 4. Plots of the autocorrelation functions when p(β) is the

informative prior distribution and Σ is isotropic.
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Fig. 5. Plots of the autocorrelation functions when p(β) is the

informative prior distribution and Σ is anisotropic.

The chains are also unbalanced. The autocorrelation functions of the chains in β1, β2, and β3 keep low values. On

the other hand, the ones in the other paramters keep high values. The use of the informative prior does not give a

balanced estimation under the proposal distribution with the isotropic covariance matrix. Figure 5 shows the results

of the informative prior with the anisotropic covariance matrix. The use of the anisotropic covariance matrix leads to

the similar result under the noninformative prior with the anisotropic matrix (Compare Figure 3 and 5). Namely, the

use of the anisotropic covariance matrix yields the effectiveness of the estimation for β4, β5, and β6 and then we get a

balanced estimation. Instead of this, the estimation looses the effectiveness for the specific parameters β1, β2, and β3.

This phenomenon is similar to the noninformative prior discussed in Section 3.2.

4. Conclusion

In this paper, we showed behaviors of a MH algorithm with a random walk algorithm. Under the noninformative

prior distribution, we seeked the appropriate proposal distribution without depending on the prior distribution. When

the covariance matrix was restricted to be isotropic, it seems that the plausible estimation is obtained because some

diagnostics showed the convergence of the chain.

Next we considered the anisotropic covariance matrix in the random walk chain algorithm to reduce the values

of the autocorrelation functions for the specific parameters. Although the anisotropic covariance matrix with the

appropriate values for some specific parameters was set, it did not lead to the effective estimation for all the parameters.

While the chains for some specific parameters had lower autocorrelations, the chains for the other parameters have

higher autocorrelations. That is, the anisotropic covariance matrix yielded a balanced estimation, however, it did not

lead to an estimation with lower autocorrelations for all the parameters. In other words, the anisotropic covariance

matrix adjusts how effective to estimate for each of the parameters.

This study is limited to a selection of the proposal distribution and we mainly discuss the behaviors of the autocor-

relation functions. It does not contain a selection of the prior distribution. We shall also give a concept of the selection

of the prior distribution and show a simulation study with a balanced and efficient chain in the presentation of the

conference.
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